MATH 1003 Calculus and Linear Algebra

 (Lecture 13.5)Maosheng Xiong
Department of Mathematics, HKUST

Definition
A function $f:(a, b) \rightarrow \mathbb{R}$ is continuous at a point $c \in(a, b)$ if 1. $\lim _{x \rightarrow c} f(x)$ exists,
2. $f(c)$ exists,
3. $\lim _{x \rightarrow c} f(x)=f(c)$.
$f(x)$ is called continuous over (a, b) if f is continuous at every point $c \in(a, b)$.

Example 1

Example

Is the function $f(x)$ continuous at the point?

1. $f(x)=x-1$ at $x=2$.
2. $f(x)=\left\{\begin{array}{ll}x^{2}-1 & \text { if } x>2 \\ 3 & \text { if } x=2 \\ x+1 & \text { if } x<2\end{array}\right.$, at $x=2$.

Solution 1. Since $\lim _{x \rightarrow 2}(x-1)=2-1=1$ and
$f(2)=2-1=1$, they are equal, so f is continuous at $x=2$.
2. $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(x+1)=2+1=3$,
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}-1\right)=2^{2}-1=3, f(2)=3$, they are
equal, so f is continuous at $x=2$.
Remark For question 2 , if $f(2)$ is changed to 5 , then f is not continuous at $x=2$.

The function $f(x)$ is discontinuous at $x=1,2$ but is continuous at all other points: $f(x)$ is not defined at $x=1$, and $\lim _{x \rightarrow 2} f(x)$ does not exist.

Theorem

1. A polynomial function is continuous for all x $\left(f(x)=3 x+5+8 x^{10}\right.$ is continuous for all $\left.x\right)$.
2. A rational function is continuous for all x except those values that make a denominator $0 .\left(f(x)=\frac{x^{2}+5}{x-1}\right.$ is continuous for all $x \neq 1$)
3. If n is an odd positive integer, then $\sqrt[n]{f(x)}$ is continuous wherever $f(x)$ is continuous. ($\sqrt[3]{x^{4}}$ is continuous for all x)
4. If n is an even integer, then $\sqrt[n]{f(x)}$ is continuous wherever $f(x)$ is continuous and nonnegative. $(\sqrt[4]{x}$ is continuous on $[0, \infty)$)

Theorem
If $f(x)$ is continuous on (a, b) and $f(x) \neq 0$ for all x in (a, b), then either $f(x)>0$ for all x in (a, b) or $f(x)<0$ for all x in (a, b).
In other words, if $f\left(x_{1}\right)<0$ and $f\left(x_{2}\right)>0$ for a continuous function f, then there exists x_{0} such that $f\left(x_{0}\right)=0$.

Average Rate of Change

Let $y=f(x)$. Roughly speaking, the "rate of change" of y is

$$
\frac{\text { Change in } y}{\text { Change in } x}
$$

More rigorously, we have the following definition:
Definition
For $y=f(x)$, the average rate of change from $\mathbf{x}=\mathbf{a}$ to $\mathbf{x}=\mathbf{b}$ is

$$
\frac{f(b)-f(a)}{b-a}
$$

Example

A small ball dropped from a tower will fall a distance of y feet in x seconds, as given by the formula

$$
y=16 x^{2} .
$$

(a) Find the average velocity from $x=2$ seconds to $x=3$ seconds.
(b) Find the average velocity from $x=2$ seconds to $x=2+h$ seconds, $h \neq 0$.
(c) Find the expression from part (2) as $h \rightarrow 0$, if it exists.

Instantaneous Rate of Change

In the previous example, we consider the average rate of change of distance when the change of x is from 2 to $2+h$. And then we let h tends to 0 . The limit can be regarded as the "instantaneous rate of change of at 2". In general, we have the following definition:
Definition
For $y=f(x)$, the instantaneous rate of change at $\mathbf{x}=\mathbf{a}$ is

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

i.e. it is the limit of the difference quotient of f at $x=a$.

Example

The instantaneous rate of change at $x=2$ in the previous example is 64 .

Solution
(a) The average velocity is $\frac{16 \times 3^{2}-16 \times 2^{2}}{3-2}=80$ feet per second.
(b) The average velocity is $\frac{16(2+h)^{2}-16 \times 2^{2}}{2+h-2}=\frac{16\left(h^{2}+4 h\right)}{h}$ feet per second.
(c) $\lim _{h \rightarrow 0} \frac{16\left(h^{2}+4 h\right)}{h}=\lim _{h \rightarrow 0} 16(h+4)=64$ feet per second.

Slope of a Secant Line

A line through two point on the graph of $y=f(x)$ is called a secant line. If ($a, f(a)$ and $(a+h, f(a+h))$ are two points on the graph of $y=f(x)$, then the slope of secant line from $x=a$ to $x=a+h$ is

$$
\frac{f(a+h)-f(a)}{(a+h)-a}=\frac{f(a+h)-f(a)}{h} .
$$

Thus, the slope of secant line can be in-
 terpreted as the average rate of change of y from $x=a$ to $x=a+h$.

Example

Given $y=f(x)=0.5 x^{2}$,
(a) Find the slope of secant line for $a=1$, and $h=2$.
(b) Find the slope of secant line for $a=1$ and h for any nonzero number.
(c) Find the limit of expression in (b) as $h \rightarrow 0$.

Solution

(a) The slope of secant line is

$$
\frac{f(3)-f(1)}{2}=2
$$

(b) The slope of secant line is

$$
\frac{f(1+h)-f(1)}{h}=\frac{0.5(1+h)^{2}-0.5}{h}=\frac{h+0.5 h^{2}}{h}=1+0.5 h
$$

(c) As $h \rightarrow 0$, we have

$$
\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0}(1+0.5 h)=1
$$

The Derivative

Definition
For $y=f(x)$, we define the derivative of \mathbf{f} at \mathbf{x}, denoted by $\mathbf{f}^{\prime}(\mathbf{x})$,
$\frac{d y}{d x}$ or $\frac{d f}{d x}$, to be

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

if the limit exist. If $f^{\prime}(x)$ exists for each x in the interval $a<x<b$, then f is said to be differentiable over $a<x<b$.

There are three different interpretations of the derivative of $f(x)$:

- Limit of the difference quotient: $f^{\prime}(x)$ is the limit of the different quotient of f at x.
- Slope of the tangent line: $f^{\prime}(x)$ is the slope of the line tangent to the graph of f at the point $(x, f(x))$.
- Instantaneous rate of change: $f^{\prime}(x)$ is the instantaneous rate of change of $y=f(x)$ with respect to x.

Example
Find $f^{\prime}(1)$ for each of the following functions:
(a) $f(x)=2 x-x^{2}$
(b) $f(x)=x^{3}$
(c) $f(x)=\frac{1}{x}$
(d) $f(x)=\sqrt{x}$
Answers:
a) 0
b) 3
c) -1
d) $1 / 2$

