

Example

Find the second derivatives of

(a)
$$f(x) = \sqrt[3]{x^2} + 3x^3 + \frac{1}{x^7}$$

(b) $y = x^2 \log_5 x$

Solution

(a)
$$f'(x) = \frac{2}{3}x^{-1/3} + 9x^2 - 7x^{-8}$$

 $\Rightarrow f''(x) = (f'(x))' = -\frac{2}{9}x^{-4/3} + 18x + 56x^{-9}$
(b) $\frac{dy}{dx} = 2x \log_5 x + \frac{x^2}{x \ln 5} = 2x \log_5 x + \frac{x}{\ln 5}$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{d}{dx} \right) = 2 \log_5 x + \frac{2}{\ln 5} + \frac{1}{\ln 5} = 2 \log_5 x + \frac{3}{\ln 5}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

MATH 1003 Calculus and Linear Algebra (Lecture 21)

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 21)

Concavity and Second Derivatives

By the definition of concavity, we can easily obtain the following theorem:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Theorem

Suppose f is twice differentiable on an interval a < x < b. Then

- 1. f(x) is a concave upward on a < x < b if and only if f''(x) > 0 on a < x < b, and
- 2. f(x) is a concave downward on a < x < b if and only if f''(x) < 0 on a < x < b.

Concavity and Second Derivatives

Maosheng Xiong Department of Mathematics, HKUST

Example

Determine the interval(s) where the graph of f is concave upward and the interval(s) where the graph of f is concave downward.

a)
$$f(x) = x^{3}$$

b) $g(x) = \ln x$
c) $h(x) = \sqrt{x+1}$

(d)
$$k(x) = x^{\frac{4}{3}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = のへで

Concavity and Second Derivatives

Inflection Points

Definition

An inflection point is a point on the graph of the function where the concavity changes.

To locate an inflection point, we have the following theorem:

Theorem

If y = f(x) has an inflection point point at x = c, then 1. f''(c) = 0, or

2. f''(c) does not exist.

Remark

The converse of the above the theorem is not true.

(ロト イラト イラト イラト ラ うへで MATH 1003 Calculus and Linear Algebra (Lecture 21)

Examples of Inflection Points

Maosheng Xiong Department of Mathematics, HKUST

Maosheng Xiong Department of Mathematics, HKUST

Example

Find all inflection point(s) of f(x) (if any): (a) $f(x) = x^{\frac{1}{3}}$ (b) $f(x) = -x^{-3}$

Solution (a) $f''(x) = -\frac{2}{9}x^{-\frac{5}{3}}$. Hence the sign chart for f''(x) is as follows:

f"(x) + -

Since there is a sign change in f''(x), x = 0 is an inflection point.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear

500

イロトイラトイミトイラト ラーシーへで MATH 1003 Calculus and Linear Algebra (Lecture 21)

Examples of Inflection Points

Examples of Inflection Points