

Example

How long will it take to double an investment if it is invested at 5% compounded continuously?

Solution

Let P be the principal. Then we have

$$2P = Pe^{0.05t}$$
$$\Rightarrow t = \frac{\ln 2}{0.05} = 13.86 \text{ years.}$$

Exponential functions

Definition

 $f(x) = e^x$ is called the exponential function with base *e*. More generally, $f(x) = a^x$, where a > 0, is called the exponential function with base *a*. Exponential functions are defined for any real number *x*.

Outlook

Remarks

- ▶ When a > 1, f(x) increases as x increases.
- When a = 1, f(x) = 1.
- When 0 < a < 1, f(x) decreases as x increases.

 $y = e^{x}$ $y = (0.5)^{x}$ $y = (0.5)^{x}$ y = (0.5

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Li

<ロトイラトイラトイラトラーションのへの MATH 1003 Calculus and Linear Algebra (Lecture 15)

Derivative of e^{x}

Theorem

Let
$$y = f(x) = e^x$$
, then $\frac{dy}{dx} = f'(x) = e^x$.

Observation If $f(x) = e^x$, then f'(x) = f(x).

Maosheng Xiong Department of Mathematics, HKUST

Example

Find f'(x) for each of the following functions:

(a) $f(x) = x^2 - 2e^x$ (b) $f(x) = 3x^e - 6e^x + e^4$

Solutions

(a)
$$f'(x) = 2x - 2e^x$$

(b) $f'(x) = 3ex^{e-1} - 6e^x$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ヨ ● の Q @

MATH 1003 Calculus and Linear Algebra (Lecture 15)

Logarithmic Function

Definition

 $g(x) = \ln x$ is called the (natural) logarithmic function with base *e*. It is only defined for x > 0. More generally, $g(x) = \log_a x$, where a > 0, is called the logarithmic function with base *a*.

Remarks

- When a > 1, g(x) increases as x increases.
- When a = 1, g(x) is not a well-defined function.
- When 0 < a < 1, g(x) decreases as x increases.

Outlook

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Remarks

 Logarithmic functions are the inverse of the corresponding exponential functions:

$$y = e^{x} \iff x = \ln y$$

 $y = a^{x} \iff x = \log_{a} y.$

•
$$e^0 = 1$$
, $\ln 1 = 0$.

• $a^0 = 1, \log_a 1 = 0$, for any a > 0.

•
$$\ln a + \ln b = \ln(ab)$$
, $e^{a+b} = e^a \cdot e^b$.

•
$$\ln(a^r) = r \ln a$$
, $e^{ab} = (e^a)^b$.

•
$$\ln \frac{1}{a} = \ln a^{-1} = -\ln a$$
.

▶ $3 > e \approx 2.718... > 2.$

Derivative of $\ln x$

Theorem

Let
$$y = g(x) = \ln x$$
, then $\frac{dy}{dx} = g'(x) = \frac{1}{x}$

Example

Find f'(x) for each of the following functions:

(a) $f(x) = 5 \ln x + 4x^3$ (b) $f(x) = \ln 2 - 4 \ln(x^2) + 3$

Solutions

(a)
$$f'(x) = \frac{5}{x} + 12x^2$$
.
(b) $f'(x) = (-8\ln(x))' = -\frac{8}{x}$.

Maosheng Xiong Department of Mathematics, HKUST

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 15)

Derivatives of Other Exponential and Logarithmic Functions

To differentiate a general exponential or logarithmic function, we need the following theorem:

Theorem

Let $f(x) = a^x$ and $g(x) = \log_a x$. Then

$$f'(x) = a^x \ln a$$
 and $g'(x) = \frac{1}{x \ln a}$

Example

Find f'(x) for each of the following functions:

(a)
$$f(x) = 3 \log_4 x - 5x^3$$

(b) $f(x) = 4 \cdot 3^x - 2 \log_4 3$

<ロト < 団ト < 団ト < 巨ト < 巨ト < 巨ト < 巨 < つへの</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MATH 1003 Calculus and Linear Algebra (Lecture 15)

An Application

Solutions

(a)
$$f'(x) = \frac{3}{x \ln 4} - 15x^2$$
.
(b) $f'(x) = 4 \cdot 3^x \ln 3$.

Example

An Internet store sells blankets made of Iceland wool. If the store sells x blankets at a price of p per blanket, then the price-demand equation is $p(x) = 320(0.998)^x$. Find the rate of change of price with respect to demand when the demand is 800 blankets.

Solutions

$$p'(x) = 320(0.998)^x \ln(0.998)$$

 $\Rightarrow p'(800) = -0.129$

・ロト・日本・モート・モー・ショー・ショー・ショー・ショー・ショー・

MATH 1003 Calculus and Linear Algebra (Lecture 15)

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 15)

Theorem

- ► $f(x) = e^x$, $f'(x) = e^x$.
- $\blacktriangleright f(x) = \ln x, \quad f'(x) = \frac{1}{x}.$
- $f(x) = a^x$, $f'(x) = a^x \ln a$.
- $f(x) = \log_a x$, $f'(x) = \frac{1}{x \ln a}$.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 15)