	Increasing and Decreasing Functions
MATH 1003 Calculus and Linear Algebra (Lecture 20) Maosheng Xiong Department of Mathematics, HKUST	Definition Suppose $y = f(x)$. 1. $f(x)$ is increasing on an interval $a < x < b$, if for any $a < x_1 < x_2 < b$, $f(x_1) < f(x_2)$. 2. $f(x)$ is decreasing on an interval $a < x < b$, if for any $a < x_1 < x_2 < b$, $f(x_2) < f(x_1)$.
Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20)	Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20)
 Example Determine the interval for which the function f(x) = x² is increasing. Solution From the graph of y = x², it is obvious that the function is increasing when x > 0 and decreasing when x < 0. Notice that the slope of the tangent is positive when f is increasing, and is negative when f is decreasing. 	Theorem For the interval a < x < b, f(x) is an increasing function on a < x < b if f'(x) > 0 on a < x < b. f(x) is a decreasing function on a < x < b if f'(x) < 0 on a < x < b.
(ロシ イ 伊 シ イ 言 シ く 言 シ 言 つ へ で Mansheng Xingg Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20)	<ロトイア・イヨト イヨト ヨーシへの Mapsheng Xiong, Department of Mathematics, HKUST MATH 1003 Calculus and Linear, Algebra (Lecture 20)

Increasing and Decreasing Functions

Example

Given the function $f(x) = 8x - x^2$,

- (a) Which value(s) of x correspond to horizontal tangent line?
- (b) For which values of x is f(x) increasing? Decreasing?

Solution

f'(x) = 8 - 2x. Therefore, f'(x) = 0 implies x = 4 i.e. The tangent line is horizontal at x = 4.

By the theorem, f is increasing when f'(x) > 0 and decreasing when f'(x) < 0. Therefore,

- *f* is increasing when x < 4.
- *f* is decreasing when x > 4.

Maosheng Xiong Department of Mathematics, HKUST

Critical Numbers

Example

Find the critical number(s) for the following f, and determine the interval(s) where f is increasing and those where f is decreasing.

(a)
$$f(x) = 1 - x^3$$

(b)
$$f(x) = (1+x)^{1/3}$$

(c)
$$f(x) = 8 \ln x - x^2$$

Critical Numbers

Definition

The values of x in the domain of f where

f'(x) = 0, or
 f'(x) does not exist
 are called the critical numbers of f.

Remark

The critical number(s) is(are) the point(s) that partition the number line into intervals, on which f'(x) is either positive or negative i.e. f is either increasing or decreasing.

Critical Numbers

Maosheng Xiong Department of Mathematics, HKUST

Solution

(a)
$$f'(x) = -3x^2$$

 $f'(x) = 0 \Rightarrow x = 0$

x = 0 is the critical number, and f(x) is decreasing everywhere.

(b)
$$f'(x) = (1+x)^{-2/3}/3$$

f'(x) does not exist $\Rightarrow x = -1$

x = -1 is the critical number, and f(x) is an increasing function for all x.

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

MATH 1003 Calculus and Linear Algebra (Lecture 20)

Maosheng Xiong Department of Mathematics, HKUST	MATH 1003 Calculus and Linear Algebra (Lecture 20)
---	--

▲□▶ ▲□▶ ▲≧▶ ▲≧▶ = ● ● ●

MATH 1003 Calculus and Linear Algebra (Lecture 20)

Critical Numbers

Solution (c) The domain of $f(x)$ is $x > 0$, and $f'(x) = 8/x - 2x$. $f'(x) = 0 \Rightarrow x = 2$, $f'(x)$ does not exist $\Rightarrow x = 0$ (but not in the domain of $f(x)$). Thus $x = 2$ is the critical number and $f(x)$ is increasing between 0 and 2 and decreasing when $x > 2$.	 Definition Given a function f(x), 1. We call f(c) is a local maximum if there exists an interval a < x < b containing c such that f(x) ≤ f(c) for all x in a < x < b. 2. We call f(c) is a local minimum if there exists an interval a < x < b containing c such that f(c) ≤ f(x) for all x in a < x < b. The quantity f(c) is called a local ex- trema if it is either a local maximum or local minimum.
Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20)	Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20) First-Derivative Test
Theorem If f is continuous on the interval $a < x < b$, c is a number in a < x < b and $f(c)$ is a local extremum, then either 1. $f'(c) = 0$, or 2. $f'(c)$ does not exist. That is, a local extremum can occur only at a critical value. Remark The theorem does not imply that every critical value produces a local extremum! (Think of $f(x) = x^3$ at $x = 0$.)	 We now present a method to classify whether a critical value is a local extrema: 1. f(c) is a local minimum if f'(x) changes from negative to positive at c. (- · +) 2. f(c) is a local maximum if f'(x) changes from positive to negative at c. (+ · -) 3. f(c) is not a local extrema if f'(x) does not change the sign at c. (+ · +) or (- · -) This is called the first-derivative test.
- ロ > - 4 週 > - 4 差 > - 1 差 - 9 へ ()	

Local Extrema

Example

Given $f(x) = x^3 - 9x^2 + 24x - 10$.

- (a) Find the critical value(s) of f.
- (b) Find the local maxima and minima.

Solution for (a)

 $f'(x) = 3x^2 - 18x + 24$. Obviously, f'(x) exists for all values of x. Therefore, the critical values occur when

$$3x^2 - 18x + 24 = 3(x - 2)(x - 4) = 0.$$

The critical values are 2 and 4.

First-Derivative Test

Solution for (b)

Using the critical values obtained in (a), we can construct the sign chart for f'(x):

(b)

(d)

 $f'(x) = 2(x-2)^{-1/3}$. $f'(x) = (2-x)e^{-x}$.

f is increasing when x < 2 or x > 4 and is decreasing when 2 < x < 4. Therefore, we have the following results:

- f has a local maximum at x = 2.
- f has a local minimum at x = 4.

Maosheng Xiong Department of Mathematics, HKUST

 $f'(x) = 1 - 9/x^2$.

+ maximum - defined - minimum + -3 0 3

Local

minimum

Local

Exercises

(a)

(c)

Solution

Local

Maosheng Xiong Department of Mathematics, HKUST

First-Derivative Test

Example

Find the critical values, the interval(s) where f(x) is increasing, the interval(s) where f(x) is decreasing, and the local extrema of the following functions

(a)
$$f(x) = \frac{9}{x} + x$$

(b) $f(x) = \frac{x^2}{x+1}$
(c) $f(x) = 3(x-2)^{2/3} + 2$.
(d) $f(x) = (x-1)e^{-x}$

ふせん 加 えばやえばや 4回を 4日を

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MATH 1003 Calculus and Linear Algebra (Lecture 20)

きょうかい 加 ふかく ボット 白マ

MATH 1003 Calculus and Linear Algebra (Lecture 20)

 $f'(x) = \frac{x^2 + 2x}{(x+1)^2}$

Local Not Local + maximum - defined - minimum

Local

maximum

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 20)

Exercises

Example

The graph in below approximates the rate of change of the U.S. share of the total world production of motor vehicles over a 20-years period, where S(t) is the U.S. share and t is time.

• Find all the local extrema (if any).

Maosheng Xiong Department of Mathematics, HKUST

<ロト イラト イラト イラト モラ シーラ つへで MATH 1003 Calculus and Linear Algebra (Lecture 20)