MATH 1003 Calculus and Linear Algebra

 (Lecture 15)Maosheng Xiong
Department of Mathematics, HKUST

Example

If $\$ 100$ is invested at 6%, what amount will be in the account after
2 years with various compounding frequencies?

Compounding Frequency	n	$A=100\left(1+\frac{0.06}{n}\right)^{2 n}$
Annually	1	112.3600
Semiannually	2	112.5509
Quarterly	4	112.6493
Monthly	12	112.7160
Weekly	52	112.7419
Daily	360	112.7486
Hourly	8640	112.7496

The Constant e

Definition
The number e is defined by

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{s \rightarrow 0}(1+s)^{\frac{1}{s}} \approx 2.7182818284590 \ldots \ldots
$$

If P is invested at an annual rate r, compounded n times per year, then after t years, the amount is given by

$$
A=P\left(1+\frac{r}{n}\right)^{n t} .
$$

Now we let n go to infinity, we find that ($s=\frac{n}{r}$, so $n=r$)

$$
\lim _{n \rightarrow \infty} P\left(1+\frac{r}{n}\right)^{n t}=P \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{(n / r) r t}=P\left[\lim _{s \rightarrow 0}(1+s)^{1 / s}\right]^{r t}=P e^{r t}
$$

The above formula is called the continuous compound interest formula.
Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 15)

Example

How long will it take to double an investment if it is invested at 5% compounded continuously?

Solution

Let P be the principal. Then we have

$$
\begin{aligned}
& 2 P=P e^{0.05 t} \\
\Rightarrow t= & \frac{\ln 2}{0.05}=13.86 \text { years. }
\end{aligned}
$$

Definition

$f(x)=e^{x}$ is called the exponential function with base e. More generally, $f(x)=a^{x}$, where $a>0$, is called the exponential
function with base a. Exponential functions are defined for any real number x.

Outlook

Remarks

- When $a>1, f(x)$ increases as x increases
- When $a=1, f(x)=1$.
- When $0<a<1, f(x)$ decreases as x increases.

Logarithmic Function

Theorem
Let $y=f(x)=e^{x}$, then $\frac{d y}{d x}=f^{\prime}(x)=e^{x}$.
Observation
If $f(x)=e^{x}$, then $f^{\prime}(x)=f(x)$.
Example
Find $f^{\prime}(x)$ for each of the following functions:
(a) $f(x)=x^{2}-2 e^{x}$
(b) $f(x)=3 x^{e}-6 e^{x}+e^{4}$

Solutions
(a) $f^{\prime}(x)=2 x-2 e^{x}$
(b) $f^{\prime}(x)=3 e x^{e-1}-6 e^{x}$

Definition

$g(x)=\ln x$ is called the (natural) logarithmic function with base e. It is only defined for $x>0$. More generally, $g(x)=\log _{a} x$, where $a>0$, is called the logarithmic function with base a.

Remarks

- When $a>1, g(x)$ increases as x increases.
- When $a=1, g(x)$ is not a well-defined function.
- When $0<a<1, g(x)$ decreases as x increases

Outlook

Remarks

- Logarithmic functions are the inverse of the corresponding exponential functions:

$$
y=e^{x} \Longleftrightarrow x=\ln y
$$

$$
y=a^{x} \Longleftrightarrow x=\log _{a} y
$$

- $e^{0}=1, \ln 1=0$.
- $a^{0}=1, \log _{a} 1=0$, for any $a>0$.
- $\ln a+\ln b=\ln (a b), \quad e^{a+b}=e^{a} \cdot e^{b}$.
- $\ln \left(a^{r}\right)=r \ln a, \quad e^{a b}=\left(e^{a}\right)^{b}$.
- $\ln \frac{1}{a}=\ln a^{-1}=-\ln a$.
- $3>e \approx 2.718 \ldots>2$.

Derivatives of Other Exponential and Logarithmic
 Functions

To differentiate a general exponential or logarithmic function, we need the following theorem:

Theorem
Let $f(x)=a^{x}$ and $g(x)=\log _{a} x$. Then

$$
f^{\prime}(x)=a^{x} \ln a \quad \text { and } \quad g^{\prime}(x)=\frac{1}{x \ln a}
$$

Example

Find $f^{\prime}(x)$ for each of the following functions:
(a) $f(x)=3 \log _{4} x-5 x^{3}$
(b) $f(x)=4 \cdot 3^{x}-2 \log _{4} 3$

Theorem
Let $y=g(x)=\ln x$, then $\frac{d y}{d x}=g^{\prime}(x)=\frac{1}{x}$.
Example
Find $f^{\prime}(x)$ for each of the following functions:
(a) $f(x)=5 \ln x+4 x^{3}$
(b) $f(x)=\ln 2-4 \ln \left(x^{2}\right)+3$

Solutions
(a) $f^{\prime}(x)=\frac{5}{x}+12 x^{2}$.
(b) $f^{\prime}(x)=(-8 \ln (x))^{\prime}=-\frac{8}{x}$.

An Application

Solutions
(a) $f^{\prime}(x)=\frac{3}{x \ln 4}-15 x^{2}$.
(b) $f^{\prime}(x)=4 \cdot 3^{x} \ln 3$.

Example

An Internet store sells blankets made of Iceland wool. If the store sells x blankets at a price of p per blanket, then the price-demand equation is $p(x)=320(0.998)^{x}$. Find the rate of change of price with respect to demand when the demand is 800 blankets.

Solutions

$$
\begin{gathered}
p^{\prime}(x)=320(0.998)^{x} \ln (0.998) \\
\Rightarrow p^{\prime}(800)=-0.129
\end{gathered}
$$

Theorem

- $f(x)=e^{x}, \quad f^{\prime}(x)=e^{x}$.
- $f(x)=\ln x, \quad f^{\prime}(x)=\frac{1}{x}$.
- $f(x)=a^{x}, \quad f^{\prime}(x)=a^{x} \ln a$.
- $f(x)=\log _{a} x, \quad f^{\prime}(x)=\frac{1}{x \ln a}$.

