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Asymptotes of Fraction of Linear Functions

Given f (x) = a0x+a1
b0x+b1

, b0 6= 0

lim
x→±∞

f (x) =
a0
b0

;

lim
x→(−b1/b0)

=∞,

where a is either − or + to be decided.

For the graph f (x) = a0x+a1
b0x+b1

,

I the line y = a0
b0

is called the horizontal asymptote,

I the line x = −b1
b0

is called the vertical asymptote.
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Asymptotes of Exponential Functions with Base a

Given f (x) = ax with a > 0
If a > 1,

lim
x→+∞

f (x) = +∞

lim
x→−∞

f (x) = 0;

if 0 < a < 1,

lim
x→+∞

f (x) = 0

lim
x→−∞

f (x) = +∞.
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Asymptotes of Logarithmic Functions with Base a

Given f (x) = loga x with a > 0 for x > 0
If a > 1,

lim
x→+∞

f (x) = +∞,

lim
x→0+

f (x) = −∞;

if 0 < a < 1,

lim
x→+∞

f (x) = −∞

lim
x→0+

f (x) = +∞.
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Curve Sketching - Procedure

To sketch the graph of y = f (x):

1. Find the domain of f (x).

2. Find asymptotes (vertical/horizontal), determine which
direction the curve tends to (±∞).

3. Find the intercepts:
I x-intercept: find x with f (x) = 0.
I y -intercept: find f (0).

4. Find f ′(x) and construct the sign chart for f ′(x). Then locate
the critical numbers, local maxima, local minimum and
intervals for which the function is increasing and decreasing.

5. Find f ′′(x) and construct the sign chart for f ′′(x). Then
locate the inflection points and intervals for which the
function is concave up and concave down.

6. Sketch the graph of y = f (x).
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General patterns of analyzing graphs
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Example 0

Graph the function y = f (x), if f (x) satisfies the following:

I f (0) = 2, f (1) = 0, f (2) = −2;

I f ′(0) = f ′(2) = 0; f ′(x) > 0 on −∞ < x < 0 and
2 < x <∞; f ′(x) < 0 on 0 < x < 2;

I f ′′(1) = 0; f ′′(x) > 0 on 1 < x <∞; f ′′(x) < 0 on
−∞ < x < 1.
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Example 1

Graph y = x4 + 4x3.

Solution

I the function is defined everywhere.

I y -intercept: Put x = 0, we get y = 0. Therefore, y -intercept
is 0.

I x-intercept: Put y = 0, we get the equation x4 + 4x3 = 0.
Factorizing, we have

x3(x + 4) = 0

Hence x = 0,−4. Therefore, x-intercepts are 0 and −4.
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Solution (cont’d)

f ′(x) = 4x3 + 12x2 = 4x2(x + 3).

I f ′(x) = 0, the critical values are x = 0,−3.

The sign chart for f ′(x) is as follows:

Therefore, we have

I f is decreasing when x < −3.

I f is increasing when x > −3.

I Local minimum occurs when x = −3.
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Solution (cont’d)

f ′′(x) = 12x2 + 24x = 12x(x + 2). The sign chart for f ′′(x) is as
follows:

Therefore, we have

I f is concave upwards when x < −2 or x > 0.

I f is concave downwards when −2 < x < 0.

I x = −2, 0 are inflection points.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 22)

Solution (cont’d)

f ′′(x) = 12x2 + 24x = 12x(x + 2). The sign chart for f ′′(x) is as
follows:

Therefore, we have

I f is concave upwards when x < −2 or x > 0.

I f is concave downwards when −2 < x < 0.

I x = −2, 0 are inflection points.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 22)

Solution (cont’d)

f ′′(x) = 12x2 + 24x = 12x(x + 2). The sign chart for f ′′(x) is as
follows:

Therefore, we have

I f is concave upwards when x < −2 or x > 0.

I f is concave downwards when −2 < x < 0.

I x = −2, 0 are inflection points.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 22)

Graphing y = f (x)

I Plot the x-intercepts and y -intercept.

I Plot all the local extrema and inflection points.

I Connect the points by curves that are in accordance with the
analysis.
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Example 2

Example

Sketch the graph of y = f (x) = x(ln x)2.

Solution

I Domain of f (x): x > 0.

I y -intercept: x = 0, not in the domain.

