MATH 1003 Calculus and Linear Algebra (Lecture 21)

Maosheng Xiong
Department of Mathematics, HKUST

Example
$f(x)=x^{2}$

$$
g(x)=\sqrt{x}
$$

$f^{\prime}(x)$ and $g^{\prime}(x)$ increasing or decreasing?

x	0.5	1	1.5
$f^{\prime}(x)$	1	2	3
$g^{\prime}(x)$	0.71	0.5	0.41

Second Derivatives

Definition
For $y=f(x)$, the second derivative of f, is

$$
\frac{d^{2} y}{d x^{2}}(x)=f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

Remark
Similarly, we can define the $n^{\text {th }}$ derivative of f by differentiating f n times. The notation for the $n^{\text {th }}$ derivative is

$$
\frac{d^{n} y}{d x^{n}}(x)
$$

Example

Find the second derivatives of
(a) $f(x)=\sqrt[3]{x^{2}}+3 x^{3}+\frac{1}{x^{7}}$
(b) $y=x^{2} \log _{5} x$

Solution

(a) $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}+9 x^{2}-7 x^{-8}$

$$
\Rightarrow f^{\prime \prime}(x)=\left(f^{\prime}(x)\right)^{\prime}=-\frac{2}{9} x^{-4 / 3}+18 x+56 x^{-9}
$$

(b) $\frac{d y}{d x}=2 x \log _{5} x+\frac{x^{2}}{x \ln 5}=2 x \log _{5} x+\frac{x}{\ln 5}$

$$
\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d}{d x}\right)=2 \log _{5} x+\frac{2}{\ln 5}+\frac{1}{\ln 5}=2 \log _{5} x+\frac{3}{\ln 5} .
$$

Concavity and Second Derivatives

Example

Determine the interval(s) where the graph of f is concave upward and the interval(s) where the graph of f is concave downward.
(a) $f(x)=x^{3}$
(b) $g(x)=\ln x$
(c) $h(x)=\sqrt{x+1}$
(d) $k(x)=x^{\frac{4}{3}}$

Solutions
(a) $f^{\prime}(x)=3 x^{2} \Rightarrow f^{\prime \prime}(x)=6 x$
(b) $g^{\prime}(x)=\frac{1}{x} \Rightarrow g^{\prime \prime}(x)=-\frac{1}{x^{2}}$

(c) $h^{\prime}(x)=\frac{1}{2 \sqrt{x+1}} \Rightarrow$
(d) $k^{\prime}(x)=\frac{4}{3} x^{1 / 3} \Rightarrow$
$k^{\prime \prime}(x)=4 x^{-2 / 3} / 9$

Examples of Inflection Points

Definition

An inflection point is a point on the graph of the function where the concavity changes.
To locate an inflection point, we have the following theorem:
Theorem
If $y=f(x)$ has an inflection point point at $x=c$, then

1. $f^{\prime \prime}(c)=0$, or
2. $f^{\prime \prime}(c)$ does not exist.

Remark
The converse of the above the theorem is not true.

Examples of Inflection Points

Example

Find all inflection point(s) of $f(x)$ (if any):
(a) $f(x)=x^{\frac{1}{3}}$
(b) $f(x)=-x^{-3}$

Solution (a)
$f^{\prime \prime}(x)=-\frac{2}{9} x^{-\frac{5}{3}}$. Hence the sign chart for $f^{\prime \prime}(x)$ is as follows:

Since there is a sign change in $f^{\prime \prime}(x), x=0$ is an inflection point.

Solution (b)
$f^{\prime \prime}(x)=-12 x^{-5}$. Hence the sign chart for $f^{\prime \prime}(x)$ is as follows:

Although there is a sign change in $f^{\prime \prime}(x), x=0$ is NOT an inflection point! Why?

Notice that $f(x)$ is undefined at $x=0$. Therefore, the graph does not have any point at $x=0$.

Example

Determine the interval(s) where the graph of f is concave upward and the interval(s) where the graph of f is concave downward. Indicate all inflection point(s) (if any).
(a) $f(x)=x^{3}-9 x^{2}+24 x-10$.
(b) $f(x)=\ln \left(x^{2}-4 x+5\right)$

Examples of Inflection Points

Solutions

(a) $f^{\prime}(x)=3 x^{2}-18 x+24$
$f^{\prime \prime}(x)=6 x-18 \Rightarrow$ inflection point: $x=3$

$x>3$, upwards; $x<3$, downwards.
(b) $f^{\prime}(x)=\frac{2 x-4}{x^{2}-4 x+5}$
$f^{\prime \prime}(x)=\frac{-2(x-1)(x-3)}{\left(x^{2}-4 x+5\right)^{2}} \Rightarrow$ inflection point: $x=1,3$.

$1<x<3$, upwards; $x<1$ or $x>3$, downwards.

