MATH 1003 Calculus and Linear Algebra

 (Lecture 10)Maosheng Xiong
Department of Mathematics, HKUST

Identity Matrix

Definition

The identity matrix of order n is given by the following $n \times n$ matrix:

$$
I=\left[\begin{array}{llll}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

- We denote the identity matrix by I, or I_{n} if it is the $n \times n$ identity matrix.

Given two non-zero numbers a and b, one can define

$$
a \pm b \text { (addition/subtraction), } \quad a b \text { (multiplication). }
$$

Similar operations have been defined for two matrices. Now we consider the quotient of two numbers, that is

$$
b / a=b \cdot a^{-1}
$$

where $a^{-1} a=1 . a^{-1}$ is called the inverse of a.
To find the inverse of a matrix, we need to define " 1 " in the world of matrices first.

Example

$$
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Compute:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=?} \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=?}
\end{aligned}
$$

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Theorem

- $I M=M I=M$ for any square matrix M.
- In general, if I is the identity of order n, then

$$
I M=M, \quad N I=N
$$

where M is any $n \times m$ matrix and N is any $p \times n$ matrix.

Inverse of a Matrix

Inverse of a Matrix of Order Two

Definition

Let M be a square matrix of order n (i.e., $n \times n$ matrix) and $/$ be the identity matrix of order n. If there exists a matrix N such that

$$
N M=M N=I,
$$

then N is called the inverse of M.
Remark

- Conventionally, the inverse of M is denoted by M^{-1}.
- M^{-1} is of the same size as M.

Theorem
When $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $M^{-1}=\frac{1}{D}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ where $D=a d-b c$, provided that $D \neq 0$.

Remark
D is called the determinant of M.
Example
Find the inverse of $\left[\begin{array}{ll}2 & 3 \\ 1 & 1\end{array}\right]$

Solution

By definition, $D=2 \times 1-1 \times 3=-1 \neq 0$. By the previous theoerem, we have

$$
\begin{gathered}
{\left[\begin{array}{ll}
2 & 3 \\
1 & 1
\end{array}\right]^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
1 & -3 \\
-1 & 2
\end{array}\right]} \\
=\left[\begin{array}{cc}
-1 & 3 \\
1 & -2
\end{array}\right]
\end{gathered}
$$

Theorem
Let M be an $n \times n$ matrix and I be the $n \times n$ identity matrix. If $(M \mid I)$ can be transformed by row operation(s) into $(I \mid B)$, then the resulting matrix B is the inverse of M, that is $M^{-1}=B$.

$$
(M \mid I) \xrightarrow{\text { Row operations }}\left(I \mid M^{-1}\right) .
$$

A General Method to Find Matrix Inverse

Example
Find the inverse of each of the following matrices
(a) $\left[\begin{array}{ccc}-5 & -2 & -2 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0\end{array}\right]$.

Solution for (a) Part 1

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
-5 & -2 & -2 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
2 & 1 & 0 & 0 & 1 & 0 \\
-5 & -2 & -2 & 1 & 0 & 0
\end{array}\right]} \\
& \xrightarrow[c]{R_{2}+(-2) R_{1} \rightarrow R_{2}} R_{3}+5 R_{\longrightarrow} \rightarrow R_{3}
\end{aligned}\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & -2 & 0 & 1 & -2 \\
0 & -2 & 3 & 1 & 0 & 5
\end{array}\right] \xrightarrow{R_{3}+2 R_{2} \rightarrow R_{3}}
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & -2 & 0 & 1 & -2 \\
0 & 0 & -1 & 1 & 2 & 1
\end{array}\right] \xrightarrow{R_{3} \rightarrow R_{3}}
$$

$\left[\begin{array}{ccc|ccc}1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 & 1 & -2 \\ 0 & 0 & 1 & -1 & -2 & -1\end{array}\right] \xrightarrow{\substack{R_{2}+2 R_{3} \rightarrow R_{2} \\ R_{1}+(-1) R_{3} \rightarrow R_{1}}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 1 & 2 & 2 \\ 0 & 1 & 0 & -2 & -3 & -4 \\ 0 & 0 & 1 & -1 & -2 & -1\end{array}\right]$
Therefore, $\left[\begin{array}{ccc}1 & 2 & 2 \\ -2 & -3 & -4 \\ -1 & -2 & -1\end{array}\right]$ is the inverse of $\left[\begin{array}{ccc}-5 & -2 & -2 \\ 2 & 1 & 0 \\ 1 & 0 & 1\end{array}\right]$.

$$
\left[\begin{array}{lll|lll}
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{3}}\left[\begin{array}{lll|lll}
1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0 \\
2 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

$$
\xrightarrow{\substack{R_{2}+(-1) R_{1} \rightarrow R_{2} \\
R_{3}+(-2) R_{1} \rightarrow R_{3}}}\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & -1 & 1 & 1 & 0 & -2
\end{array}\right]
$$

There is a row of zeroes on the left matrix and hence it is impossible to transform it into an identity matrix by row operations. No inverse exists.

1. Select a set of cells with the same configuration to the expected outcome (e.g. 3×3)
2. Type in the command

- Inverse "=MINVERSE(A1:C3)";
- Multiplication "=MMULT(A1:C3,A5:C7)"

3. Press "Ctrl" + "Shift" + "Enter"
