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Composite Functions

Definition
If y = g(v) and v = u(x), then y = f (x) is a composite function if

y = f (x) = g(u(x))

Example

Find y = f (x) = g(u(x)) if

(a) g(v) = v5, u(x) = 2x + 1

(b) g(v) = 2v + 1, u(x) = x5

(c) g(v) = ev , u(x) = x2 + 1

(d) g(v) = ln(v), u(x) = 3x2 + 4
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Composite Functions

Example

Find y = f (x) = g(u(x)) if

(a) g(v) = v5, u(x) = 2x + 1 =⇒ f (x) = g(u(x)) = (2x + 1)5

(b) g(v) = 2v + 1, u(x) = x5 =⇒ f (x) = g(u(x)) = 2x5 + 1

(c) g(v) = ev , u(x) = x2 + 1 =⇒ f (x) = g(u(x)) = ex
2+1

(d) g(v) = ln(v), u(x) = 3x2 + 4 =⇒ f (x) = g(u(x)) =
ln(3x2 + 4)

They are all functions of x .
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Rewrite functions as Composite Functions

The following are Simple functions, and their derivatives are
known:

I xa

I ex , ax

I ln x , loga x

Example

Write each function as a composition of simpler functions.

(a) y = (3x2 − x + 5)4

(b) y = ex
4+2x2+5

(c) y = ln
(
1− x2 + 2x4

)

(d) y =
[
ln
(
x2 + 3

)]3/2
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Rewrite functions as Composite Functions

Simple functions: xa, ex , ax , ln x , loga x

Example

Write each function as a composition of simpler functions.

(a) y = (3x2 − x + 5)4 =⇒ y = u4, u = u(x) = 3x2 − x + 5

(b) y = ex
4+2x2+5 =⇒ y = eu, u = x4 + 2x2 + 5

(c) y = ln
(
1− x2 + 2x4

)
=⇒ y = ln u, u = 1− x2 + 2x4

(d) y =
[
ln
(
x2 + 3

)]3/2
=⇒ y = u3/2, u = ln v , v = x2 + 3
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Chain Rule

The following is the chain rule, which includes all the previous
theorems in this lecture:

Theorem
(Chain Rule) Suppose y = f (x) = g(u(x)). Then

y ′ =
dy

dx
= f ′(x) = g ′(u(x))u′(x).
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Chain Rule

Example

Find the derivative of f (x) = (2x + 1)100.

Solution
Let u(x) = 2x + 1 and g(u) = u100, then

g ′(u) = 100u99, u′(x) = 2.

By using chain rule we obtain

f ′(x) = g ′(u)u′(x) = 100u99 · 2 = 200(2x + 1)99

Remark
Theoretically, we can expand (2x + 1)100 into a polynomial and
differentiate it term by term. But it will be very complicated.
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General Power Rule

Theorem
(General Power Rule) If u(x) is a differentiable function and n is
any real number, and

f (x) = [u(x)]n.

Then,
f ′(x) = n[u(x)]n−1u′(x).

Remarks

I Roughly speaking, we differentiate the function like the
standard power rule (([·]n)′ = n[·]n−1) and then multiply it by
the derviative of the expression inside the bracket.
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General Power Rule

Example

Find the derivative for each of the following functions:

(a) (3x + 1)4

(b) (x3 + 4)11

(c)
√
x2 − 1

(d)
1

2x2 + 3

Answers
(a) 12(3x + 1)3; (b) 33x2(x3 + 4)10; (c) x√

x2−1 ; (d) − 4x
(2x2+3)2

.
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General Rule for Exponential Functions

Similar to the general power rule, we have the following theorem
for exponential functions:

Theorem
If u(x) is a differentiable function and f (x) = eu(x). Then,

f ′(x) = eu(x)u′(x).

Remarks

I Roughly speaking, we differentiate the function like a standard
exponential function ((e [·])′ = e [·]) and then multiply it by the
derviative of the expression inside the bracket.

I If u(x) = x , then u′(x) = 1 and the formula becomes the
standard differentiation rule for exponential functions.
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General Rule for Exponential Functions

Example

Find the derivative for each of the following functions:

(a) ex
2

(b) 3e
√
3x+5

Solutions

(a) (ex
2
)′ = ex

2
(x2)′ = 2xex

2

(b)

(3e
√
3x+5)′ = 3e

√
3x+5(

√
3x + 5)′ = 3e

√
3x+5 1

2
(3x + 5)−

1
2 · 3

=
9

2
e
√
3x+5(3x + 5)−

1
2
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General Rule for Logarithmic Functions

Similar to the general power rule, we have the following theorem
for logarithmic functions:

Theorem
If u(x) is a differentiable function and f (x) = ln(u(x)) Then,

f ′(x) =
1

u(x)
u′(x).

Remarks

I Roughly speaking, we differentiate the function like a standard
logarithmic function ((ln[·])′ = 1

[·]) and then multiply it by the
derviative of the expression inside the bracket.

I If u(x) = x , then u′(x) = 1 and the formula becomes the
standard differentiation rule for logarithmic function.
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General Rule for Logarithmic Functions

Example

Find the derivative for each of the following functions:

(a) ln(1 + 2x4)

(b) x ln(4x6 + x − 1)

Solutions

(a) (ln(1 + 2x4))′ =
1

1 + 2x4
· (1 + 2x4)′ =

8x3

1 + 2x4

(b) (x ln(4x6 + x − 1))′ = ln(4x6 + x − 1) + x(ln(4x6 + x − 1))′

= ln(4x6 + x − 1) +
x

4x6 + x − 1
· (4x6 + x − 1)′

= ln(4x6 + x − 1) +
x(24x5 + 1)

4x6 + x − 1

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 17)

Brief Summary

Remarks

I When g(u) = un, then the chain rule becomes the general
power rule.

I When g(u) = eu, then the chain rule becomes the general
rule for exponential functions.

I When g(u) = ln(u), then the chain rule becomes the general
rule for logarithmic functions.
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Using Various Differentiation Rules Together

Example

Find the derivative for each of the following functions:

(a)
2x√
x2 + 1

(b)
√

(3x − 1)3(x2 + 1)

(c) e
√
2x+5

Solution
(a) 2

(x2+1)3/2
; (b)

√
3x−1
x2+1

· 15x2−2x+9
2 ; (c) e

√
2x+5√
2x+5

.
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