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Summary

Question
For a function y = f (x) in a domain, how do we find the absolute
maximum or minimum?
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First Derivative Test

The following theorem is the first derivative test for local extrema:

Theorem
Let c be a critical number of f (x). Then

Sign x < c x > c f (c) is

f ′(x) − + local min

f ′(x) + − local max

f ′(x) − − NA

f ′(x) + + NA
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Second Derivative Test

The following theorem is the second derivative test for local
extrema:

Theorem
Let c be a critical number of f (x).

(a) If f ′′(c) > 0, then f (c) is a local minimum.

(b) If f ′′(c) < 0, then f (c) is a local maximum.

(c) If f ′′(c) = 0, we have no conclusion.
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Absolute extrema

Theorem
If c is the only critical number of f (x) in a domain. Then

(a) if f (c) is a local minimum, then it is the absolute minimum.

(b) if f (c) is a local maximum, then it is the the absolute
maximum.

We can use either the first or the second derivative test to find
local min/max.
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A Theorem about Absolute Extrema

Theorem
A function that is continuous on an interval [a, b] (a ≤ x ≤ b) has
both an absolute maximum value and an absolute minimum value
on that interval. Moreover, the absolute extrema must always
occur at

I critical values, or

I the endpoints i.e a and b.

So in this case we can list all values f (x) at the critical numbers
and the endpoints and pick up the largest (absolute max) and the
smallest (absolute min).
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Example 1 - Maximizing Area

Example

A homeowner has $320 to spend on
building a fence around a rectangu-
lar garden. Three sides of the fence
will be constructed with wire fencing
at a cost of $2 per linear foot. The
fourth side will be constructed with
wood fencing at a cost of $6 per lin-
ear foot. Find the dimensions and the
area of the largest garden that can be
enclosed with $320 worth of fencing.
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Example 1 - Maximizing Area

Solution - Part 1
Firstly, we define x and y as denoted in the figure. Hence the area
A of the garden satisfies

A = xy .

The total cost C to build a rectangular garden of size x × y in this
case is

C = 2y + 2x + 2y + 6x = 8x + 4y = 320.

Hence the problems becomes

To maximize A = xy , subject to 8x + 4y = 320.
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Example 1 - Maximizing Area

Solution - Part 2
We can express y as a function of x from the restriction:

8x + 4y = 320⇒ y = 80− 2x .

Practically, both x and y are non-negative:

x ≥ 0, y = 80− 2x ≥ 0⇒ x ≤ 40.

Hence the problems becomes

To maximize A(x) = x(80− 2x) = 80x − 2x2, where 0 ≤ x ≤ 40.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 24)

Example 1 - Maximizing Area

Solution - Part 3
It can be calculated that

A′(x) = 80− 4x ⇒ critical points: x = 20.

The absolute maximum can only occur at

I critical values: f (20) = 800

I end points: f (0) = f (40) = 0.

Thus the maximum area that a garden can occupy in such fencing
way is 800 square feet.
In this case, y = 80− 2× 20 = 40, so the garden is of size 20× 40.
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Example 2 - Minimizing Perimeter

Example

Refer to Example 1. The owner
judges that an area of 800 square feet
for the garden is too small and de-
cides to increase the area to 1,250
square feet. What is the minimum
cost of building a fence that will en-
close a garden with an area of 1,250
square feet? What are the dimensions
of this garden? Assume that the cost
of fencing remains unchanged.
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Example 2 - minimizing Perimeter

Solution - Part 1
This time, we want

to minimize C = 8x + 4y , subject to A = xy = 1250.

To eliminate y , we have

y =
A

x

Again in practice, both x and y are non-negative ⇒ x > 0. It is
noted that there is no end points in this case. Hence the problems
becomes

to minimizeC (x) = 8x + 4 · 1250

x
= 8x +

5000

x
, where x > 0.
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Example 2 - minimizing Perimeter

Solution - Part 2
It can be calculated that

dC

dx
= C ′(x) = 8− 5000

x2
⇒ critical points: x =

√
5000

8
= 25.

Also we can calculate that C ′′(x) = 10000/x3, this gives rise to
C (25) = 0.64 > 0. Since x = 25 is the only critical value, C (25) is
the absolute minimum.
Therefore, when x = 25 and y = 1250/25 = 50, the garden costs
least (C = 8× 25 + 4× 50 = $400) to enclose an area of 1, 250
square feet.
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Procedures for Optimisation Problems

1. Introduce variables, look for relationships among them.

2. Express the quantity to be maximized/minimized as a
function of one free variable x , say f (x). Find the interval I
where f (x) is defined (the interval I is often co-determined
from the practical point of view). The mathematical model is
built up as

To maximize/minimize f (x), subject to x ∈ I .

