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Continuity

Definition
A function f : (a, b)→ R is continuous at a point c ∈ (a, b) if

1. limx→c f (x) exists,

2. f (c) exists,

3. limx→c f (x) = f (c).

f (x) is called continuous over (a, b) if f is continuous at every
point c ∈ (a, b).
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Example 0

Example

The function f (x) is discontinuous at x = 1, 2 but is continuous at
all other points: f (x) is not defined at x = 1, and limx→2 f (x)
does not exist.
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Example 1

Example

Is the function f (x) continuous at the point?

1. f (x) = x − 1 at x = 2.

2. f (x) =





x2 − 1 if x > 2
3 if x = 2
x + 1 if x < 2

, at x = 2.

Solution 1. Since limx→2(x − 1) = 2− 1 = 1 and
f (2) = 2− 1 = 1, they are equal, so f is continuous at x = 2.
2. limx→2− f (x) = limx→2−(x + 1) = 2 + 1 = 3,
limx→2+ f (x) = limx→2+(x2 − 1) = 22 − 1 = 3, f (2) = 3, they are
equal, so f is continuous at x = 2.
Remark For question 2, if f (2) is changed to 5, then f is not
continuous at x = 2.
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Continuity properties

Theorem

1. A polynomial function is continuous for all x
(f (x) = 3x + 5 + 8x10 is continuous for all x).

2. A rational function is continuous for all x except those values
that make a denominator 0. (f (x) = x2+5

x−1 is continuous for all
x 6= 1)

3. If n is an odd positive integer, then n
√
f (x) is continuous

wherever f (x) is continuous. (
3
√
x4 is continuous for all x)

4. If n is an even integer, then n
√
f (x) is continuous wherever

f (x) is continuous and nonnegative. ( 4
√
x is continuous on

[0,∞))
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Continuous functions

Theorem
If f (x) is continuous on (a, b) and f (x) 6= 0 for all x in (a, b), then
either f (x) > 0 for all x in (a, b) or f (x) < 0 for all x in (a, b).

In other words, if f (x1) < 0 and f (x2) > 0 for a continuous
function f , then there exists x0 such that f (x0) = 0.
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Solving inequality and sign charts

Example

Find the range of x such that:

1. x+1
x−2 > 0 (Answer (−∞,−1) ∪ (2,∞))

2. x2−1
x−3 < 0 (Answer (−∞,−1) ∪ (1, 3))

3. x2+1
x−3 > 0 (Answer (3,∞))
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Average Rate of Change

Let y = f (x). Roughly speaking, the “rate of change” of y is

Change in y

Change in x

More rigorously, we have the following definition:

Definition
For y = f (x), the average rate of change from x = a to x = b is

f (b)− f (a)

b − a
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Average Rate of Change

Example

A small ball dropped from a tower will fall a distance of y feet in x
seconds, as given by the formula

y = 16x2.

(a) Find the average velocity from x = 2 seconds to x = 3
seconds.

(b) Find the average velocity from x = 2 seconds to x = 2 + h
seconds, h 6= 0.

(c) Find the expression from part (2) as h→ 0, if it exists.
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Average Rate of Change

Solution

(a) The average velocity is
16× 32 − 16× 22

3− 2
= 80 feet per

second.

(b) The average velocity is
16(2 + h)2 − 16× 22

2 + h − 2
=

16(h2 + 4h)

h
feet per second.

(c) lim
h→0

16(h2 + 4h)

h
= lim

h→0
16(h + 4) = 64 feet per second.
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Instantaneous Rate of Change

In the previous example, we consider the average rate of change of
distance when the change of x is from 2 to 2 + h. And then we let
h tends to 0. The limit can be regarded as the “instantaneous rate
of change of at 2”. In general, we have the following definition:

Definition
For y = f (x), the instantaneous rate of change at x = a is

lim
h→0

f (a + h)− f (a)

h

i.e. it is the limit of the difference quotient of f at x = a.

Example

The instantaneous rate of change at x = 2 in the previous example
is 64.
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Slope of a Secant Line

A line through two point on the graph
of y = f (x) is called a secant line. If
(a, f (a) and (a + h, f (a + h)) are two
points on the graph of y = f (x), then
the slope of secant line from x = a to
x = a + h is

f (a + h)− f (a)

(a + h)− a
=

f (a + h)− f (a)

h
.

Thus, the slope of secant line can be in-
terpreted as the average rate of change
of y from x = a to x = a + h.
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Slope of a Secant Line

Example

Given y = f (x) = 0.5x2,

(a) Find the slope of secant line for a = 1, and h = 2.

(b) Find the slope of secant line for a = 1 and h for any nonzero
number.

(c) Find the limit of expression in (b) as h→ 0.
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Slope of a Secant Line

Solution

(a) The slope of secant line is

f (3)− f (1)

2
= 2

(b) The slope of secant line is

f (1 + h)− f (1)

h
=

0.5(1 + h)2 − 0.5

h
=

h + 0.5h2

h
= 1 + 0.5h

(c) As h→ 0, we have

lim
h→0

f (1 + h)− f (1)

h
= lim

h→0
(1 + 0.5h) = 1
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Slope of a Tangent

From the graph, we observe that the
slope of the secant line tends to the slope
of the tangent as h tends to 0. There-
fore, we have the following definition:

Definition
Given y = f (x), the slope of the
tangent line of f(x) at the point x = a
is given by

lim
h→0

f (a + h)− f (a)

h

if the limit exists.
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The Derivative

Definition
For y = f (x), we define the derivative of f at x, denoted by f ′(x),
dy

dx
or

df

dx
, to be

f ′(x) = lim
h→0

f (x + h)− f (x)

h

if the limit exist. If f ′(x) exists for each x in the interval
a < x < b, then f is said to be differentiable over a < x < b.
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Summary

There are three different interpretations of the derivative of f (x):

I Limit of the difference quotient: f ′(x) is the limit of the
different quotient of f at x .

I Slope of the tangent line: f ′(x) is the slope of the line
tangent to the graph of f at the point (x , f (x)).

I Instantaneous rate of change: f ′(x) is the instantaneous rate
of change of y = f (x) with respect to x .
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Exercise

Example

Find f ′(1) for each of the following functions:

(a) f (x) = 2x − x2

(b) f (x) = x3

(c) f (x) =
1

x
(d) f (x) =

√
x

Answers: a) 0 b) 3 c) -1 d) 1/2
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