## MATH 1003 Calculus and Linear Algebra

 (Lecture 11)Maosheng Xiong
Department of Mathematics, HKUST

Addition ( $A, B$ and $C$ of same size)

- Associative: $(A+B)+C=A+(B+C)$
- Commutative: $A+B=B+A$

Multiplication (A of size $m \times p ; B$ of size $p \times q$; $C$ of size $q \times n$ )

- Associative: $(A B) C=A(B C)$
- Not Commutative: $A B \neq B A$, even when both $A B$ and $B A$ are meaningful.


## Combined Properties

- Left distributive: $A(B+C)=A B+A C$
- Right distributive: $(B+C) A=B A+C A$

Similar to the operations of numbers except that multiplication is not commutative

## Matrix Equations

Matrix Equations - an Example
Number equation
If $a, x$ and $b$ are numbers and given $a$ invertible,

$$
a x=b \quad \rightarrow \quad x=a^{-1} b .
$$

## Matrix equation

For matrices, given $A$ of size $n \times n$, an unknown matrix $X$ of size $n \times p$ and $B$ of size $n \times p$,

$$
\begin{aligned}
A X & =B & & \text { To find } X \\
A^{-1}(A X) & =A^{-1} B & & \text { Left multiply } A^{-1} \text { on both sides } \\
\left(A^{-1} A\right) X & =A^{-1} B & & \text { Associate } A^{-1} \text { with } A \\
I X & =A^{-1} B & & \text { Properties of inverse } \\
X & =A^{-1} B & & \text { Properties of identity matrix }
\end{aligned}
$$

By comparison, we have

$$
A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & -1 \\
2 & 3 & 0
\end{array}\right], \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Find inverse of $A$ :

$$
\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 2 & -1 & 0 & 1 & 0 \\
2 & 3 & 0 & 0 & 0 & 1
\end{array}\right] \xrightarrow{(-2) R_{1}+R_{3} \rightarrow R_{3}}\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 2 & -1 & 0 & 1 & 0 \\
0 & 5 & -2 & -2 & 0 & 1
\end{array}\right]
$$

$$
\xrightarrow{\frac{1}{2} R_{2} \rightarrow R_{2}}\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 5 & -2 & -2 & 0 & 1
\end{array}\right] \xrightarrow{\substack{R_{2}+R_{1} \rightarrow R_{1} \\
(-5) R_{1}+R_{2} \rightarrow R_{3}}}
$$

## Generalisation of the Above Example

Example
Use matrix inverse to solve the system

$$
\left\{\begin{aligned}
x_{1}-x_{2}+x_{3} & =k_{1} \\
2 x_{2}-x_{3} & =k_{2} \\
2 x_{1}+3 x_{2} & =k_{3}
\end{aligned}\right.
$$

## Solution

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
3 & 3 & -1 \\
-2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{c}
3 k_{1}+3 k_{2}-k_{3} \\
-2 k_{1}-2 k_{2}+k_{3} \\
-4 k_{1}-5 k_{2}+2 k_{3}
\end{array}\right]
$$

$\left[\begin{array}{ccc|ccc}1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 \\ 0 & 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{2} & -2 & -\frac{5}{2} & 1\end{array}\right] \xrightarrow{\substack{-R 3+R_{1} \rightarrow R_{1} \\-R 3+R_{2} \rightarrow R_{2}}}\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 3 & 3 & -1 \\ 0 & 1 & 0 & -2 & -2 & 1 \\ 0 & 0 & \frac{1}{2} & -2 & -\frac{5}{2} & 1\end{array}\right]$

$$
\xrightarrow{2 R_{3} \rightarrow R_{3}}\left[\begin{array}{lll|ccc}
1 & 0 & 0 & 3 & 3 & -1 \\
0 & 1 & 0 & -2 & -2 & 1 \\
0 & 0 & 1 & -4 & -5 & 2
\end{array}\right]
$$

Therefore, the solution to the system is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=A^{-1} b=\left[\begin{array}{ccc}
3 & 3 & -1 \\
-2 & -2 & 1 \\
-4 & -5 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3 \\
-7
\end{array}\right]
$$

## An Application

## Example

An investment advisor currently has two types of investment available for clients: a conservative investment $A$ that pays $10 \%$ per year and an investment $B$ of higher risk that pays $20 \%$ per year. Clients may divide their investments between the two to achieve any total return desired between $10 \%$ and $20 \%$. However, the higher the desired return, the higher the risk. How should each client listed in the table invest to achieve the indicated return?

|  | Client 1 | Client 2 | Client 3 |
| :---: | :---: | :---: | :---: |
| Total investment | $\$ 20,000$ | $\$ 50,000$ | $\$ 10,000$ |
| Annual Return Desired | $\$ 2,400$ | $\$ 7,500$ | 1,300 |

Solution Part 1

Let $x_{1}$ and $x_{2}$ be the amount of investment $A$ and $B$ that a client has respectively.

According to the given table, all three clients have different total investment and annual return desired. We denote the total investment and annual return desired by $k_{1}$ and $k_{2}$ respectively. Then we have

$$
\left\{\begin{array}{cl}
x_{1}+x_{2} & =k_{1} \\
0.1 x_{1}+0.2 x_{2} & =k_{2}
\end{array}\right.
$$

We rewrite it as the following matrix equation:

$$
\left[\begin{array}{cc}
1 & 1 \\
0.1 & 0.2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]
$$

## Solution Part 2

We need to find the inverse:

$$
\left[\begin{array}{cc}
1 & 1 \\
0.1 & 0.2
\end{array}\right]^{-1}=\frac{1}{0.1}\left[\begin{array}{cc}
0.2 & -1 \\
-0.1 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & -10 \\
-1 & 10
\end{array}\right]
$$

Hence, we can use the inverse to solve the system:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & -10 \\
-1 & 10
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right]=\left[\begin{array}{c}
2 k_{1}-10 k_{2} \\
-k_{1}+10 k_{2}
\end{array}\right]
$$

Therefore, we have

- Client $1\left(k_{1}=20000, k_{2}=2400\right): x_{1}=16000, x_{2}=4000$.
- Client $2\left(k_{1}=50000, k_{2}=7500\right): x_{1}=25000, x_{2}=25000$.
- Client $3\left(k_{1}=10000, k_{2}=1300\right): x_{1}=7000, x_{2}=3000$.

We have two major methods to solve a system of linear equations. They are

1. Gauss-Jordan Elimination

- Capable of dealing with a system whose number of equations does not equal to that of variables.
- If there are infinite number of solutions, it is easier to write the general form for the solutions by G-J elimination

2. Inverse Method

- A number of system of linear equations sharing a same matrix.
- The matrix has to be square (equal number of equations and variables).


## Summary

