MATH 1003 Calculus and Linear Algebra (Lecture 28)

Maosheng Xiong
Department of Mathematics, HKUST

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28)

Properties of Definite Integrals

(a)
$$\int_a^a f(x) \, \mathrm{d}x = 0$$

(b)
$$\int_{a}^{b} f(x) dx = - \int_{b}^{a} f(x) dx$$

(c)
$$\int_a^b kf(x) \, \mathrm{d}x = k \int_a^b f(x) \, \mathrm{d}x$$

(d)
$$\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

(e)
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Fundamental Theorem of Calculus

Theorem (Fundamental Theorem of Calculus)

Suppose
$$\int f(x) dx = F(x) + C$$
. Then

$$\int_a^b f(x) \, \mathrm{d}x = F(x) \Big|_a^b = F(b) - F(a)$$

Remarks

- ▶ Thanks to the Fundamental theorem, a definite integral can be evaluated by the corresponding indefinite integral, without the need of going through the difficult process of taking the limit of its Riemann sum.
- ► Area of an irregular shape can be found by computing a suitable definite integral.

4 D > 4 A > 4 B > 4 B > 9 Q

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28)

Warm-up Examples

Example

Evaluate each of the following definite integrals:

(a)
$$\int_0^2 \sqrt{x} \, dx$$

(b)
$$\int_{-1}^{\frac{1}{2}} 3e^x dx$$

(c)
$$\int_{1}^{4} \frac{2-x^2}{x} dx$$

Warm-up Examples

Solutions

(a)
$$\int \sqrt{x} \, dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C$$
,
so $\int_0^2 \sqrt{x} \, dx = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} \Big|_0^2 = \frac{2}{3} 2^{\frac{3}{2}}$.

(b)
$$\int 3e^x dx = 3e^x + C$$
,
so $\int_{-1}^{\frac{1}{2}} 3e^x dx = 3e^x \Big|_{-1}^{\frac{1}{2}} = 3(e^{\frac{1}{2}} - e^{-1})$.

◆ロト ◆御 ト ◆ 連 ト ◆ 連 ト ・ 車 ・ 夕 ♀

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 2)

Warm-up Examples

Solutions

(c)
$$\int \frac{2-x^2}{x} dx = \int \left(\frac{2}{x} - x\right) dx = 2 \int \frac{1}{x} dx - \int x dx$$
$$= 2 \ln|x| - \frac{x^2}{2} + C,$$
so
$$\int_1^4 \frac{2-x^2}{x} dx = \left(2 \ln|x| - \frac{x^2}{2}\right) \Big|_1^4 =$$
$$(2 \ln 4 - \frac{4^2}{2}) - (2 \ln 1 - \frac{1^2}{2}) = 2 \ln 4 - \frac{15}{2}.$$

Maosheng Xiong Department of Mathematics, HKUS

MATH 1003 Calculus and Linear Algebra (Lecture 28)

Definite integrals and Substitution

Example

Evaluate each of the following definite integrals

(a)
$$\int_0^1 \frac{x}{x^2 + 2} \, \mathrm{d}x$$

(b)
$$\int_{1}^{2} xe^{2x^2-3} dx$$

(c)
$$\int_{-2}^{0} x\sqrt{2x+4} \, dx$$

Definite integrals and Substitution

Method 1 for (a)

Step 1, evaluate the indefinite integral:

Let $u = x^2 + 2$. We get du = 2x dx. Hence $x dx = \frac{1}{2} du$. Then

$$\int \frac{x}{x^2 + 2} \, \mathrm{d}x = \frac{1}{2} \int \frac{1}{u} \, \mathrm{d}u = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln(x^2 + 2) + C.$$

Step 2, evaluate the definite integral:

$$\int_0^1 \frac{x}{x^2 + 2} \, \mathrm{d}x = \frac{1}{2} \ln(x^2 + 2) \Big|_0^1 = \frac{\ln 3 - \ln 2}{2}.$$

Definite integrals and Substitution

Method 2 for (a)

Let $u = x^2 + 2$. We get du = 2x dx. Hence $x dx = \frac{1}{2} du$. We also change the limits of the integration as follows:

- x = 0 implies that $u = 0^2 + 2 = 2$,
- x = 1 implies that $u = 1^2 + 2 = 3$.

Then

$$\int_0^1 \frac{x}{x^2 + 2} \, \mathrm{d}x = \frac{1}{2} \int_2^3 \frac{1}{u} \, \mathrm{d}u = \frac{1}{2} \left(\ln|u| \right) \Big|_2^3 = \frac{1}{2} \left(\ln 3 - \ln 2 \right).$$

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28

Definite integrals and Substitution

Method 1 for (b)

Step 1, evaluate the indefinite integral:

Let $u = 2x^2 - 3$. We get du = 4x dx. Hence $x dx = \frac{1}{4} du$. Then

$$\int xe^{2x^2-3} \, \mathrm{d}x = \frac{1}{4} \int e^u \, \mathrm{d}u = \frac{1}{4} e^u + C = \frac{1}{4} e^{2x^2-3} + C.$$

