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Basic Operations Between Numbers

Given two non-zero numbers a and b, one can define

a± b (addition/subtraction), ab (multiplication).

Similar operations have been defined for two matrices. Now we
consider the quotient of two numbers, that is

b/a = b · a−1,

where a−1a = 1. a−1 is called the inverse of a.
To find the inverse of a matrix, we need to define “1” in the world
of matrices first.
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Identity Matrix

Definition
The identity matrix of order n is given by the following n × n
matrix:

I =




1 0 · · · 0
0 1 · · · 0
0 0 · · · 0
0 0 · · · 1




I We denote the identity matrix by I , or In if it is the n × n
identity matrix.
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Example

I3 =




1 0 0
0 1 0
0 0 1


 .

Compute: 


1 0 0
0 1 0
0 0 1






a11 a12 a13
a21 a22 a23
a31 a32 a33


 =?




a11 a12 a13
a21 a22 a23
a31 a32 a33






1 0 0
0 1 0
0 0 1


 =?
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Example




1 0 0
0 1 0
0 0 1






a11 a12 a13
a21 a22 a23
a31 a32 a33


 =




a11 a12 a13
a21 a22 a23
a31 a32 a33







a11 a12 a13
a21 a22 a23
a31 a32 a33






1 0 0
0 1 0
0 0 1


 =




a11 a12 a13
a21 a22 a23
a31 a32 a33
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Example

Theorem

I IM = MI = M for any square matrix M.

I In general, if I is the identity of order n, then

IM = M, NI = N,

where M is any n ×m matrix and N is any p × n matrix.
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Inverse of a Matrix

Definition
Let M be a square matrix of order n (i.e., n × n matrix) and I be
the identity matrix of order n. If there exists a matrix N such that

NM = MN = I ,

then N is called the inverse of M.

Remark

I Conventionally, the inverse of M is denoted by M−1.

I M−1 is of the same size as M.
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Inverse of a Matrix of Order Two

Theorem

When M =

[
a b
c d

]
, then M−1 =

1

D

[
d −b
−c a

]
where

D = ad − bc, provided that D 6= 0.

Remark
D is called the determinant of M.

Example

Find the inverse of

[
2 3
1 1

]
.
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Inverse of a Matrix of Order Two

Solution
By definition, D = 2× 1− 1× 3 = −1 6= 0. By the previous
theoerem, we have

[
2 3
1 1

]−1
=

1

−1

[
1 −3
−1 2

]

=

[
−1 3
1 −2

]
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A General Method to Find Matrix Inverse

Theorem
Let M be an n × n matrix and I be the n × n identity matrix. If
(M|I ) can be transformed by row operation(s) into (I |B), then the
resulting matrix B is the inverse of M, that is M−1 = B.

(M|I ) Row operations−→ (I |M−1).
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A General Method to Find Matrix Inverse

Example

Find the inverse of each of the following matrices

(a)



−5 −2 −2
2 1 0
1 0 1




(b)




2 1 1
1 1 0
1 1 0


.
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Solution for (a) Part 1



−5 −2 −2 1 0 0
2 1 0 0 1 0
1 0 1 0 0 1


 R1↔R3−→




1 0 1 0 0 1
2 1 0 0 1 0
−5 −2 −2 1 0 0




R2+(−2)R1→R2
R3+5R1→R3−→




1 0 1 0 0 1
0 1 −2 0 1 −2
0 −2 3 1 0 5


 R3+2R2→R3−→




1 0 1 0 0 1
0 1 −2 0 1 −2
0 0 −1 1 2 1


 −R3→R3−→
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Solution for (a) Part 2




1 0 1 0 0 1
0 1 −2 0 1 −2
0 0 1 −1 −2 −1




R2+2R3→R2
R1+(−1)R3→R1−→




1 0 0 1 2 2
0 1 0 −2 −3 −4
0 0 1 −1 −2 −1




Therefore,




1 2 2
−2 −3 −4
−1 −2 −1


 is the inverse of



−5 −2 −2
2 1 0
1 0 1


.
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Solution for (b)




2 1 1 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1


 R1↔R3−→




1 1 0 0 0 1
1 1 0 0 1 0
2 1 1 1 0 0




R2+(−1)R1→R2
R3+(−2)R1→R3−→




1 1 0 0 0 1
0 0 0 0 1 −1
0 −1 1 1 0 −2




There is a row of zeroes on the left matrix and hence it is
impossible to transform it into an identity matrix by row
operations. No inverse exists.
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Matrix Operation in Microsoft Excel (Optional)

1. Select a set of cells with the same configuration to the
expected outcome (e.g. 3× 3)

2. Type in the command
I Inverse “=MINVERSE(A1:C3)”;
I Multiplication “=MMULT(A1:C3,A5:C7)”

3. Press “Ctrl”+“Shift”+“Enter”
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