3. Find the absolute maximum / minimum from f (x) evaluated
at either a critical point or a end point.

4. Interpret the outcomes from the mathematical model.
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Example 3 - Drug Concentration

Example

The concentration C (t), in milligrams per cubic centimeter, of a
particular drug in a patient’s bloodstream is given by

C (t) =
0.16t

t2 + 4t + 4
,

where t is the number of hours after the drug is taken. How many
hours after the drug is taken will the concentration be maximum?
What is the maximum concentration?
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Example 3 - Drug Concentration

Solution
The mathematical model is that

To maximize C (t), subject to t > 0.

It is calculated that

C ′(t) =
0.16(2− t)

(t + 2)3

⇒ critical point: t = 2.

It can be checked that C ′′(t) = 3t−7
(t+2)4

,

thus C ′′(2) < 0. Therefore, C (t)
attains the absolute maximum at the
only critical point t = 2. The
concentration then is C (2) = 0.02.
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Example 4 - maximizing Revenue

Example

An office supply company sells heavy-
duty paper shredders per year at $P per
shredder. The price-demand equation
for these shredders is

P = 300− x

30
.

What price should the company charge
for the shredders to maximize revenue?
What is the maximum revenue?
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Example 4 - maximizing Revenue

Solution
Since

revenue = price × demand,

the mathematical model is built as

to maximize R(x) = p(x) · x = x
(

300− x

30

)
, subject to .

x ≥ 0 and 300− x

30
≥ 0 =⇒ 0 ≤ x ≤ 9000

R ′(x) = 300− x/15⇒ critical points: x = 4500. It can be
checked that R ′′(x) = −1/15 < 0, so P(4500) = 150 is the
absolute maximum (the only critical point).
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Example 5 - Maximizing Profits

Example

An office supply company sells x permanent markers per year at
$P per marker. The price- demand equation for these markers is
given by

P = 10− 0.001x ;

the total annual cost $C of manufacturing x this type of markers is
given by

C = 5000 + 2x .

What price should the company charge to maximize the profit?
What is the maximum profit F?
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Example 5 - Maximizing Profits

Solution
Since

profit = revenue − cost,

The revenue is given by

R(x) = P · x = (10− 0.001x)x = 10x − 0.001x2.

to maximize F (x) = R(x)− C (x) = −5000 + 8x − 0.001x2,

subject to x ≥ 0 and p = 10− 0.001x ≥ 0, that is, 0 ≤ x ≤ 10000.
It can be calculated that

F ′(x) = 8− 0.002x ⇒ critical points:x = 4000.

We can check F ′′(x) = −0.002 < 0, F (4000) = $11000 is the
maximum profit and the production then is 4000, and the price is
p = 10− 0.001 ∗ 4000 = 6.
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Example 6 - Inventory Control

Example

A multimedia company anticipates that there will be a demand for
20,000 copies of a certain DVD during the next year. It costs the
company $0.50 to store a DVD for one year. Each time it must
make additional DVDs, it costs $200 to set up the equipment.
How many DVDs should the company make during each
production run to minimize its total storage and setup costs
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Example 6 - Inventory Control

Solution - Part 1
This type of problem is called an inventory control problem. One
key assumption is that the demand is uniform. For example, if
there are 250 working days a year, then the daily demand is
20000/250 = 80 DVDs. Then there may be two extreme ways to
produce this 20,000 copies as follows

Produce 20000 once Produce 80 daily

low set-up cost low high
storage cost high low

So we can assume

I x is the number of DVDs produced each production run

I y is the number of the production runs
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Example 6 - Inventory Control

Solution - Part 2

If it costs $0.5 to store a DVD for one year, then the total cost to
store all DVDs is $0.25x . Hence

C = total cost = set-up cost + storage cost = 200y + 0.25x .

The total number of DVD manufactured in one year is xy = 20000.
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Example 6 - Inventory Control

Solution - Part 3
The mathematical model then can be built up as

to minimize C =
4, 000, 000

x
+ 0.25x , subject to 0 < x ≤ 20, 000

It can be calculated that

C ′(x) = 0.25− 4, 000, 000

x2
⇒ critical points: x = 4, 000.

We check by C ′′(x) = 8, 000, 000/x3 > 0, so C (4000) is the local
minimum and y = 20, 000/4, 000 = 5.
Hence the company can produce 4000 DVDs for 5 times to
minimize the cost.
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Mini-lecture Question

Erin makes gift boxes from cardboard pieces that measure 8 inches
by 10 inches. Equal size squares are cut from each corner of the
cardboard piece so that the sides can be folded up to form a
rectangular box. What size squares should be cut from each corner
of the cardboard piece to maximize the volume of the resulting
box? (Hint 1.47 inches)
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Mini-lecture Question

A small-town hardware store has a uniform annual demand for
2000 bags of a certain fertilizer. The owner must pay $15 per bag
to store the fertilizer at a local facility for one year and a flat fee of
$200 to place an order. How many times during the year should
the hardware store order fertilizer in order to minimize the total
storage reordering costs? (9 times)
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