Product Rule

MATH 1003 Calculus and Linear Algebra

 (Lecture 16)Maosheng Xiong
Department of Mathematics, HKUST

Theorem
(Product Rule) If

$$
y=f(x)=u(x) v(x)
$$

then

$$
f^{\prime}(x)=u(x) v^{\prime}(x)+u^{\prime}(x) v(x)
$$

Remark

- In general, $(u(x) v(x))^{\prime} \neq u^{\prime}(x) v^{\prime}(x)$.
- The product rule can be generalized as follows:

$$
\begin{aligned}
& \{u(x) v(x) w(x)\}^{\prime}=u^{\prime}(x) \underline{v(x) w(x)}+u(x)\{\underline{v(x) w(x)}\}^{\prime} \\
& =u^{\prime}(x) v(x) w(x)+u(x) v^{\prime}(x) w(x)+u(x) v(x) w^{\prime}(x)
\end{aligned}
$$

Quotient Rule

Theorem
(Quotient Rule) If

$$
y=f(x)=\frac{u(x)}{v(x)}
$$

then

$$
\frac{d y}{d x}=f^{\prime}(x)=\frac{v(x) u^{\prime}(x)-u(x) v^{\prime}(x)}{(v(x))^{2}}
$$

Remark

- In general, $\left(\frac{u(x)}{v(x)}\right)^{\prime} \neq \frac{u^{\prime}(x)}{v^{\prime}(x)}$.
- $u(x)$ and $v(x)$ in the above formula cannot be interchanged.

Example

Find the derivative for each of the following functions:
(a) $f(x)=\frac{x}{\sqrt{x}+1}$
(b) $f(x)=\frac{e^{x}}{2 x+1}$

Solutions
(a) $f^{\prime}(x)=\frac{x^{\prime}(\sqrt{x}+1)-x(\sqrt{x}+1)^{\prime}}{(\sqrt{x}+1)^{2}}=\frac{\sqrt{x}+1-\frac{1}{2} \sqrt{x}}{(\sqrt{x}+1)^{2}}=$ $\frac{\sqrt{x}+2}{2(\sqrt{x}+1)^{2}}$.
(b) $f^{\prime}(x)=\frac{\left(e^{x}\right)^{\prime}(2 x+1)-e^{x}(2 x+1)^{\prime}}{(2 x+1)^{2}}=\frac{e^{x}(2 x+1)-2 e^{x}}{(2 x+1)^{2}}=$ $\frac{e^{x}(2 x-1)}{(2 x+1)^{2}}$.

Example
Find the derivative of each of the following functions:
(a) $f(x)=\frac{x^{2}}{x^{2}-1}$
(b) $g(t)=\frac{t^{2}-t}{2^{t}}$
(c) $y=\frac{t e^{t}}{\ln t}$
(a)

$$
f^{\prime}(x)=\frac{\left(x^{2}\right)^{\prime}\left(x^{2}-1\right)-\left(x^{2}-1\right)^{\prime} x^{2}}{\left(x^{2}-1\right)^{2}}=\frac{-2 x}{\left(x^{2}-1\right)^{2}}
$$

(b)

$$
g^{\prime}(t)=\frac{\left(t^{2}-t\right)^{\prime} 2^{t}-\left(t^{2}-t\right)\left(2^{t}\right)^{\prime}}{\left(2^{t}\right)^{2}}=\frac{2 t-1-\left(t^{2}-t\right) \ln 2}{2^{t}}
$$

(c)

$$
\frac{d y}{d t}=\frac{\left(t e^{t}\right)^{\prime} \ln t-(\ln t)^{\prime}\left(t e^{t}\right)}{(\ln t)^{2}}=\frac{e^{t}(t+1) \ln t-e^{t}}{(\ln t)^{2}}
$$

