MATH 1003 Calculus and Linear Algebra

 (Lecture 22)Maosheng Xiong
Department of Mathematics, HKUST

Given $f(x)=\frac{a_{0} x+a_{1}}{b_{0} x+b_{1}}, b_{0} \neq 0$

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} f(x) & =\frac{a_{0}}{b_{0}} \\
\lim _{x \rightarrow\left(-b_{1} / b_{0}\right)} & =\infty
\end{aligned}
$$

where a is either - or + to be decided.

For the graph $f(x)=\frac{a_{0} x+a_{1}}{b_{0} x+b_{1}}$,

- the line $y=\frac{a 0}{b_{0}}$ is called the horizontal asymptote,
- the line $x=-\frac{b_{1}}{b_{0}}$ is called the vertical asymptote.

Asymptotes of Exponential Functions with Base a
Asymptotes of Logarithmic Functions with Base a

Given $f(x)=a^{x}$ with $a>0$
If $a>1$,

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} f(x)=+\infty \\
\lim _{x \rightarrow-\infty} f(x)=0
\end{gathered}
$$

if $0<a<1$,

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} f(x)=0 \\
\lim _{x \rightarrow-\infty} f(x)=+\infty
\end{gathered}
$$

Given $f(x)=\log _{a} x$ with $a>0$ for $x>0$
If $a>1$,

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=+\infty \\
& \lim _{x \rightarrow 0^{+}} f(x)=-\infty
\end{aligned}
$$

if $0<a<1$,

$$
\begin{aligned}
& \lim _{x \rightarrow+\infty} f(x)=-\infty \\
& \lim _{x \rightarrow 0^{+}} f(x)=+\infty
\end{aligned}
$$

Curve Sketching - Procedure

To sketch the graph of $y=f(x)$:

1. Find the domain of $f(x)$.
2. Find asymptotes (vertical/horizontal), determine which direction the curve tends to $(\pm \infty)$.
3. Find the intercepts:

- x-intercept: find x with $f(x)=0$.
- y-intercept: find $f(0)$.

4. Find $f^{\prime}(x)$ and construct the sign chart for $f^{\prime}(x)$. Then locate the critical numbers, local maxima, local minimum and intervals for which the function is increasing and decreasing.
5. Find $f^{\prime \prime}(x)$ and construct the sign chart for $f^{\prime \prime}(x)$. Then locate the inflection points and intervals for which the function is concave up and concave down.
6. Sketch the graph of $y=f(x)$.

(a) $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$	(b) $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$

Example 0

Graph the function $y=f(x)$, if $f(x)$ satisfies the following:

- $f(0)=2, f(1)=0, f(2)=-2$;

Graph the function $y=f(x)$, if $f(x)$ satisfies the following:

- $f(0)=2, f(1)=0, f(2)=-2$;
- $f^{\prime}(0)=f^{\prime}(2)=0 ; f^{\prime}(x)>0$ on $-\infty<x<0$ and $2<x<\infty ; f^{\prime}(x)<0$ on $0<x<2$;

Graph the function $y=f(x)$, if $f(x)$ satisfies the following:

- $f(0)=2, f(1)=0, f(2)=-2$;
- $f^{\prime}(0)=f^{\prime}(2)=0 ; f^{\prime}(x)>0$ on $-\infty<x<0$ and $2<x<\infty$; $f^{\prime}(x)<0$ on $0<x<2$;
- $f^{\prime \prime}(1)=0 ; f^{\prime \prime}(x)>0$ on $1<x<\infty ; f^{\prime \prime}(x)<0$ on $-\infty<x<1$.

Example 1

Graph $y=x^{4}+4 x^{3}$.

Solution

- the function is defined everywhere.

Graph $y=x^{4}+4 x^{3}$.
Solution

- the function is defined everywhere.
- y-intercept: Put $x=0$, we get $y=0$. Therefore, y-intercept is 0 .

Example 1

Graph $y=x^{4}+4 x^{3}$.

