MATH 1003 Calculus and Linear Algebra (Lecture 9) Maosheng Xiong Department of Mathematics, HKUST	Definition The addition/subtraction of two matrices of the same size is the matrix with elements that are the addition/subtraction of the corresponding elements of the two given matrices. That is to say, if $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$, then $A + B = (a_{ij} + b_{ij})_{m \times n}$
 (日)・(四)・(三)・(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、(三)、	Definition The scalar multiplication of a matrix A by a real number k, denoted by kA, is a matrix formed by multiplying each element of A by k. That is to say, if $A = (a_{ij})_{m \times n}$ then $kA = (ka_{ij})_{m \times n}$
Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 9) Examples	Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 9) Some Properties
Examples Evaluate the following expressions: (a) $\begin{bmatrix} 2 & -3 & 0 \\ 1 & 2 & -5 \end{bmatrix} + \begin{bmatrix} 3 & 1 & 2 \\ -2 & 4 & 0 \end{bmatrix} = \begin{bmatrix} 5 & -2 & 2 \\ -1 & 6 & -5 \end{bmatrix}$ (b) $-4 \begin{bmatrix} -2 & 3 \\ 1 & -1 \\ 2 & -2 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ -1 & -1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -14 \\ -3 & 5 \\ -8 & 5 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & 0 & -2 \\ 1 & -3 & 8 \end{bmatrix} + \begin{bmatrix} -1 & 7 \\ 1 & -1 \\ 2 & -2 \end{bmatrix}$ does not make sense. (d) $\begin{cases} x_1 = t - 17 \\ x_2 = -2t + 41 \\ x_3 = t \end{cases} \Leftrightarrow \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} -17 \\ 41 \\ 0 \end{pmatrix}$	Let A, B and C are matrices of the same size and k be a real number. • $A + B = B + A$ • $(A + B) + C = A + (B + C)$ • $-A = (-1)A$ • $A + (-1)A = A - A = 0$, where 0 is the zero matrix, a matrix with all its elements being zero. • $k(A + B) = kA + kB$
◆□ > ◆夏 > ◆夏 > ◆夏 > ◆夏 > ◇ ◆ ●	 (ロ)、(型)、(目)、(目)、(目)、(目)、(日)、(型)、(目)、(日)、(日)、(日)、(日)、(日)、(日)、(日)、(日)、(日)、(日

MATH 1003 Calculus and Linear Algebra (Lecture 9)

Maosheng Xiong Department of Mathematics, HKUST

Addition, Subtraction and Scalar Multiplication

Product of a Row Matrix and a Column Matrix

The product of a $1\times n$ row matrix and an $n\times 1$ column matrix is a 1×1 matrix given by

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 b_1 + a_2 b_2 + \cdots + a_n b_n$$

Example

$$\begin{pmatrix} 3 & 5 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 3x_1 + 5x_2 + 4x_3.$$

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 9)

Matrix Product

Solution

- 1. Check whether *AB* is well defined: *A* is a 2-by-3 matrix and *B* is a 3-by-3 matrix, well-defined.
- 2. Find *a_{ij}* by using the product of the *i*th-row from the first matrix and the *j*-th column from the second matrix.

2nd row from
$$A: \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$$
, 1st column from $B: \begin{pmatrix} \\ \\ \end{pmatrix}$

$$a_{21} = 0 \times 2 + 1 \times 0 + 1 \times (-1) = -1.$$

Matrix Product

- ▶ If the matrices $A = (a_{ij})$ is $m \times n$, and $B = (b_{ij})$ is $n \times p$,
- then the matrix product $C = AB = (c_{ij})$ is an $m \times p$ matrix, where

 c_{ij} = the *i*-th row of $A \cdot$ the *j*-th column of B,

that is,

$$c_{ij}=a_{i1}b_{1j}+a_{i2}b_{2j}+\cdots+a_{in}b_{nj}$$

If the number of columns in A does not equal to the number of rows in B, then matrix product AB does not make sense.

