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Concavity

Example
f (x) = x2 g(x) =

√
x

f ′(x) and g ′(x) increasing or decreasing?

x 0.5 1 1.5

f ′(x) 1 2 3

g ′(x) 0.71 0.5 0.41
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Concavity

Definition
Concavity of f (x):

1. The graph of a function is
concave upward on the interval
a < x < b if f ′(x) is increasing
on a < x < b.

2. The graph of a function is
concave downward on the
interval a < x < b if f ′(x) is
decreasing on a < x < b.
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Second Derivatives

Definition
For y = f (x), the second derivative of f , is

d2y

dx2
(x) = f ′′(x) =

d

dx
f ′(x).

Remark
Similarly, we can define the nth derivative of f by differentiating f
n times. The notation for the nth derivative is

dny

dxn
(x)
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Second Derivatives

Example

Find the second derivatives of

(a) f (x) =
3
√
x2 + 3x3 +

1

x7

(b) y = x2 log5 x
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Second Derivatives

Solution

(a) f ′(x) = 2
3x
−1/3 + 9x2 − 7x−8

⇒ f ′′(x) = (f ′(x))′ = −2
9x
−4/3 + 18x + 56x−9

(b) dy
dx = 2x log5 x + x2

x ln 5 = 2x log5 x + x
ln 5

⇒ d2y

dx2
=

d

dx

(
d

dx

)
= 2 log5 x +

2

ln 5
+

1

ln 5
= 2 log5 x +

3

ln 5
.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 21)

Concavity and Second Derivatives

By the definition of concavity, we can easily obtain the following
theorem:

Theorem
Suppose f is twice differentiable on an interval a < x < b. Then

1. f (x) is a concave upward on a < x < b if and only if
f ′′(x) > 0 on a < x < b, and

2. f (x) is a concave downward on a < x < b if and only if
f ′′(x) < 0 on a < x < b.
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Concavity and Second Derivatives

Example

Determine the interval(s) where the graph of f is concave upward
and the interval(s) where the graph of f is concave downward.

(a) f (x) = x3

(b) g(x) = ln x

(c) h(x) =
√
x + 1

(d) k(x) = x
4
3
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Concavity and Second Derivatives

Solutions
(a) f ′(x) = 3x2 ⇒ f ′′(x) = 6x (b) g ′(x) = 1

x ⇒ g ′′(x) = − 1
x2

(c) h′(x) = 1
2
√
x+1
⇒

h′′(x) = −(x + 1)−3/2/4

(d) k ′(x) = 4
3x

1/3 ⇒
k ′′(x) = 4x−2/3/9
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Inflection Points

Definition
An inflection point is a point on the graph of the function where
the concavity changes.

To locate an inflection point, we have the following theorem:

Theorem
If y = f (x) has an inflection point point at x = c, then

1. f ′′(c) = 0, or

2. f ′′(c) does not exist.

Remark
The converse of the above the theorem is not true.
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Examples of Inflection Points
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Examples of Inflection Points

Example

Find all inflection point(s) of f (x) (if any):

(a) f (x) = x
1
3

(b) f (x) = −x−3

Solution (a)

f ′′(x) = −2
9x
− 5

3 . Hence the sign chart for f ′′(x) is as follows:

Since there is a sign change in f ′′(x), x = 0 is an inflection point.
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Examples of Inflection Points

Solution (b)

f ′′(x) = −12x−5. Hence the sign chart for f ′′(x) is as follows:

Although there is a sign change in f ′′(x), x = 0 is NOT an
inflection point! Why?

Notice that f (x) is undefined at x = 0. Therefore, the graph does
not have any point at x = 0.
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Examples of Inflection Points

Example

Determine the interval(s) where the graph of f is concave upward
and the interval(s) where the graph of f is concave downward.
Indicate all inflection point(s) (if any).

(a) f (x) = x3 − 9x2 + 24x − 10.

(b) f (x) = ln(x2 − 4x + 5)
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Examples of Inflection Points

Solutions

(a) f ′(x) = 3x2 − 18x + 24
f ′′(x) = 6x − 18⇒ inflection point: x = 3.

x > 3, upwards; x < 3, downwards.

(b) f ′(x) = 2x−4
x2−4x+5

f ′′(x) = −2(x−1)(x−3)
(x2−4x+5)2

⇒ inflection point: x = 1, 3.

1 < x < 3, upwards; x < 1 or x > 3, downwards.
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