Solution

- the function is defined everywhere.
- y-intercept: Put $x=0$, we get $y=0$. Therefore, y-intercept is 0 .
- x-intercept: Put $y=0$, we get the equation $x^{4}+4 x^{3}=0$.

Factorizing, we have

$$
x^{3}(x+4)=0
$$

Hence $x=0,-4$. Therefore, x-intercepts are 0 and -4 .

Solution (cont'd)
$f^{\prime}(x)=4 x^{3}+12 x^{2}=4 x^{2}(x+3)$.

- $f^{\prime}(x)=0$, the critical values are $x=0,-3$.

The sign chart for $f^{\prime}(x)$ is as follows:

Therefore, we have

- f is decreasing when $x<-3$.

Solution (cont'd)

$f^{\prime}(x)=4 x^{3}+12 x^{2}=4 x^{2}(x+3)$.

- $f^{\prime}(x)=0$, the critical values are $x=0,-3$.

The sign chart for $f^{\prime}(x)$ is as follows:

Therefore, we have

- f is decreasing when $x<-3$.
- f is increasing when $x>-3$.
- Local minimum occurs when $x=-3$.

Solution (cont'd)
$f^{\prime \prime}(x)=12 x^{2}+24 x=12 x(x+2)$. The sign chart for $f^{\prime \prime}(x)$ is as follows:

Therefore, we have

- f is concave upwards when $x<-2$ or $x>0$.

Solution (cont'd)
$f^{\prime \prime}(x)=12 x^{2}+24 x=12 x(x+2)$. The sign chart for $f^{\prime \prime}(x)$ is as follows:

Therefore, we have

- f is concave upwards when $x<-2$ or $x>0$.
- f is concave downwards when $-2<x<0$.

Graphing $y=f(x)$

- Plot the x-intercepts and y-intercept.
- Plot all the local extrema and inflection points.
- Connect the points by curves that are in accordance with the analysis.

Example
Sketch the graph of $y=f(x)=x(\ln x)^{2}$.
Solution

- Domain of $f(x): x>0$.

Example
Sketch the graph of $y=f(x)=x(\ln x)^{2}$.
Solution

- Domain of $f(x): x>0$.
- y-intercept: $x=0$, not in the domain.

Example 2

Example

Sketch the graph of $y=f(x)=x(\ln x)^{2}$.
Solution (cont'd)
Differentiate $f(x)$, we get $f^{\prime}(x)=(\ln x)^{2}+2 \ln x=(\ln x)(\ln x+2)$. $f^{\prime}(x)=0$ then $\ln x=0 \Longrightarrow x=1$ or $\ln x=-2 \Longrightarrow x=e^{-2}$. The critical numbers are $x=1, e^{-2} \approx 0.1353$. The sign chart for $f^{\prime}(x)$ is as follows:

Solution

- Domain of $f(x): x>0$.
- y-intercept: $x=0$, not in the domain.
- x-intercept(s): Put $y=0$, we get $x(\ln x)^{2}=0$, which implies that $x=0$ (excluded) or $\ln x=0 \Longrightarrow x=1$. Hence x-intercept is 1 .

Solution (cont'd)

Differentiate $f(x)$, we get $f^{\prime}(x)=(\ln x)^{2}+2 \ln x=(\ln x)(\ln x+2)$. $f^{\prime}(x)=0$ then $\ln x=0 \Longrightarrow x=1$ or $\ln x=-2 \Longrightarrow x=e^{-2}$. The critical numbers are $x=1, e^{-2} \approx 0.1353$. The sign chart for $f^{\prime}(x)$ is as follows:

Solution (cont'd)
Differentiate $f^{\prime}(x)$, we get

Solution (cont'd)

Differentiate $f(x)$, we get $f^{\prime}(x)=(\ln x)^{2}+2 \ln x=(\ln x)(\ln x+2)$. $f^{\prime}(x)=0$ then $\ln x=0 \Longrightarrow x=1$ or $\ln x=-2 \Longrightarrow x=e^{-2}$. The critical numbers are $x=1, e^{-2} \approx 0.1353$. The sign chart for $f^{\prime}(x)$ is as follows:

Therefore, $x=e^{-2}$ is local maximum and $x=1$ is local minimum, $f(x)$ is increasing when $0<x<e^{-2}$ or $x>1$, and $f(x)$ is decreasing when $e^{-2}<x<1$.

