MATH 1003 Calculus and Linear Algebra (Lecture 20)

Maosheng Xiong
Department of Mathematics, HKUST

Definition
Suppose $y=f(x)$.

1. $f(x)$ is increasing on an interval $a<x<b$, if for any $a<x_{1}<x_{2}<b, f\left(x_{1}\right)<f\left(x_{2}\right)$.
2. $f(x)$ is decreasing on an interval $a<x<b$, if for any $a<x_{1}<x_{2}<b, f\left(x_{2}\right)<f\left(x_{1}\right)$.

Increasing and Decreasing Functions

Increasing and Decreasing Functions

Example

Determine the interval for which the function $f(x)=x^{2}$ is increasing.

Solution

- From the graph of $y=x^{2}$, it is obvious that the function is increasing when $x>0$ and decreasing when $x<0$.
- Notice that the slope of the tangent is positive when f is increasing, and is negative when f is decreasing.

Theorem
For the interval $a<x<b$,

1. $f(x)$ is an increasing function on $a<x<b$ if $f^{\prime}(x)>0$ on $a<x<b$.
2. $f(x)$ is a decreasing function on $a<x<b$ if $f^{\prime}(x)<0$ on $a<x<b$.

Example

Given the function $f(x)=8 x-x^{2}$,
(a) Which value(s) of x correspond to horizontal tangent line?
(b) For which values of x is $f(x)$ increasing? Decreasing?

Solution
$f^{\prime}(x)=8-2 x$. Therefore, $f^{\prime}(x)=0$ implies $x=4$ i.e. The tangent line is horizontal at $x=4$.

By the theorem, f is increasing when $f^{\prime}(x)>0$ and decreasing when $f^{\prime}(x)<0$. Therefore,

- f is increasing when $x<4$.
- f is decreasing when $x>4$.

Definition

The values of x in the domain of f where

1. $f^{\prime}(x)=0$, or
2. $f^{\prime}(x)$ does not exist
are called the critical numbers of f.
Remark
The critical number(s) is(are) the point(s) that partition the number line into intervals, on which $f^{\prime}(x)$ is either positive or negative i.e. f is either increasing or decreasing.

Critical Numbers

Example

Find the critical number(s) for the following f, and determine the interval(s) where f is increasing and those where f is decreasing.
(a) $f(x)=1-x^{3}$
(b) $f(x)=(1+x)^{1 / 3}$
(c) $f(x)=8 \ln x-x^{2}$

Solution
(a) $f^{\prime}(x)=-3 x^{2}$

$$
f^{\prime}(x)=0 \Rightarrow x=0
$$

$x=0$ is the critical number, and $f(x)$ is decreasing everywhere.
(b) $f^{\prime}(x)=(1+x)^{-2 / 3 / 3}$

$$
f^{\prime}(x) \text { does not exist } \Rightarrow x=-1
$$

$x=-1$ is the critical number, and $f(x)$ is an increasing function for all x.

Critical Numbers

Solution

(c) The domain of $f(x)$ is $x>0$, and $f^{\prime}(x)=8 / x-2 x$.

$$
f^{\prime}(x)=0 \Rightarrow x=2,
$$

$f^{\prime}(x)$ does not exist $\Rightarrow x=0$ (but not in the domain of $f(x)$.
Thus $x=2$ is the critical number and $f(x)$ is increasing between 0 and 2 and decreasing when $x>2$.

Definition

Given a function $f(x)$,

1. We call $f(c)$ is a local maximum if there exists an interval $a<x<b$ containing c such that $f(x) \leq f(c)$ for all x in $a<x<b$.
2. We call $f(c)$ is a local minimum if there exists an interval $a<x<b$ containing c such that $f(c) \leq f(x)$ for all x in $a<x<b$.
The quantity $f(c)$ is called a local extrema if it is either a local maximum or local minimum.

First-Derivative Test

Theorem

If f is continuous on the interval $a<x<b, c$ is a number in $a<x<b$ and $f(c)$ is a local extremum, then either

1. $f^{\prime}(c)=0$, or
2. $f^{\prime}(c)$ does not exist.

That is, a local extremum can occur only at a critical value.
Remark
The theorem does not imply that every critical value produces a local extremum! (Think of $f(x)=x^{3}$ at $x=0$.)

We now present a method to classify whether a critical value is a local extrema:

1. $f(c)$ is a local minimum if $f^{\prime}(x)$ changes from negative to positive at $c .(-\cdot+)$
2. $f(c)$ is a local maximum if $f^{\prime}(x)$ changes from positive to negative at $c .(+\cdot-)$
3. $f(c)$ is not a local extrema if $f^{\prime}(x)$ does not change the sign at $c .(+\cdot+)$ or $(-\cdot-)$
This is called the first-derivative test.

Example
Given $f(x)=x^{3}-9 x^{2}+24 x-10$.
(a) Find the critical value(s) of f.
(b) Find the local maxima and minima.

Solution for (a)
$f^{\prime}(x)=3 x^{2}-18 x+24$. Obviously, $f^{\prime}(x)$ exists for all values of x.
Therefore, the critical values occur when

$$
3 x^{2}-18 x+24=3(x-2)(x-4)=0
$$

The critical values are 2 and 4 .

Exercises

Solution

(a)

$$
f^{\prime}(x)=1-9 / x^{2}
$$

(c)

$$
f^{\prime}(x)=2(x-2)^{-1 / 3}
$$

(d)

$$
f^{\prime}(x)=(2-x) e^{-x}
$$

Maosheng Xiong Department of Mathematics, HKUST

Exercises

Example
The graph in below approximates the rate of change of the U.S. share of the total world production of motor vehicles over a 20 -years period, where $S(t)$ is the U.S. share and t is time.

- Find all the local extrema (if any).

