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Antiderivatives

Definition
A function F is an antiderivative of a function f if

F ′(x) = f (x).

Example

Find an antiderivative of f (x) = 2x .

Solution
Since (x2)′ = 2x , x2 is an antiderivative. In fact, there are many
antiderivatives of 2x , such as x2 + 1 and x2 + 2.
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Antiderivatives

We have the following useful theorem about antiderivatives:

Theorem
If the derivatives of two functions are equal, that is F ′(x) = G ′(x),
then the functions differ by a constant, that is F (x) = G (x) + C
for some constant C .

Remark

For any function f (x), if F (x)
is its antiderivative, then all an-
tiderivatives must be of the form
F (x)+C , where C is an arbitrary
constant.
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Antiderivatives

Example

Let f (x) = 3x2.

(a) Find all antiderivatives of f (x).

(b) Find the antiderivative of f (x) such that the graph of the
antiderivative passes through the point (i) (0, 0); (ii) (0, 1);
(iii) (0, 2).
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Antiderivatives

Solution

(a) Since (x3)′ = 3x2, then the antiderivatives of f (x) are x3 + C ,
where C is an arbitrary constant.

(b) From (a), y = x3 + C . We consider the following cases:

(i) If the graph passes through (0, 0), then 0 = 03 + C and hence
C = 0 i.e. the antiderivative is x3.

(ii) If the graph passes through (0, 1), C = 1 and hence the
antiderivative is x3 + 1.

(iii) If the graph passes through (0, 2), C = 2 and hence the
antiderivative is x3 + 2.
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Indefinite Integrals

We use the symbol ∫
f (x)dx ,

called the indefinite integral, to represent the family of all
antiderivatives of f (x) and write

∫
f (x)dx = F (x) + C if F ′(x) = f (x).

The function f (x) is called the integrand. The symbol dx indicate
that the antiderivative is performed with respect to the variable x .
The arbitrary constant C is called the constant of integration.
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Integration and Differentiation

Notice that indefinite integration and differentiation are inverse
operations, except for the addition of the constant of integration.
Therefore, when two actions are performed successively, we have

d

dx

(∫
f (x)dx

)
= f (x)

∫
F ′(x)dx = F (x) + C .
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Indefinite Integrals of Basic Functions

Indefinite integrals of some basic functions:

(a)

∫
xndx =

xn+1

n + 1
+ C , where n 6= −1.

(b)

∫
exdx = ex + C

(c)

∫
1

x
dx = ln |x |+ C , where x 6= 0.
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Properties

Basic operations

I
∫

kf (x)dx = k

∫
f (x)dx , where k is a constant.

I
∫

[f (x)± g(x)]dx =

∫
f (x)dx ±

∫
g(x)dx
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Indefinite Integrals of Basic Functions and Properties

Remarks

I (a)-(c) can be proved by differentiating the right hand side.
For example,

(
xn+1

n + 1

)′
= (n + 1) · xn

n + 1
= xn.

I In (c), ln |x | = ln x when x > 0 and ln |x | = ln(−x) when
x < 0.

I Thanks to the two basic operations, if a function is composed
of sum and difference of terms, we can integrate each of these
terms separately. For example:

∫
(3x3 + x)dx = 3

∫
x3dx +

∫
xdx =

3

4
x4 +

1

2
x2 + C
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Some Examples

Example

Find each indefinite integral:

(a)

∫
2dx

(b)

∫
16etdt

(c)

∫
3x4dx

(d)

∫
(2x5 − 3x2 + 1)dx

(e)

∫ (
5

x
− 4ex

)
dx

(f)

∫ (
2x

2
3 − 3

x4

)
dx
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Some Examples

Solutions Part 1

(a)

∫
2dx = 2

∫
x0dx = 2x + C

(b)

∫
16etdt = 16

∫
etdt = 16et + C

(c)

∫
3x4dx = 3

∫
x4dx =

3

5
x5 + C

(d)

∫
(2x5 − 3x2 + 1)dx = 2

∫
x5dx − 3

∫
x2dx +

∫
1dx

=
1

3
x6 − x3 + x + C
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Some Examples

Solutions Part 2

(e)

∫ (
5

x
− 4ex

)
dx = 5

∫
1

x
dx − 4

∫
exdx

= 5 ln |x | − 4ex + C

(f)

∫ (
2x

2
3 − 3

x4

)
dx = 2

∫
x

2
3 dx − 3

∫
x−4dx

=
6

5
x

5
3 + x−3 + C
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