MATH 1003 Calculus and Linear Algebra

 (Lecture 23)Maosheng Xiong
Department of Mathematics, HKUST

Definition

- If $f(c) \geq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute maximum of f.
- If $f(c) \leq f(x)$ for all x in the domain of f, then $f(c)$ is called the absolute minimum of f.

Local Extrema and Absolute Extrema

Example

The absolute extrema for $f(x)=x^{3}-21 x^{2}+135 x-170$, when $x \in$
a) $[2,12]$, b) $[4,10]$, c) $[4,8]$, d) $[3,11]$. it is also an absolute \max / min.

- There exist a function that has no absolute max/min.

Example

b)

Absoute
$\substack{\text { Minimum } \\ \text { f(9) }=73}$
$4^{4} \quad{ }^{6} \times{ }^{8} \quad 10 \quad 12$

c)

d)

d)

Maosheng Xiong Department of Mathematics, HKUST
MATH 1003 Calculus and Linear Algebra (Lecture 23)

A Theorem about Absolute Extrema

Theorem
A function that is continuous on an interval $[a, b](a \leq x \leq b)$ has both an absolute maximum value and an absolute minimum value on that interval. Moreover, the absolute extrema must always occur at

- critical values, or
- the endpoints i.e a and b.

Remark

The two assumptions (f is continous and the domain of f is a closed interval) in the theorem are very important. Without any one of them, the conclusion of the theorem may not hold.
Consider the following examples:

- $f(x)=\frac{1}{x}$ on $(0,1] . f$ has no absolute maximum since $f(x) \rightarrow \infty$ as $x \rightarrow 0$
- $f(x)=\frac{1}{(1-x)^{2}}$ on $[0,2] . f$ is discontinuous at $x=1$ and f has no absolute maximum since $f(x) \rightarrow \infty$ as $x \rightarrow 1$.

Second Derivative Test

Example

Find the absolute maximum and absolute minimum values of

$$
f(x)=x^{3}-12 x
$$

on each of the following intervals:
(a) $[-5,5]$
(b) $[-3,3]$
(c) $[-3,1]$

Solution for (a)
$f^{\prime}(x)=3 x^{2}-12=3(x-2)(x+2) \Rightarrow$ critical values : $x=2,-2$.

$$
f^{\prime \prime}(x)=6 x \Rightarrow \quad f^{\prime \prime}(2)=12>0, f^{\prime \prime}(-2)=-12<0
$$

Hence at $x=2, f(x)$ attains a local minimum; at $x=-2, f(x)$ attains a local maximum According to the previous theorem, absolute extrema must be at critical values and/or endpoints. We list out the values of f at critical values and endpoints to make comparison:

- For critical values: $f(2)=-16, f(-2)=16$.
- For endpoints: $f(5)=65, f(-5)=-65$.

Therefore, $f(-5)=-65$ is the absolute minimum and $f(5)=65$ is the absolute maximum.

Find Absolute Extrema

Example

Find the absolute minimum of each function on $0<x<\infty$
(a) $f(x)=x+\frac{4}{x}$
(b) $f(x)=(\ln x)^{2}-3 \ln x$

Solution for (b)

When $x \in[-3,3]$, we list out the values of f at critical values and endpoints to make comparison:

- For critical values: $f(2)=-16, f(-2)=16$.
- For endpoints: $f(3)=-9, f(-3)=9$.

Therefore, $f(2)=-16$ is the absolute minimum and $f(-2)=16$ is the absolute maximum.

Solution for (c)

When $x \in[-3,1]$, we list out the values of f at critical values and endpoints to make comparison:

- For critical values: $f(-2)=16(f(2)$ is not included).
- For endpoints: $f(-3)=9, f(1)=-11$.

Therefore, $f(1)=-11$ is the absolute minimum and $f(-2)=16$ is the absolute maximum.

Find Absolute Extrema

- $f^{\prime}(x)=1-4 / x^{2} \Rightarrow$ critical values: $x=2$.
- $f^{\prime \prime}(x)=8 / x^{3} \Rightarrow f^{\prime \prime}(2)=$ $1>0$.
At $x=2, f(x)$ attains a local minimum since it is the only local minimum, then it is an absolute
 minimum.

Solution for (b)

- $f^{\prime}(x)=\frac{2 \ln x-3}{x} \Rightarrow$ critical values: when $\ln x=3 / 2 \Rightarrow x=e^{3 / 2}$.
- $f^{\prime \prime}(x)=\frac{5-2 \ln x}{x^{2}} \Rightarrow$ $f^{\prime \prime}\left(e^{3 / 2}\right)=\frac{x^{2}}{e^{3}}>0$.
At $x=e^{3 / 2}, f(x)$ attains a local minimum since it is the only local minimum, then it is an absolute
 minimum.

