## MATH 1003 Calculus and Linear Algebra

 (Lecture 8)
## Maosheng Xiong

Department of Mathematics, HKUST

## Example

A chemical manufacturer wants to lease a fleet of 24 railroad tank cars with a combined carrying capacity of 520,000 gallons. Tank cars with three different carrying capacities are available: 8,000 gallons, 16,000 gallons, and 24,000 gallons. How many of each type of tank car should be leased?

## Solution to Example 1 Part 1

## Solution to Example 1 Part 2



The linear system corresponding to the reduced form is

$$
\left\{\begin{array}{rl}
x_{1}-x_{3} & =-17 \\
& x_{2}+2 x_{3}
\end{array}=41\right.
$$

The corresponding augmented matrix is
$\left[\begin{array}{ccc|c}1 & 1 & 1 & 24 \\ 8000 & 16000 & 24000 & 520000\end{array}\right]$

## Solution to Example 1 Part 3

## Solution to Example 1 Part 4

Since $x_{3}$ is the free variable, we let $x_{3}=t$, where $t$ is any real number. Then the general solution can be written as follows:

$$
\begin{cases}x_{1} & =-17+t \\ x_{2} & =41-2 t \\ x_{3} & =t\end{cases}
$$

where $t$ is any real number.

However, the definitions of $x_{1}, x_{2}$ and $x_{3}$ imply that the solutions must be non-negative integers. Therefore, we need to derive the possible range of values of $t$ such that the general solution make sense for this problem:

$$
\begin{cases}-17+t & \geq 0 \\ 41-2 t & \geq 0 \\ t & \geq 0\end{cases}
$$

## Applications of Gauss-Jordan Elimination

## Example 2 - Boat Production Description

## Example

A small manufacturing plant makes three types of inflatable boats: one-person, two-person, and four-person models. Each boat requires the services of three departments, as listed in the table The cutting, assembly and packaging departments have available a maximum of 380,330 and 120 labor-hours per week, respectively.

| Department | One-Person <br> Boat | Two-Person <br> Boat | Four-Person <br> Boat |
| :---: | :---: | :---: | :---: |
| Cutting | 0.5 hr | 1.0 hr | 1.5 hr |
| Assembly | 0.6 hr | 0.9 hr | 1.2 hr |
| Packaging | 0.2 hr | 0.3 hr | 0.5 hr |

Solving the inequalities, we finally obtain all the relevant solutions to the linear system:

$$
\left\{\begin{array}{l}
x_{1}=-17+t \\
x_{2}=41-2 t \\
x_{3}=t
\end{array}\right.
$$

where $t$ is any integer such that $17 \leq t \leq 20$.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 8)

## Example 2 - Boat Production Questions

(a) How many boats of each type must be produced each week for the plant to operate at full capacity?
(b) How is the production schedule in part (a) affected if the packaging department is no longer used?
(c) How is the production schedule in part (a) affected if the four-person boat is no longer produced?

## Solution to Example 2 Part 1

Let $x_{1}, x_{2}$ and $x_{3}$ be the number of one-person boats, two-person boats and four-person boats produced each week respectively.

According to the given table, we have the following linear system:

$$
\begin{cases}0.5 x_{1}+x_{2}+1.5 x_{3} & =380 \\ 0.6 x_{1}+0.9 x_{2}+1.2 x_{3} & =330 \\ 0.2 x_{1}+0.3 x_{2}+0.5 x_{3} & =120\end{cases}
$$

## Solution to Example 2 Part 3

If the packaging department is no longer used, we should drop the last equation in the linear system i.e. the corresponding augmented matrix should be

$$
\left[\begin{array}{ccc|c}
0.5 & 1 & 1.5 & 380 \\
0.6 & 0.9 & 1.2 & 330
\end{array}\right]
$$

Using the steps of Gauss-Jordan elimination in (a), we obtain

$$
\left[\begin{array}{ccc|c}
1 & 0 & -1 & -80 \\
0 & 1 & 2 & 420
\end{array}\right]
$$

Part of the reduced form in (a).

Solution to Example 2 Part 2

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
0.5 & 1 & 1.5 & 380 \\
0.6 & 0.9 & 1.2 & 330 \\
0.2 & 0.3 & 0.5 & 120
\end{array}\right] \xrightarrow{\substack{2 R_{1} \rightarrow R_{1}, 10 R_{3} \rightarrow R_{3} \\
10,3 R_{2} \rightarrow R_{2}}}\left[\begin{array}{lll|l}
1 & 2 & 3 & 760 \\
2 & 3 & 4 & 1100 \\
2 & 3 & 5 & 1200
\end{array}\right]} \\
& \xrightarrow[-2 R_{1}+R_{1}+R_{2} \rightarrow R_{2}]{\substack{-2 R_{3}}}\left[\begin{array}{ccc|c}
1 & 2 & 3 \\
0 & -1 & -2 & 760 \\
0 & -1 & -1 & -420 \\
-320
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 760 \\
0 & 1 & 2 & 420 \\
0 & -1 & -1 & -320
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & -80 \\
0 & 1 & 2 & 420 \\
0 & 0 & 1 & 100
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 20 \\
0 & 1 & 0 & 220 \\
0 & 0 & 1 & 100
\end{array}\right]
\end{aligned}
$$

Therefore, the solution is $x_{1}=20, x_{2}=220$ and $x_{3}=100$.