I x-intercept(s): Put y = 0, we get x(ln x)2 = 0, which implies
that x = 0 (excluded) or ln x = 0 =⇒ x = 1. Hence
x-intercept is 1.
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Solution (cont’d)

Differentiate f (x), we get f ′(x) = (ln x)2 + 2 ln x = (ln x)(ln x + 2).
f ′(x) = 0 then ln x = 0 =⇒ x = 1 or ln x = −2 =⇒ x = e−2. The
critical numbers are x = 1, e−2 ≈ 0.1353. The sign chart for f ′(x)
is as follows:

Therefore, x = e−2 is local maximum and x = 1 is local minimum,
f (x) is increasing when 0 < x < e−2 or x > 1, and f (x) is
decreasing when e−2 < x < 1.
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Solution (cont’d)

Differentiate f ′(x), we get

f ′′(x) = 2 ln x
1

x
+

2

x
=

2

x
(ln x + 1).

Since x > 0, f ′′(x) = 0 if ln x + 1 = 0, that is x = e−1 = 0.3679,
the sign chart for f ′′(x) is as follows:

Therefore, we have

I f (x) is concave upwards when x > e−1.

I f (x) is concave downwards when 0 < x < e−1.

I x = e−1 is an an inflection point.
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Solution (cont’d)

To sketch the graph of y = f (x):

I Plot the x-intercept(s) and y -intercept.

I Draw the vertical and horizontal asymptote(s) using dotted
lines.

I Plot all local extrema and inflection point(s) (if any).

I Connect the points by curves that are in accordance with the
analysis.
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Example 3

Example

Sketch y = f (x) = 2x−1
x+1 , where x ∈ (−∞,∞) except for x = −1.

Solution - Part 1

I f (x) at infinity behaves like limx→±∞ f (x) = 2.

I At x = −1, f (x) is not defined. We find

lim
x→−1+

f (x) = −∞, lim
x→−1−

f (x) = +∞.
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Example 3

Solution - Part 2
Since

dy

dx
= f ′(x) =

3

(x + 1)2
> 0, except for x = −1,

but f (x) is not defined at x = −1, so there is no critical points.
Since

d2y

dx2
= f ′′(x) = − 6

(x + 1)3
⇒ no inflection points.
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Example 3

Solution - Part 3

x −∞ −2 0 ∞
f (x) 2 5 −1 2

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 22)

Curve Sketching - Procedure

To sketch the graph of y = f (x):
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Example 4

Example

Sketch y = f (x) = x2x , where x ∈ [−8, 1].

Solution - Part 1

1 x lies between −8 and 1. At two boundaries,
f (−8) = −0.0313 and f (1) = 2.

2 f (x) is well-defined in [−8, 1], no asymptotes.

3 f ′(x) = 2x(1 + x ln 2)⇒ critical points: x = −1/ ln 2.

4 f ′′(x) = 2x((ln 2)2x + 2 ln 2)⇒ inflection points:
x = −2/ ln 2.
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Example 4

Solution - Part 2

5 Evaluate f (x) at all critical and inflection points:

x −8 −2/ ln 2 −1/ ln 2 0 1

f (x) −0.0313 −0.3905 −0.5307 0 2
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Point of Diminishing Returns

The value of x where the rate of change of f (x) changes from
increasing to decreasing is called the point of diminishing returns.

Example

A discount appliance store is selling 200 large-screen TV sets
monthly. If the store invests $x thousand in an advertising
campaign and the ad company estimates that sales will increase to

N(x) = 4x3 − 0.25x4 + 200, 0 ≤ x ≤ 12.

When is rate of change of sales increasing and when is it
decreasing? What is the point of diminishing returns and the
maximum rate of change of sales?
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Solution
N ′(x) = 12x2 − x3 and N ′′(x) = 24x − 3x2 = 3x(8− x). The sign
chart for N ′′(x) is as follows:

Therefore, we have

I The rate of change of sales is increasing when 0 < x < 8.

I The rate of change of sales is decreasing when 8 < x < 12.

I The point of diminishing returns is at x = 8.

I The maximum rate of change of sales occurs at x = 8.
Therefore, the maximum rate is N ′(8) = 12× 82 − 83 = 256.
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Self-Test Problems

In textbook,

I Example 5 of Section 12-2

I Example 2 and 4 of Section 12-4
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