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Finding Derivatives using Differentiation Rules

Given a function f (x), the most primitive way to compute its
derivative is to evaluate the limit of its difference quotient, which
may be quite difficult if f (x) is a complicated expression in x .
Therefore, we will develop some differentiation rules to facilitate
the computation of derivatives. They are

I Power rule

I Product rule

I Quotient rule

I Chain rule
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Power Rule

In this lecture, we will learn the first and the most basic
differentiation rule - Power rule:

Theorem
(Power Rule) If y = f (x) = xn where n is a real number, then

f ′(x) = nxn−1.
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Power Rule - Exercises

Example

Find f ′(x) for each of the following functions:

(a) f (x) = 1 (More generally, f (x) = k, where k is a constant.)

(b) f (x) = x5

(c) f (x) = x3/2

(d) f (x) = x−3

(e) f (x) =
1
3
√
x

(f) f (x) = x
√
2.
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Basic Differentiation Properties

Besides the differentiation rules, we also need to learn two basic
differentiation properties that are extremely useful in the
computation of derivatives:

Theorem
If y = f (x) = ku(x), where k is a constant, then f ′(x) = ku′(x).
If y = f (x) = u(x)± v(x), then f ′(x) = u′(x)± v ′(x).

Examples

I Suppose f (x) = 3x5. Then f ′(x) = 3(x5)′ = 3(5x4) = 15x4.

I Suppose f (x) = 2x4 + 2x3 − 3x . Then

f ′(x) = 2(x4)′ + 2(x3)′ − 3(x)′

⇒ f ′(x) = 8x3 + 6x2 − 3.
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Exercises

Example

Find the derivative for each of the following functions:

(a) f (x) = 3x4 − 2x3 + x2 − 5x + 7

(b) g(t) = 3− 5

t2

(c) u = 6v4 − 5
√
v

(d) y =
3

5x4
+

1√
x
− x2

2

(e) h(s) =
s2 + 25

s2
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An Application of Derivatives in Physics

Example

An object moves along the y axis so that its position at time x is

f (x) = x3 − 6x2 + 9x

(a) Find the velocity function v .

(b) Find the velocity at x = 2 and x = 5.

(c) Find the time(s) when the velocity is 0.
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An Application of Derivatives in Physics

Solution

(a) v(x) = f ′(x) = 3x2 − 12x + 9

(b) v(2) = −3 and v(5) = 24.

(c) v(x) = 0 implies 3x2 − 12x + 9 = 0. Hence

3(x − 1)(x − 3) = 0⇒ x = 1, 3
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Finding the Equation of a Tangent Line

Example

Suppose f (x) = 2x3 − 9x2 + 12x − 54.

(a) Find f ′(x).

(b) Find the equation of the tangent line of y = f (x) at x = 3.

(c) Find the value(s) of x such that the tangent line at x is
horizontal.
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Finding the Equation of a Tangent Line

Solution

(a) f ′(x) = 6x2 − 18x + 12.

(b) The slope of the tangent line at
x = 3 is f ′(3) = 12. Moreover,
the tangent line passes through
(3, f (3)) = (3,−45). Then the
equation of the tangent line is

y − (−45)

x − 3
= 12⇒ 12x−y−81 = 0

(c) f ′(x) = 0 implies
6x2 − 18x + 12 = 0. Hence

6(x − 1)(x − 2) = 0⇒ x = 1, 2
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