MATH 1003 Calculus and Linear Algebra (Lecture 14)

Maosheng Xiong
Department of Mathematics, HKUST

Given a function $f(x)$, the most primitive way to compute its derivative is to evaluate the limit of its difference quotient, which may be quite difficult if $f(x)$ is a complicated expression in x. Therefore, we will develop some differentiation rules to facilitate the computation of derivatives. They are

- Power rule
- Product rule
- Quotient rule
- Chain rule

Power Rule - Exercises

In this lecture, we will learn the first and the most basic differentiation rule - Power rule:

Theorem

(Power Rule) If $y=f(x)=x^{n}$ where n is a real number, then

$$
f^{\prime}(x)=n x^{n-1}
$$

Example

Find $f^{\prime}(x)$ for each of the following functions:
(a) $f(x)=1$ (More generally, $f(x)=k$, where k is a constant.)
(b) $f(x)=x^{5}$
(c) $f(x)=x^{3 / 2}$
(d) $f(x)=x^{-3}$
(e) $f(x)=\frac{1}{\sqrt[3]{x}}$
(f) $f(x)=x^{\sqrt{2}}$.

Besides the differentiation rules, we also need to learn two basic differentiation properties that are extremely useful in the computation of derivatives:

Theorem
If $y=f(x)=k u(x)$, where k is a constant, then $f^{\prime}(x)=k u^{\prime}(x)$.
If $y=f(x)=u(x) \pm v(x)$, then $f^{\prime}(x)=u^{\prime}(x) \pm v^{\prime}(x)$.
Examples

- Suppose $f(x)=3 x^{5}$. Then $f^{\prime}(x)=3\left(x^{5}\right)^{\prime}=3\left(5 x^{4}\right)=15 x^{4}$.
- Suppose $f(x)=2 x^{4}+2 x^{3}-3 x$. Then

$$
\begin{gathered}
f^{\prime}(x)=2\left(x^{4}\right)^{\prime}+2\left(x^{3}\right)^{\prime}-3(x)^{\prime} \\
\Rightarrow f^{\prime}(x)=8 x^{3}+6 x^{2}-3
\end{gathered}
$$

An Application of Derivatives in Physics

An Application of Derivatives in Physics

Solution
(a) $v(x)=f^{\prime}(x)=3 x^{2}-12 x+9$
(b) $v(2)=-3$ and $v(5)=24$.
(c) $v(x)=0$ implies $3 x^{2}-12 x+9=0$. Hence

$$
3(x-1)(x-3)=0 \Rightarrow x=1,3
$$

Solution

(a) $f^{\prime}(x)=6 x^{2}-18 x+12$.
(b) The slope of the tangent line at $x=3$ is $f^{\prime}(3)=12$. Moreover, the tangent line passes through $(3, f(3))=(3,-45)$. Then the equation of the tangent line is

$$
\frac{y-(-45)}{x-3}=12 \Rightarrow 12 x-y-81=0
$$

(c) $f^{\prime}(x)=0$ implies

$$
\begin{aligned}
& 6 x^{2}-18 x+12=0 . \text { Hence } \\
& 6(x-1)(x-2)=0 \Rightarrow x=1,2
\end{aligned}
$$