## Applications of Gauss-Jordan Elimination

## Solution to Example 2 Part 4

Since $x_{3}$ is the free variable, Let $x_{3}=t$ and hence the general solution is

$$
\begin{cases}x_{1} & =-80+t \\ x_{2} & =420-2 t \\ x_{3} & =t\end{cases}
$$

where $t$ is any integer such that $80 \leq t \leq 210$.

## Solution to Example 2 Part 5

## Example 3 - Traffic Flow

If the four-person boat is no longer produced, we should drop the variable $x_{3}$ in the linear system i.e. the corresponding augmented matrix should be

$$
\left[\begin{array}{cc|c}
0.5 & 1 & 380 \\
0.6 & 0.9 & 330 \\
0.2 & 0.3 & 120
\end{array}\right]
$$

Using the steps of Gauss-Jordan elimination in (a), we obtain
$\left[\begin{array}{ll|l}1 & 0 & -80 \\ 0 & 1 & 420 \\ 0 & 0 & 100\end{array}\right]$

Part of the reduced form in (a). Therefore, the linear system has no solution.

Applications of Gauss-Jordan Elimination

## Solution to Example 3 Part 1 (Optional)

(a) For a smooth traffic flow, the number of vehicles entering each intersection should always equal the number leaving. For example, since 1000 vehicles enter the intersection of 1st Street and 3rd Street each hour and $x_{1}+x_{3}$ vehicles leave this intersection, we see that $x_{1}+x_{3}=1000$. Find the equations determined by the traffic flow at each of the other three intersections.
(b) Find the solution to the system in (a).
(c) What is the maximum number of vehicles that can travel from 3rd Street to 4th Street on 1st Street? What is the minimum number?
(d) If traffic lights are adjusted so that 700 vehicles per hour travel from 3rd Street to 4th Street on 1st Street, determine the flow around the rest of the network.

## Example

The rush-hour traffic flow for a network of for one-way streets in a city is shown in the figure. The numbers next to each street indicate the number of vehicles per hour that enter and leave the network on that street. The variable $x_{1}, x_{2}, x_{3}$ and $x_{4}$ represent the flow of traffic between the four intersections in the network.


## Solution to Example 3 Part 2 (Optional)

For each of the four intersections, the number of vehicles entering the intersection equals the number leaving. Therefore, we have

## Solution to Example 3 Part 3 (Optional)

## Solution to Example 3 Part 4 (Optional)

We use Gauss-Jordan elimination to solve the linear system in (a):
$\left[\begin{array}{cccc|c}1 & 0 & 0 & 1 & 1100 \\ 1 & 0 & 1 & 0 & 1000 \\ 0 & 1 & 1 & 0 & 1100 \\ 0 & 1 & 0 & 1 & 1200\end{array}\right] \xrightarrow{-R_{1}+R_{2} \rightarrow R_{2}}\left[\begin{array}{cccc|c}1 & 0 & 0 & 1 & 1100 \\ 0 & 0 & 1 & -1 & -100 \\ 0 & 1 & 1 & 0 & 1100 \\ 0 & 1 & 0 & 1 & 1200\end{array}\right]$
$R_{2} \longleftrightarrow R_{3}\left[\begin{array}{cccc|c}1 & 0 & 0 & 1 & 1100 \\ 0 & 1 & 1 & 0 & 1100 \\ 0 & 0 & 1 & -1 & -100 \\ 0 & 1 & 0 & 1 & 1200\end{array}\right]-R_{2} \xrightarrow{R_{4} \longrightarrow} R$
$\left[\begin{array}{cccc|c}1 & 0 & 0 & 1 & 1100 \\ 0 & 1 & 1 & 0 & 1100 \\ 0 & 0 & 1 & -1 & -100 \\ 0 & 0 & -1 & 1 & 100\end{array}\right] \xrightarrow{\substack{-R_{3}+R_{2} \longleftrightarrow R_{2} \\ R_{3}+R_{4} \overleftrightarrow{\longrightarrow}}}\left[\begin{array}{cccc|c}1 & 0 & 0 & 1 & 1100 \\ 0 & 1 & 0 & 1 & 1200 \\ 0 & 0 & 1 & -1 & -100 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

## Applications of Gauss-Jordan Elimination

Solution to Example 3 Part 5 (Optional)
Similar to the previous example, the solution makes sense only when $x_{1}, x_{2}, x_{3}$ and $x_{4}$ are non-negative integers. Therefore, we have

$$
\begin{cases}1100-t & \geq 0 \\ 1200-t & \geq 0 \\ 100+t & \geq 0 \\ t & \geq 0\end{cases}
$$

and $t$ is an integer. Solving the inequalities, we obtain the all the relevent solutions:

$$
\begin{cases}x_{1} & =1100-t \\ x_{2} & =1200-t \\ x_{3} & =-100+t \\ x_{4} & =t\end{cases}
$$

where $t$ is any integer such that $100 \leq t \leq 1100$.

