MATH 1003 Calculus and Linear Algebra

 (Lecture 25)Maosheng Xiong
Department of Mathematics, HKUST

Definition
A function F is an antiderivative of a function f if

$$
F^{\prime}(x)=f(x) .
$$

Example

Find an antiderivative of $f(x)=2 x$.
Solution
Since $\left(x^{2}\right)^{\prime}=2 x, x^{2}$ is an antiderivative. In fact, there are many antiderivatives of $2 x$, such as $x^{2}+1$ and $x^{2}+2$.

Antiderivatives

Antiderivatives

We have the following useful theorem about antiderivatives:
Theorem
If the derivatives of two functions are equal, that is $F^{\prime}(x)=G^{\prime}(x)$, then the functions differ by a constant, that is $F(x)=G(x)+C$ for some constant C.

Remark

For any function $f(x)$, if $F(x)$ is its antiderivative, then all antiderivatives must be of the form $F(x)+C$, where C is an arbitrary constant.

Example
Let $f(x)=3 x^{2}$.
(a) Find all antiderivatives of $f(x)$.
(b) Find the antiderivative of $f(x)$ such that the graph of the antiderivative passes through the point (i) (0,0); (ii) (0,1); (iii) $(0,2)$.

Solution

(a) Since $\left(x^{3}\right)^{\prime}=3 x^{2}$, then the antiderivatives of $f(x)$ are $x^{3}+C$, where C is an arbitrary constant.
(b) From (a), $y=x^{3}+C$. We consider the following cases:
(i) If the graph passes through $(0,0)$, then $0=0^{3}+C$ and hence $C=0$ i.e. the antiderivative is x^{3}.
(ii) If the graph passes through $(0,1), C=1$ and hence the antiderivative is $x^{3}+1$.
(iii) If the graph passes through $(0,2), C=2$ and hence the antiderivative is $x^{3}+2$.

We use the symbol

$$
\int f(x) d x
$$

called the indefinite integral, to represent the family of all antiderivatives of $f(x)$ and write

$$
\int f(x) d x=F(x)+C \quad \text { if } \quad F^{\prime}(x)=f(x)
$$

The function $f(x)$ is called the integrand. The symbol $d x$ indicate that the antiderivative is performed with respect to the variable x.
The arbitrary constant C is called the constant of integration.

Integration and Differentiation

Indefinite Integrals of Basic Functions

Notice that indefinite integration and differentiation are inverse operations, except for the addition of the constant of integration. Therefore, when two actions are performed successively, we have

$$
\begin{aligned}
& \frac{d}{d x}\left(\int f(x) d x\right)=f(x) \\
& \int F^{\prime}(x) d x=F(x)+C
\end{aligned}
$$

Indefinite integrals of some basic functions:
(a) $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$, where $n \neq-1$.
(b) $\int e^{x} d x=e^{x}+C$
(c) $\int \frac{1}{x} d x=\ln |x|+C$, where $x \neq 0$.

Basic operations

- $\int k f(x) d x=k \int f(x) d x$, where k is a constant.
- $\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x$

Remarks

- (a)-(c) can be proved by differentiating the right hand side. For example,

$$
\left(\frac{x^{n+1}}{n+1}\right)^{\prime}=(n+1) \cdot \frac{x^{n}}{n+1}=x^{n}
$$

- $\ln (c), \ln |x|=\ln x$ when $x>0$ and $\ln |x|=\ln (-x)$ when $x<0$.
- Thanks to the two basic operations, if a function is composed of sum and difference of terms, we can integrate each of these terms separately. For example:

$$
\int\left(3 x^{3}+x\right) d x=3 \int x^{3} d x+\int x d x=\frac{3}{4} x^{4}+\frac{1}{2} x^{2}+C
$$

Some Examples

Solutions Part 1
(a) $\int 2 d x=2 \int x^{0} d x=2 x+C$
(b) $\int 16 e^{t} d t=16 \int e^{t} d t=16 e^{t}+C$
(c) $\int 3 x^{4} d x=3 \int x^{4} d x=\frac{3}{5} x^{5}+C$
(d) $\int\left(2 x^{5}-3 x^{2}+1\right) d x=2 \int x^{5} d x-3 \int x^{2} d x+\int 1 d x$ $=\frac{1}{3} x^{6}-x^{3}+x+C$

Some Examples

Solutions Part 2
(e) $\int\left(\frac{5}{x}-4 e^{x}\right) d x=5 \int \frac{1}{x} d x-4 \int e^{x} d x$ $=5 \ln |x|-4 e^{x}+C$
(f) $\int\left(2 x^{\frac{2}{3}}-\frac{3}{x^{4}}\right) d x=2 \int x^{\frac{2}{3}} d x-3 \int x^{-4} d x$

$$
=\frac{6}{5} x^{\frac{5}{3}}+x^{-3}+C
$$