Solution (cont'd)
Differentiate $f^{\prime}(x)$, we get

$$
f^{\prime \prime}(x)=2 \ln x \frac{1}{x}+\frac{2}{x}=\frac{2}{x}(\ln x+1) .
$$

Since $x>0, f^{\prime \prime}(x)=0$ if $\ln x+1=0$, that is $x=e^{-1}=0.3679$, the sign chart for $f^{\prime \prime}(x)$ is as follows:

Therefore, we have

- $f(x)$ is concave upwards when $x>e^{-1}$.

Solution (cont'd)
Differentiate $f^{\prime}(x)$, we get

$$
f^{\prime \prime}(x)=2 \ln x \frac{1}{x}+\frac{2}{x}=\frac{2}{x}(\ln x+1) .
$$

Since $x>0, f^{\prime \prime}(x)=0$ if $\ln x+1=0$, that is $x=e^{-1}=0.3679$, the sign chart for $f^{\prime \prime}(x)$ is as follows:

Therefore, we have

- $f(x)$ is concave upwards when $x>e^{-1}$.
- $f(x)$ is concave downwards when $0<x<e^{-1}$.

Solution (cont'd)

To sketch the graph of $y=f(x)$:

- Plot the x-intercept(s) and y-intercept.
- Draw the vertical and horizontal asymptote(s) using dotted lines.
- Plot all local extrema and inflection point(s) (if any).
- Connect the points by curves that are in accordance with the analysis.

Solution (cont'd)

Differentiate $f^{\prime}(x)$, we get

$$
f^{\prime \prime}(x)=2 \ln x \frac{1}{x}+\frac{2}{x}=\frac{2}{x}(\ln x+1) .
$$

Since $x>0, f^{\prime \prime}(x)=0$ if $\ln x+1=0$, that is $x=e^{-1}=0.3679$, the sign chart for $f^{\prime \prime}(x)$ is as follows:

Therefore, we have

- $f(x)$ is concave upwards when $x>e^{-1}$.
- $f(x)$ is concave downwards when $0<x<e^{-1}$.
- $x=e^{-1}$ is an an inflection point.

Example 3

Example
Sketch $y=f(x)=\frac{2 x-1}{x+1}$, where $x \in(-\infty, \infty)$ except for $x=-1$.
Solution - Part 1

- $f(x)$ at infinity behaves like $\lim _{x \rightarrow \pm \infty} f(x)=2$.

Example 3

Example
Sketch $y=f(x)=\frac{2 x-1}{x+1}$, where $x \in(-\infty, \infty)$ except for $x=-1$.
Solution - Part 1

- $f(x)$ at infinity behaves like $\lim _{x \rightarrow \pm \infty} f(x)=2$.
- At $x=-1, f(x)$ is not defined. We find

$$
\lim _{x \rightarrow-1^{+}} f(x)=-\infty, \lim _{x \rightarrow-1^{-}} f(x)=+\infty .
$$

Example 3

Solution - Part 3

x	$-\infty$	-2	0	∞
$f(x)$	2	5	-1	2

Example 3

Solution - Part 2

Since

$$
\frac{d y}{d x}=f^{\prime}(x)=\frac{3}{(x+1)^{2}}>0, \text { except for } x=-1,
$$

but $f(x)$ is not defined at $x=-1$, so there is no critical points. Since

$$
\frac{d^{2} y}{d x^{2}}=f^{\prime \prime}(x)=-\frac{6}{(x+1)^{3}} \Rightarrow \text { no inflection points. }
$$

Curve Sketching - Procedure

To sketch the graph of $y=f(x)$:

1. Find the domain of $f(x)$.
2. Find asymptotes (vertical/horizontal), determine which direction the curve tends to $(\pm \infty)$.
3. Find the intercepts:

- x-intercept: find x with $f(x)=0$.
- y-intercept: find $f(0)$.

