

## Chapter 13

## Integration

Section 2
Integration by
Substitution

## Learning Objectives for Section 5.2 Integration by Substitution

- The student will be able to integrate by reversing the chain rule and by using integration by substitution.

■ The student will be able to use additional substitution techniques.

■ The student will be able to solve applications.


## Special Cases

$$
\begin{aligned}
& \int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+C, \quad n \neq 1 \\
& \int\left[e^{f(x)}\right] f^{\prime}(x) d x=e^{f(x)}+C \\
& \int \frac{f^{\prime}(x)}{f(x)} d x=\ln |f(x)|+C
\end{aligned}
$$

## Example

$$
\int\left(x^{5}-2\right)^{3}\left(5 x^{4}\right) d x
$$

Note that the derivative of $x^{5}-2$, (i.e. $5 x^{4}$ ), is present and the integral appears to be in the chain rule form

$$
\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+C, \quad n \neq 1
$$

with $f(x)=x^{5}-2$ and $n=3$.
It follows that

$$
\int\left(x^{5}-2\right)^{3}\left(5 x^{4}\right) d x=\frac{\left(x^{5}-2\right)^{4}}{4}+C
$$

## Examples

1. If $y=f(x)=x^{5}-2$, then

$$
d y=f^{\prime}(x) d x=5 x^{4} d x
$$

2. If $y=f(x)=e^{5 x}$, then

$$
d y=f^{\prime}(x) d x=5 e^{5 x} \mathrm{~d} x
$$

3. If $y=f(x)=\ln (3 x-5)$, then

$$
d y=f^{\prime}(x) d x=\frac{3}{3 x-5} d x
$$

## Example (continued)

Example: Find $\left(x^{2}+1\right)^{5}(2 x) \mathrm{d} x$
Solution:
For our substitution, let $u=x^{2}+1$,
then $d u / d x=2 x$, and $d u=2 x d x$.
The integral becomes $\int u^{5} d u=u^{6} / 6+C$,
and reverse substitution yields $\left(x^{2}+1\right)^{6} / 6+C$.

## Integration by Substitution

Step 1. Select a substitution that appears to simplify the integrand. In particular, try to select $u$ so that $d u$ is a factor of the integrand.

Step 2. Express the integrand entirely in terms of $u$ and $d u$, completely eliminating the original variable.

Step 3. Evaluate the new integral, if possible.
Step 4. Express the antiderivative found in step 3 in terms of the original variable. (Reverse the substitution.)

## General Indefinite Integral Formulas

Very Important!

$$
\begin{aligned}
& \int u^{n} d u=\frac{u^{n+1}}{n+1}+C, \quad n \neq-1 \\
& \int e^{u} d u=e^{u}+C \\
& \int \frac{1}{u} d u=\ln |u|+C
\end{aligned}
$$

## Example

$\int\left(x^{3}-5\right)^{4}\left(3 x^{2}\right) d x$
Step 1 - Select $u$.
Let $u=x^{3}-5$, then $d u=3 x^{2} d x$
Step 2 - Express integral in terms of $u$.

$$
\int\left(x^{3}-5\right)^{4}\left(3 x^{2}\right) d x=\int u^{4} d u
$$

Step 3 - Integrate.

$$
\int u^{4} d u=u^{5} / 5+C
$$

Step 4 - Express the answer in terms of $x$.

$$
u^{5} / 5+C=\left(x^{3}-5\right)^{5} / 5+C
$$

## Example

$\int\left(x^{2}+5\right)^{1 / 2}(2 x) d x$
Step 1 - Select $u$.
Let $u=x^{2}+5$, then $d u=2 x d x$
Step 2 - Express integral in terms of $u$.

$$
\int\left(x^{2}+5\right)^{1 / 2}(2 x) d x=\int u^{1 / 2} d u
$$

Step 3 - Integrate.

$$
\int u^{1 / 2} d u=(2 / 3) u^{3 / 2}+C
$$

Step 4 - Express the answer in terms of $x$.

