MATH 1003 Calculus and Linear Algebra

 (Lecture 27)Maosheng Xiong
Department of Mathematics, HKUST

Question

Given the graph of $y=f(x)=$ $0.25 x^{2}+1$, as shown in the figure on the right hand side. How can we find the area S under the graph for $1 \leq x \leq 5$?

Left and Right Sum of Rectangles

We can divide the interval [1,5] by four sub-intervals and compute of the area of the resulting rectangles as follows in two ways.

Figure: Left sum of 4 rectangles Figure: Right sum of 4 rectangles

- Left sum: $L_{4}=f(1) \cdot 1+f(2) \cdot 1+f(3) \cdot 1+f(4) \cdot 1$

$$
=1.25+2.00+3.25+5=11.5
$$

- Right sum: $R_{4}=f(2) \cdot 1+f(3) \cdot 1+f(4) \cdot 1+f(5) \cdot 1$

$$
=2.00+3.25+5+7.25=17.5
$$

Left and Right Sum of More Rectangles

Figure: Sum of 8 rectangles

Figure: Sum of 16 rectangles

Figure: Sum of 32 rectangles

n	4	8	16	32	100	1000
L_{n}	11.5	12.88	13.19	13.96	14.21	14.32
R_{n}	17.5	15.88	15.09	14.71	14.45	14.34

Observation

- $L_{4}<L_{8}<\cdots<$ Area $<\cdots<R_{8}<R_{4}$;
- $\left|R_{n}-L_{n}\right| \rightarrow 0$ as $n \rightarrow+\infty$.

Idea: Approximate the area S by the sum of areas of rectangles!

Definition

Suppose $f(x)$ is defined for $a \leq x \leq b$. One may divide the interval $[a, b]$ into n sub-intervals $[a+(k-1) \Delta x, a+k \Delta x], k=1, \cdots, n$, where $\Delta x=(b-a) / n$ is the width of each sub-interval. The Riemann sum is defined as

$$
S_{n}=f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x
$$

where $c_{k} \in[a+(k-1) \Delta x, a+k \Delta x]$.
Examples of Riemann sum of n rectangles:

Definite Integral

Definition
Let $f(x)$ be a continuous function on [a,b]. The limit I of Riemann sums for f on $[a, b]$ exists $\left(I=\lim _{n \rightarrow \infty} S_{n}\right)$. The definite integral of f from a to b is denoted as

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

where $f(x)$ is called the integrand; the lower limit of integration is a; the upper limit of integration is b.

Remarks

- An indefinite integral is $F(x)+C$, a family of functions (antiderivative). However, a definite integral is a real number (the signed area).
- They are intimately related by the Fundamental Theorem of Calculus
Maosheng Xiong Department of Mathematics, HKUST
MATH 1003 Calculus and Linear Algebra (Lecture 27)

Theorem
Let $f(x)$ be a continuous function on $[a, b]$. As $n \rightarrow \infty$, the limit I of Riemann sums S_{n} for f on $[a, b]$ exists $\left(I=\lim _{n \rightarrow \infty} S_{n}\right)$.

Definition
The definite integral of f from a to b, denoted by

$$
\int_{a}^{b} f(x) \mathrm{d} x,
$$

is defined to be this limit $I=\lim _{n \rightarrow \infty} S_{n}$ of the Riemann sums for f on $[a, b]$. Here $f(x)$ is called the integrand; the lower limit of integration is a; the upper limit of integration is b.

Signed Area

$\int_{a}^{b} f(x) \mathrm{d} x$ represents the cumulative sum of the signed areas between the graph of f and the x-axis form $x=a$ to $x=b$.

The green area below the x-axis will be counted as "negative area" in the sense of the limit of Riemann sum. Hence, we have

$$
\int_{a}^{b} f(x) \mathrm{d} x=\text { signed area }=\text { Yellow area }- \text { Green area }
$$

Properties

1. $\int_{a}^{a} f(x) \mathrm{d} x=0$
2. $\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x$

Example
Given $\int_{0}^{2} x^{2} d x=8 / 3, \int_{2}^{3} x^{2} d x=19 / 3$, then

$$
\int_{0}^{3} x^{2} \mathrm{~d} x=\int_{0}^{2} x^{2} \mathrm{~d} x+\int_{2}^{3} x^{2} \mathrm{~d} x=\frac{8}{3}+\frac{19}{3}=9 .
$$

- Web of work, Problem 7 (deadline: $24-$ Nov-2017)
- Web of work, Problem 8 (deadline: 30-Nov-2017)
- More exercises may be found in Ch 13.1-2 of the textbook.

