MATH 1003 Calculus and Linear Algebra (Lecture 14) Maosheng Xiong Department of Mathematics, HKUST	 Given a function f(x), the most primitive way to compute its derivative is to evaluate the limit of its difference quotient, which may be quite difficult if f(x) is a complicated expression in x. Therefore, we will develop some differentiation rules to facilitate the computation of derivatives. They are Power rule Product rule Quotient rule Chain rule
Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 14)	A ロト (合) (注)
Power Rule	Power Rule - Exercises
In this lecture, we will learn the first and the most basic differentiation rule - Power rule: Theorem (Power Rule) If $y = f(x) = x^n$ where n is a real number, then $f'(x) = nx^{n-1}$.	Example Find $f'(x)$ for each of the following functions: (a) $f(x) = 1$ (More generally, $f(x) = k$, where k is a constant.) (b) $f(x) = x^5$ (c) $f(x) = x^{3/2}$ (d) $f(x) = x^{-3}$ (e) $f(x) = \frac{1}{\sqrt[3]{x}}$ (f) $f(x) = x^{\sqrt{2}}$.
イロトイラトイラト モン モン モン マへの Maosheng Xiong, Department of Mathematics, HKUST MATH 1003, Calculus, and Linear, Algebra (Lecture 14)	イロトイラトイラト モート モート イラト イラト モート マークへで Mansheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 14)

Finding Derivatives using Differentiation Rules

Basic Differentiation Properties

Besides the differentiation rules, we also need to learn two basic differentiation properties that are extremely useful in the computation of derivatives:

Theorem

If y = f(x) = ku(x), where k is a constant, then f'(x) = ku'(x). If $y = f(x) = u(x) \pm v(x)$, then $f'(x) = u'(x) \pm v'(x)$.

Examples

• Suppose
$$f(x) = 3x^5$$
. Then $f'(x) = 3(x^5)' = 3(5x^4) = 15x^4$.

• Suppose $f(x) = 2x^4 + 2x^3 - 3x$. Then

An Application of Derivatives in Physics

$$f'(x) = 2(x^4)' + 2(x^3)' - 3(x)'$$
$$\Rightarrow f'(x) = 8x^3 + 6x^2 - 3.$$

Exercises

Example

Solution

Find the derivative for each of the following functions:

7

(a)
$$f(x) = 3x^4 - 2x^3 + x^2 - 5x +$$

(b) $g(t) = 3 - \frac{5}{t^2}$
(c) $u = 6v^4 - \sqrt[5]{v}$
(d) $y = \frac{3}{5x^4} + \frac{1}{\sqrt{x}} - \frac{x^2}{2}$
(e) $h(s) = \frac{s^2 + 25}{s^2}$

<ロトイラトイラトイラト ラーシーのの MATH 1003 Calculus and Linear Algebra (Lecture 14)

・ロト ・同ト ・ヨト ・ヨト ・ヨー うへつ

An Application of Derivatives in Physics

Maosheng Xiong Department of Mathematics, HKUST

Example

An object moves along the y axis so that its position at time x is

$$f(x) = x^3 - 6x^2 + 9x$$

(a) Find the velocity function v.

Maosheng Xiong Department of Mathematics, HKUST

- (b) Find the velocity at x = 2 and x = 5.
- (c) Find the time(s) when the velocity is 0.

(a) $v(x) = f'(x) = 3x^2 - 12x + 9$ (b) v(2) = -3 and v(5) = 24. (c) v(x) = 0 implies $3x^2 - 12x + 9 = 0$. Hence

 $3(x-1)(x-3) = 0 \Rightarrow x = 1,3$

MATH 1003 Calculus and Linear Algebra (Lecture 14)

Finding the Equation of a Tangent Line

Example

Suppose $f(x) = 2x^3 - 9x^2 + 12x - 54$.

Maosheng Xiong Department of Mathematics, HKUST

- (a) Find f'(x).
- (b) Find the equation of the tangent line of y = f(x) at x = 3.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

MATH 1003 Calculus and Linear Algebra (Lecture 14)

(c) Find the value(s) of x such that the tangent line at x is horizontal.

Finding the Equation of a Tangent Line

Solution