$$
(2 / 3) u^{3 / 2}+C=(2 / 3)\left(x^{2}+5\right)^{3 / 2}+C
$$

## Example

$\int x^{2} e^{4 x^{3}} d x$
Let $u=4 x^{3}$, then $d u=12 x^{2} d x$
We need a factor of 12 to make this work.

$$
\begin{aligned}
& \int x^{2} e^{4 x^{3}} d x=\frac{1}{12} \int 12 x^{2} e^{4 x^{3}} d x \\
& =\frac{1}{12} \int e^{u} d u=\frac{1}{12} e^{u}+C=\frac{1}{12} e^{4 x^{3}}+C
\end{aligned}
$$

## Example

$\int\left(x^{3}-5\right)^{4} x^{2} d x$
Let $u=x^{3}-5$, then $d u=3 x^{2} d x$
We need a factor of 3 to make this work.

$$
\begin{aligned}
\int\left(x^{3}-5\right)^{4} x^{2} d x & =(1 / 3) \int\left(x^{3}-5\right)^{4}\left(3 x^{2}\right) d x \\
& =(1 / 3) \int u^{4} d u \\
& =(1 / 3) u^{5} / 5+\mathrm{C} \\
& =\left(x^{3}-5\right)^{5} / 15+C
\end{aligned}
$$

In this problem we had to insert a factor of 3 in order to get things to work out. Caution - a constant can be adjusted, but a variable cannot.

## Example

$$
\int \frac{x}{\left(5-2 x^{2}\right)^{5}} d x
$$

Let $u=5-2 x^{2}$, then $d u=-4 x d x$
We need a factor of $(-4)$

$$
\begin{aligned}
& \int \frac{x}{\left(5-2 x^{2}\right)^{5}} d x=-\frac{1}{4} \int \frac{-4 x}{\left(5-2 x^{2}\right)^{5}} d x \\
& =-\frac{1}{4} \int \frac{1}{u^{5}} d u=\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right) u^{-4}+C=\frac{1}{16\left(5-2 x^{2}\right)^{4}}+C
\end{aligned}
$$

## Example

$\int x(x+6)^{8} d x$
Let $u=x+6$, then $d u=d x$, and $\int x(x+6)^{8} d x=\int x u^{8} d u$ We need to get rid of the $x$, and express it in terms of $u$ : $x=u-6$, so

$$
\begin{aligned}
& \int x(x+6)^{8} d x=\int(u-6) u^{8} d u \\
& =\int\left(u^{9}-6 u^{8}\right) d u=u^{10} / 10-6 u^{9} / 9+C \\
& =\frac{(x+6)^{10}}{10}-\frac{2(x+6)^{9}}{3}+C
\end{aligned}
$$

## Application (continued)

Solution: We need to find

$$
p(x)=\int p^{\prime}(x) d x=\int \frac{300}{(3 x+25)^{2}} d x
$$

Let $u=3 x+25$, so $d u=3 d x$.

$$
\begin{gathered}
100 \int \frac{3}{(3 x+25)^{2}} d x=100 \int \frac{1}{u^{2}} d u=\frac{-100}{u}+C \\
p(x)=\frac{-100}{3 x+25}+C
\end{gathered}
$$

## Application

The marginal price of a supply level of $x$ bottles of baby shampoo per week is given by

$$
p^{\prime}(x)=\frac{300}{(3 x+25)^{2}}
$$

Find the price-supply equation if the distributor of the shampoo is willing to supply 75 bottles a week at a price of $\$ 1.60$ per bottle.

## Applications (continued)

Now we need to find $C$ using the fact that 75 bottles sell for $\$ 1.60$ per bottle.

$$
\begin{array}{ll}
p(x)=\frac{-100}{3 x+25}+C & \\
p(75)=1.60 & \text { We get } C=2, \text { so } \\
1.60=\frac{-100}{3(75)+25}+C & p(x)=\frac{-100}{3 x+25}+2
\end{array}
$$

