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Implicit Functions

Draw the curve in x-y plane given by

F (x , y) = xey − y = 0,

where F is a function symbol with two inputs x and y .

In this case, y is essentially a function of x , which can not be
explicitly expressed as y = f (x), but is only defined implicitly by
the equation F (x , y) = 0.
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Implicit Differentiation

The slope of the tangent line to the curve in the previous slide
exists, that is, we can still define dy/dx . This can be achieved by
treating y both as a variable and a function symbol depending on
x , i.e. y = y(x).

Question

How can we find
dy

dx
= y ′(x) given F (x , y) = c , where c is a

constant?

Example

Find the equation of line tangent
to the circle x2 + y2 = 25 at
(3, 4) as shown in the figure on
the right.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 18)

Implicit Differentiation - Example 1

Solution - Part 1
In this case, F (x , y) = x2 + y2 = 25. The slope of the tangent line

at (3, 4) is denoted by
dy

dx

∣∣∣∣
(3,4)

, We differentiate both sides of

F (x , y) = x2 + y2 = 25 with respect to x :

(x2)′ + (y2)′︸︷︷︸
y is a function of x : y(x)

= (25)′.

(x2)′ = 2x and (25)′ = 0. But (y2)′ 6= 2y . Hence, by general
power rule (or more generally, chain rule), (y2)′ = 2y dy

dx . So the
equation becomes

2x + 2y
dy

dx
= 0
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Implicit Differentiation - Example 1

Solution - Part 2
Now, we obtain an equation that relates x , y and dy

dx . Therefore,

we can express dy
dx in terms of x and y as follows:

dy

dx
= −x

y

By using x = 3, y = 4, we obtain

dy

dx

∣∣∣∣
(3,4)

= −3

4

. Therefore, the equation of the tangent line is

y − 4

x − 3
= −3

4
⇒ 4y − 16 = −3x + 9⇒ 3x + 4y − 25 = 0
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Procedure to conduct implicit differentiation

To find the derivative of y with respect to x , denoted by dy
dx

∣∣∣
(a,b)

,

we need

1. Find the formula F (x , y) = c

2. Differentiate F (x , y) = c on both sides. It is important to
treat y as a function of x , so that chain rule has to be applied
for terms containing y .

3. Rearrange to express dy
dx by x and y .

4. Evaluate dy
dx at x = a and y = b.
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Implicit Differentiation - Example 2

Example

Find the equation(s) of line(s) tangent to the graph of

y − xy2 + x2 + 1 = 0

at the point(s) where x = 1.
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Implicit Differentiation - Example 2

Solution - Part 1
In this case, F (x , y) = y − xy2 + x2 + 1 = 0 Differentiate both
sides of the equation with respect to x , we have

(y)′ − (xy2)′ + (x2)′ + (1)′ = (0)′

We have y ′ = dy
dx , (x2)′ = 2x , (1)′ = 0 and (0)′ = 0. How about

(xy2)′? Since y is a function of x , xy2 is a product of two
functions of x , namely x and y2. Therefore, we need to use
product rule when differentiating:

(xy2)′ = (x)′y2 + x(y2)′ = y2 + x(2y
dy

dx
)
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Implicit Differentiation - Example 2

Solution - Part 2
Hence, the equation becomes

dy

dx
− (y2 + 2xy

dy

dx
) + 2x = 0

Group the terms with dy
dx to the left hand side and the rest to the

right hand side, we have

dy

dx
− 2xy

dy

dx
= y2 − 2x

⇒ (1− 2xy)
dy

dx
= y2 − 2x

⇒ dy

dx
=

y2 − 2x

1− 2xy
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Implicit Differentiation - Example 2

Solution - Part 3
Now we need to find the point(s) on the graph with x = 1.
Incorporating x = 1 into the equation gives

y − y2 + 2 = 0⇒ (−y + 2)(y + 1) = 0⇒ y = 2,−1

Therefore, (1, 2) and (1,−1) are the required points on the graph
and

dy

dx

∣∣∣∣
(1,2)

= −2

3
,

dy

dx

∣∣∣∣
(1,−1)

= −1

3

Similar to the previous example, we can use the above information
to find the equations of two tangent lines (exercise).
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Procedure to conduct implicit differentiation

To find the derivative of y with respect to x , denoted by dy
dx

∣∣∣
(a,b)

,

we need

1. Find the formula F (x , y) = c

2. Differentiate F (x , y) = c on both sides. It is important to
treat y as a function of x , so that chain rule has to be applied
for terms containing y .

3. Rearrange to express dy
dx by x and y .

4. If the value of y is unknown, then calculate it by solving
F (a, y) = c .

5. Evaluate dy
dx at x = a and y = b.
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Implicit Differentiation - Exercises

Example

Find
dy

dx
and evaluate

dy

dx
at the indicated point.

(a) x ln y = yex − 1 at x = 0.

(b) exy − 2x = y + 1 at x = −1/2.

Answers

(a) dy
dx

∣∣∣
(0,1)

= ln y−yex
ex−x/y

∣∣∣
(0,1)

= −1.

(b) dy
dx

∣∣∣
(−1/2,0)

= 2−yexy
xexy−1

∣∣∣
(−1/2,0)

= −4/3.
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