Example

Find the value for a_{21} from the product of the following two matrices *A* and *B*:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \\ -1 & 0 & 4 \end{pmatrix}$$

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 9)

Matrix Product - Examples

Evaluate the following matrix products:

(a)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = ?$$

(b) $\begin{bmatrix} 2 & 6 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} = ?$
(c) $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ -1 & -3 \end{bmatrix} = ?$

Maosheng Xiong Department of Mathematics, HKUST

0

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ □ 三 のへで

Matrix Product - Examples

Matrix Product - Examples

Evaluate the following matrix products:

(a)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} Aa + Cb & Ba + Db \\ Ac + Cd & Bc + Dd \end{bmatrix}$$

(b) $\begin{bmatrix} 2 & 6 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} = \begin{bmatrix} 20 & 40 \\ -10 & -20 \end{bmatrix}$
(c) $\begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(d)
$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0 \end{bmatrix} = ?$$

(e) $\begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix} = ?$
(f) $\begin{bmatrix} 2 & -3 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 2 \\ -2 \end{bmatrix} = ?$
(g) $\begin{bmatrix} -5 \\ 2 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & -3 & 0 \end{bmatrix} = ?$

Matrix Product - Examples

Maosheng Xiong Department of Mathematics, HKUST

Maosheng Xiong Department of Mathematics, HKUST

(d)
$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 2 & 2 \\ 1 & -1 & 0 & 1 \\ -1 & 1 & 0 & -1 \end{bmatrix}$$

(e) $\begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 0 \end{bmatrix}$ not defined!
(f) $\begin{bmatrix} 2 & -3 & 0 \end{bmatrix} \begin{bmatrix} -5 \\ 2 \\ -2 \end{bmatrix} = -16$
(g) $\begin{bmatrix} -5 \\ 2 \\ -2 \end{bmatrix} \begin{bmatrix} 2 & -3 & 0 \end{bmatrix} = \begin{bmatrix} -10 & 15 & 0 \\ 4 & -6 & 0 \\ -4 & 6 & 0 \end{bmatrix}$

Some Properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

MATH 1003 Calculus and Linear Algebra (Lecture 9)

MATH 1003 Calculus and Linear Algebra (Lecture 9)

Let A and C be two $m \times p$ matrices. Let B and D be two $p \times n$ matrices.

▶ In general, $AB \neq BA$.

Maosheng Xiong Department of Mathematics, HKUST

- In general, AB = 0 does not imply that A = 0 or B = 0.
- $\blacktriangleright A(B+D) = AB + AD.$
- $\blacktriangleright (A+C)B = AB + CB.$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

MATH 1003 Calculus and Linear Algebra (Lecture 9)

An Application of Matrix Product

A nutritionist for a cereal company blends two cereals in three different mixes. The amounts of protein, carbohydrate and fat (in grams per ounce) in each cereal are given below.

		Cer	eal A	C	Cereal B
Protein Carbohydra Fat	ite	20	;/oz g/oz ;/oz		2g/oz 16g/oz 1g/oz
	Mi	ix X	Mix `	Y	Mix Z
Cereal A Cereal B	-	o oz oz	10 o 10 o		5 oz 15 oz

- (a) Find the amount of protein in Mix X.
- (b) Find the amount of fat in Mix Z.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 9)

Summary

Operat	ion	Ing	out	Outcome	
Function	Expression	Input 1	Input 2	size	c _{ij} from
Add / Substraction	$C = A \pm B$	$(a_{ij})_{m imes n}$	$(b_{ij})_{n \times n}$	$(c_{ij})_{a \times n}$	a _{ij} ,b _{ij}
Scalar multiplication	C = kA	k	$(a_{ij})_{s \times s}$	$(c_{ij})_{m \times n}$	k, a _{ij}
Matrix Product	C = AB	$(a_{ij})_{m \times p}$	$(b_{ij})_{p imes n}$	$(c_{ij})_{m \times n}$	i-th row of A, j-th column of B

Solution

We represent two tables by the following matrices:

$$M = \begin{bmatrix} 4 & 2 \\ 20 & 16 \\ 3 & 1 \end{bmatrix} \text{ and } N = \begin{bmatrix} 15 & 10 & 5 \\ 5 & 10 & 15 \end{bmatrix}$$

Then we have

$$MN = \begin{bmatrix} 70 & 60 & 50 \\ 380 & 360 & 340 \\ 50 & 40 & 30 \end{bmatrix}$$

	Mix X	Mix Y	Mix Z
Protein	(a) _{70 g}	60 g	50 g
Carbonhydrate	380 g	360 g	340 g
Fat	50 g	40 g	(b) _{30 g}

Take-home Question

Maoshe

Express the following system of linear equations by means of matrix operations:

 $\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + a_{34}x_4 = b_3 \\ a_{41}x_1 + a_{42}x_2 + a_{43}x_3 + a_{44}x_4 = b_4 \end{cases}$

- * ロ > * 個 > * 注 > * 注 > ・ 注 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@