MATH 1003 Calculus and Linear Algebra (Lecture 9)

Maosheng Xiong
Department of Mathematics, HKUST

Examples

Evaluate the following expressions:
(a) $\left[\begin{array}{ccc}2 & -3 & 0 \\ 1 & 2 & -5\end{array}\right]+\left[\begin{array}{ccc}3 & 1 & 2 \\ -2 & 4 & 0\end{array}\right]=\left[\begin{array}{ccc}5 & -2 & 2 \\ -1 & 6 & -5\end{array}\right]$
(b) $-4\left[\begin{array}{cc}-2 & 3 \\ 1 & -1 \\ 2 & -2\end{array}\right]-\left[\begin{array}{cc}3 & 2 \\ -1 & -1 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}5 & -14 \\ -3 & 5 \\ -8 & 5\end{array}\right]$
(c) $\left[\begin{array}{ccc}5 & 0 & -2 \\ 1 & -3 & 8\end{array}\right]+\left[\begin{array}{cc}-1 & 7 \\ 1 & -1 \\ 2 & -2\end{array}\right]$
(d) $\left\{\begin{array}{l}x_{1}=t-17 \\ x_{2}=-2 t+41 \\ x_{3}=t\end{array} \Leftrightarrow\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=t\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)+\left(\begin{array}{c}-17 \\ 41 \\ 0\end{array}\right)\right.$

Product of a Row Matrix and a Column Matrix

The product of a $1 \times n$ row matrix and an $n \times 1$ column matrix is a 1×1 matrix given by

$$
\left(\begin{array}{lll}
\left(a_{1}\right) & a_{2} & \cdots \\
a_{n}
\end{array}\right)\left(\begin{array}{c}
\left(b_{1}\right) \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+a_{2} b_{2}+\cdots a_{n} b_{n}
$$

Example

$$
\left(\begin{array}{lll}
3 & 5 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=3 x_{1}+5 x_{2}+4 x_{3}
$$

Matrix Product

Solution

1. Check whether $A B$ is well defined: A is a 2-by- 3 matrix and B is a 3 -by- 3 matrix, well-defined.
2. Find $a_{i j}$ by using the product of the ith-row from the first matrix and the j-th column from the second matrix.

2nd row from $A:\left(\begin{array}{lll}0 & 1 & 1\end{array}\right)$, 1st column from $B:\left(\begin{array}{c}2 \\ 0 \\ -1\end{array}\right)$

$$
a_{21}=0 \times 2+1 \times 0+1 \times(-1)=-1 .
$$

- If the matrices $A=\left(a_{i j}\right)$ is $m \times n$, and $B=\left(b_{i j}\right)$ is $n \times p$,
- then the matrix product $C=A B=\left(c_{i j}\right)$ is an $m \times p$ matrix, where

$$
c_{i j}=\text { the } i \text {-th row of } A \cdot \text { the } j \text {-th column of } B,
$$

that is,

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

- If the number of columns in A does not equal to the number of rows in B, then matrix product $A B$ does not make sense.

Example

Find the value for a_{21} from the product of the following two matrices A and B :

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & 2 \\
-1 & 0 & 4
\end{array}\right)
$$

Matrix Product - Examples

Evaluate the following matrix products:
(a) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=$?
(b) $\left[\begin{array}{cc}2 & 6 \\ -1 & -3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]=$?
(c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ -1 & -3\end{array}\right]=$?

Evaluate the following matrix products:
(a) $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]=\left[\begin{array}{ll}A a+C b & B a+D b \\ A c+C d & B c+D d\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & 6 \\ -1 & -3\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]=\left[\begin{array}{cc}20 & 40 \\ -10 & -20\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]\left[\begin{array}{cc}2 & 6 \\ -1 & -3\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

Matrix Product - Examples

Some Properties

(d) $\left[\begin{array}{cc}2 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]\left[\begin{array}{cccc}1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0\end{array}\right]=\left[\begin{array}{cccc}4 & -1 & 2 & 2 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 0 & -1\end{array}\right]$
(e) $\left[\begin{array}{cccc}1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ 1 & 0 \\ -1 & 0\end{array}\right]$ not defined!
(f) $\left[\begin{array}{lll}2 & -3 & 0\end{array}\right]\left[\begin{array}{c}-5 \\ 2 \\ -2\end{array}\right]=-16$
(g) $\left[\begin{array}{c}-5 \\ 2 \\ -2\end{array}\right]\left[\begin{array}{lll}2 & -3 & 0\end{array}\right]=\left[\begin{array}{ccc}-10 & 15 & 0 \\ 4 & -6 & 0 \\ -4 & 6 & 0\end{array}\right]$

A nutritionist for a cereal company blends two cereals in three different mixes. The amounts of protein, carbohydrate and fat (in grams per ounce) in each cereal are given below.

	Cereal A		Cereal B
Protein Carbohydra Fat	$\begin{gathered} 4 \mathrm{~g} / \mathrm{oz} \\ 20 \mathrm{~g} / \mathrm{oz} \\ 3 \mathrm{~g} / \mathrm{oz} \end{gathered}$		$\begin{gathered} 2 \mathrm{~g} / \mathrm{oz} \\ 16 \mathrm{~g} / \mathrm{oz} \\ 1 \mathrm{~g} / \mathrm{oz} \end{gathered}$
	Mix X	Mix Y	Mix Z
Cereal A Cereal B	$\begin{gathered} 15 \mathrm{oz} \\ 5 \mathrm{oz} \end{gathered}$	$\begin{aligned} & 10 \mathrm{oz} \\ & 10 \mathrm{oz} \end{aligned}$	$\begin{gathered} 5 \mathrm{oz} \\ 15 \mathrm{oz} \end{gathered}$

(a) Find the amount of protein in Mix X .
(b) Find the amount of fat in Mix Z.

Summary

We represent two tables by the following matrices:

$$
M=\left[\begin{array}{cc}
4 & 2 \\
20 & 16 \\
3 & 1
\end{array}\right] \quad \text { and } \quad N=\left[\begin{array}{ccc}
15 & 10 & 5 \\
5 & 10 & 15
\end{array}\right]
$$

Then we have

$$
M N=\left[\begin{array}{ccc}
70 & 60 & 50 \\
380 & 360 & 340 \\
50 & 40 & 30
\end{array}\right]
$$

	Mix X	Mix Y	Mix Z
Protein	(a) 70 g	60 g	50 g
Carbonhydrate	380 g	360 g	340 g
Fat	50 g	40 g	${ }^{(b)} 30 \mathrm{~g}$

Take-home Question

Express the following system of linear equations by means of matrix operations:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+a_{14} x_{4}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+a_{24} x_{4}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}=b_{3} \\
a_{41} x_{1}+a_{42} x_{2}+a_{43} x_{3}+a_{44} x_{4}=b_{4}
\end{array}\right.
$$