4. Find $f^{\prime}(x)$ and construct the sign chart for $f^{\prime}(x)$. Then locate the critical numbers, local maxima, local minimum and intervals for which the function is increasing and decreasing.
5. Find $f^{\prime \prime}(x)$ and construct the sign chart for $f^{\prime \prime}(x)$. Then locate the inflection points and intervals for which the function is concave up and concave down.
6. Sketch the graph of $y=f(x)$.

Example 4
Example
Sketch $y=f(x)=x 2^{x}$, where $x \in[-8,1]$.
Solution - Part 1
$1 \times$ lies between -8 and 1 . At two boundaries,

$$
f(-8)=-0.0313 \text { and } f(1)=2
$$

$2 f(x)$ is well-defined in $[-8,1]$, no asymptotes.
$3 f^{\prime}(x)=2^{x}(1+x \ln 2) \Rightarrow$ critical points: $x=-1 / \ln 2$.
$4 f^{\prime \prime}(x)=2^{x}\left((\ln 2)^{2} x+2 \ln 2\right) \Rightarrow$ inflection points: $x=-2 / \ln 2$.

Point of Diminishing Returns

The value of x where the rate of change of $f(x)$ changes from increasing to decreasing is called the point of diminishing returns.
Example
A discount appliance store is selling 200 large-screen TV sets monthly. If the store invests $\$ x$ thousand in an advertising campaign and the ad company estimates that sales will increase to

$$
N(x)=4 x^{3}-0.25 x^{4}+200, \quad 0 \leq x \leq 12 .
$$

When is rate of change of sales increasing and when is it decreasing? What is the point of diminishing returns and the maximum rate of change of sales?

Example 4

Solution - Part 2

5 Evaluate $f(x)$ at all critical and inflection points:

x	-8	$-2 / \ln 2$	$-1 / \ln 2$	0	1
$f(x)$	-0.0313	-0.3905	-0.5307	0	2

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 22)

Solution
$N^{\prime}(x)=12 x^{2}-x^{3}$ and $N^{\prime \prime}(x)=24 x-3 x^{2}=3 x(8-x)$. The sign chart for $N^{\prime \prime}(x)$ is as follows:

Solution
$N^{\prime}(x)=12 x^{2}-x^{3}$ and $N^{\prime \prime}(x)=24 x-3 x^{2}=3 x(8-x)$. The sign chart for $N^{\prime \prime}(x)$ is as follows:

Therefore, we have

- The rate of change of sales is increasing when $0<x<8$.

Solution

$N^{\prime}(x)=12 x^{2}-x^{3}$ and $N^{\prime \prime}(x)=24 x-3 x^{2}=3 x(8-x)$. The sign chart for $N^{\prime \prime}(x)$ is as follows:

Therefore, we have

- The rate of change of sales is increasing when $0<x<8$.
- The rate of change of sales is decreasing when $8<x<12$.

Solution

$N^{\prime}(x)=12 x^{2}-x^{3}$ and $N^{\prime \prime}(x)=24 x-3 x^{2}=3 x(8-x)$. The sign chart for $N^{\prime \prime}(x)$ is as follows:

Therefore, we have

- The rate of change of sales is increasing when $0<x<8$.
- The rate of change of sales is decreasing when $8<x<12$.
- The point of diminishing returns is at $x=8$.

Solution
$N^{\prime}(x)=12 x^{2}-x^{3}$ and $N^{\prime \prime}(x)=24 x-3 x^{2}=3 x(8-x)$. The sign chart for $N^{\prime \prime}(x)$ is as follows:

Therefore, we have

- The rate of change of sales is increasing when $0<x<8$.
- The rate of change of sales is decreasing when $8<x<12$.
- The point of diminishing returns is at $x=8$.
- The maximum rate of change of sales occurs at $x=8$.

Therefore, the maximum rate is $N^{\prime}(8)=12 \times 8^{2}-8^{3}=256$.

Self-Test Problems

In textbook,

- Example 5 of Section 12-2
- Example 2 and 4 of Section 12-4

