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Increasing and Decreasing Functions

Definition
Suppose y = f (x).

1. f (x) is increasing on an interval a < x < b, if for any
a < x1 < x2 < b, f (x1) < f (x2).

2. f (x) is decreasing on an interval a < x < b, if for any
a < x1 < x2 < b, f (x2) < f (x1).
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Increasing and Decreasing Functions

Example

Determine the interval for which the function f (x) = x2 is
increasing.

Solution

I From the graph of y = x2, it is obvious that the function is
increasing when x > 0 and decreasing when x < 0.

I Notice that the slope of the tangent is positive when f is
increasing, and is negative when f is decreasing.
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Increasing and Decreasing Functions

Theorem
For the interval a < x < b,

1. f (x) is an increasing function on a < x < b if f ′(x) > 0 on
a < x < b.

2. f (x) is a decreasing function on a < x < b if f ′(x) < 0 on
a < x < b.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20)



Increasing and Decreasing Functions

Example

Given the function f (x) = 8x − x2,

(a) Which value(s) of x correspond to horizontal tangent line?

(b) For which values of x is f (x) increasing? Decreasing?

Solution
f ′(x) = 8− 2x . Therefore, f ′(x) = 0 implies x = 4 i.e. The
tangent line is horizontal at x = 4.

By the theorem, f is increasing when f ′(x) > 0 and decreasing
when f ′(x) < 0. Therefore,

I f is increasing when x < 4.

I f is decreasing when x > 4.
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Critical Numbers

Definition
The values of x in the domain of f where

1. f ′(x) = 0, or

2. f ′(x) does not exist

are called the critical numbers of f .

Remark
The critical number(s) is(are) the point(s) that partition the
number line into intervals, on which f ′(x) is either positive or
negative i.e. f is either increasing or decreasing.
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Critical Numbers

Example

Find the critical number(s) for the following f , and determine the
interval(s) where f is increasing and those where f is decreasing.

(a) f (x) = 1− x3

(b) f (x) = (1 + x)1/3

(c) f (x) = 8 ln x − x2
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Critical Numbers

Solution

(a) f ′(x) = −3x2

f ′(x) = 0⇒ x = 0

x = 0 is the critical number, and f (x) is decreasing
everywhere.

(b) f ′(x) = (1 + x)−2/3/3

f ′(x) does not exist⇒ x = −1

x = −1 is the critical number, and f (x) is an increasing
function for all x .
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Critical Numbers

Solution

(c) The domain of f (x) is x > 0, and f ′(x) = 8/x − 2x .

f ′(x) = 0⇒ x = 2,

f ′(x) does not exist⇒ x = 0( but not in the domain of f (x).

Thus x = 2 is the critical number and f (x) is increasing
between 0 and 2 and decreasing when x > 2.
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Local Extrema

Definition
Given a function f (x),

1. We call f (c) is a local maximum if
there exists an interval a < x < b
containing c such that f (x) ≤ f (c)
for all x in a < x < b.

2. We call f (c) is a local minimum if
there exists an interval a < x < b
containing c such that f (c) ≤ f (x)
for all x in a < x < b.

The quantity f (c) is called a local ex-
trema if it is either a local maximum or
local minimum.
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Local Extrema

Theorem
If f is continuous on the interval a < x < b, c is a number in
a < x < b and f (c) is a local extremum, then either

1. f ′(c) = 0, or

2. f ′(c) does not exist.

That is, a local extremum can occur only at a critical value.

Remark
The theorem does not imply that every critical value produces a
local extremum! (Think of f (x) = x3 at x = 0.)
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First-Derivative Test

We now present a method to classify whether a critical value is a
local extrema:

1. f (c) is a local minimum if f ′(x) changes from negative to
positive at c . (− ·+)

2. f (c) is a local maximum if f ′(x) changes from positive to
negative at c . (+ · −)

3. f (c) is not a local extrema if f ′(x) does not change the sign
at c . (+ ·+) or (− · −)

This is called the first-derivative test.
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First-Derivative Test

Example

Given f (x) = x3 − 9x2 + 24x − 10.

(a) Find the critical value(s) of f .

(b) Find the local maxima and minima.

Solution for (a)

f ′(x) = 3x2 − 18x + 24. Obviously, f ′(x) exists for all values of x .
Therefore, the critical values occur when

3x2 − 18x + 24 = 3(x − 2)(x − 4) = 0.

The critical values are 2 and 4.
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First-Derivative Test

Solution for (b)

Using the critical values obtained in (a), we can construct the sign
chart for f ′(x):

f is increasing when x < 2 or x > 4 and is decreasing when
2 < x < 4. Therefore, we have the following results:

I f has a local maximum at x = 2.

I f has a local minimum at x = 4.
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First-Derivative Test

Example

Find the critical values, the interval(s) where f (x) is increasing,
the interval(s) where f (x) is decreasing, and the local extrema of
the following functions

(a) f (x) =
9

x
+ x

(b) f (x) =
x2

x + 1

(c) f (x) = 3(x − 2)2/3 + 2.

(d) f (x) = (x − 1)e−x
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Exercises

Solution

(a)

f ′(x) = 1− 9/x2.

(b)

f ′(x) =
x2 + 2x

(x + 1)2
.

(c)

f ′(x) = 2(x − 2)−1/3.

(d)

f ′(x) = (2− x)e−x .
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Exercises

Example

The graph in below approximates the rate of change of the U.S.
share of the total world production of motor vehicles over a
20-years period, where S(t) is the U.S. share and t is time.

I Find all the local extrema (if any).
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