Step 2, evaluate the definite integral:

$$\int_{1}^{2} x e^{2x^{2}-3} dx = \frac{1}{4} e^{2x^{2}-3} \Big|_{1}^{2} = \frac{e^{5} - e^{-1}}{4}.$$

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28)

Definite integrals and Substitution

Method 2 for (b)

Let $u = 2x^2 - 3$. We get du = 4x dx. Hence $x dx = \frac{1}{4} du$. We also change the limits of the integration as follows:

- x = 1 implies that $u = 2 * 1^2 3 = -1$,
- x = 2 implies that $u = 2 * 2^2 3 = 5$.

$$\int_{1}^{2} x e^{2x^{2}-3} dx = \frac{1}{4} \int_{-1}^{5} e^{u} du = \left(\frac{1}{4} e^{u}\right) \Big|_{-1}^{5} = \frac{1}{4} \left(e^{5} - e^{-1}\right).$$

Definite integrals and Substitution

Method 1 for (c)

Step 1, evaluate the indefinite integral:

Let u=2x+4 so that x=(u-4)/2. We get $du=2\ dx$. Hence $dx=\frac{1}{2}\ du$. Then

$$\int x\sqrt{2x+4} \, dx = \frac{1}{2} \int \frac{u-4}{2} \cdot \sqrt{u} \, du = \frac{1}{4} \int u^{3/2} \, du - \int u^{1/2} \, du$$

$$= \frac{1}{4} \frac{u^{\frac{3}{2}+1}}{\frac{3}{2}+1} - \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{u^{5/2}}{10} - \frac{2u^{3/2}}{3} + C$$

$$= \frac{(2x+4)^{5/2}}{10} - \frac{2(2x+4)^{3/2}}{3} + C.$$

Definite integrals and Substitution

Method 1 for (c)

Step 2, evaluate the definite integral:

$$\int_{-2}^{0} x\sqrt{2x+4} \, dx = \left(\frac{(2x+4)^{5/2}}{10} - \frac{2(2x+4)^{3/2}}{3}\right)\Big|_{-2}^{0}$$

$$= \left(\frac{(4)^{5/2}}{10} - \frac{2(4)^{3/2}}{3}\right) - 0$$

$$= -\frac{32}{15}.$$

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28

Problems for thought

Example

(a)
$$\int_{1}^{2} \frac{x+1}{2x^2+4x+4} dx$$

(b)
$$\int_{0}^{e^2} \frac{(\ln t)^2}{t} dt$$

(Answer: (a) $(\ln 2)/4$, (b) 7/3)

Definite integrals and Substitution

Method 2 for (c)

Step 1, evaluate the indefinite integral:

Let u = 2x + 4 so that x = (u - 4)/2. We get du = 2 dx. Hence $dx = \frac{1}{2} du$. We also change the limits of the integration as follows:

- x = -2 implies that u = 2 * (-2) + 4 = 0
- x = 0 implies that u = 2 * 0 + 4 = 4.

Then

$$\int_{-2}^{0} x\sqrt{2x+4} \, dx = \frac{1}{2} \int_{0}^{4} \frac{u-4}{2} \cdot \sqrt{u} \, du = \frac{1}{4} \int_{0}^{4} u^{3/2} \, du - \int_{0}^{4} u^{1/2} \, du$$

$$= \left(\frac{1}{4} \frac{u^{\frac{3}{2}+1}}{\frac{3}{2}+1} - \frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right) \Big|_{0}^{4} = \left(\frac{u^{5/2}}{10} - \frac{2u^{3/2}}{3} \right) \Big|_{0}^{4}$$

$$= \frac{(4)^{5/2}}{10} - \frac{2(4)^{3/2}}{3} - 0 = -\frac{32}{15}.$$

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28)

Problems for thought

(a)

Let $u = 2x^2 + 4x + 4$ so that du = 4(x + 1) dx. We get $(x + 1) dx = \frac{1}{4} du$. We also change the limits of the integration as follows:

- x = 1 implies that $u = 2 * 1^2 + 4 * 1 + 4 = 10$,
- x = 2 implies that $u = 2 * 2^2 + 4 * 2 + 4 = 20$.

Then

$$\int_{1}^{2} \frac{x+1}{2x^{2}+4x+4} dx = \frac{1}{4} \int_{10}^{20} \frac{1}{u} du$$
$$= \frac{1}{4} (\ln u) \Big|_{10}^{20} = \frac{1}{4} (\ln 20 - \ln 10) = \frac{\ln 2}{4}.$$

Problems for thought

(b)

Let $u = \ln t$ so that $du = \frac{1}{t}dt$. We also change the limits of the integration as follows:

- ightharpoonup t = e implies that $u = \ln e = 1$,
- $t = e^2$ implies that $u = \ln e^2 = 2$.

Then

$$\int_{e}^{e^{2}} \frac{(\ln t)^{2}}{t} dt = \int_{1}^{2} u^{2} du = \frac{1}{3} u^{3} \Big|_{1}^{2}$$
$$= \frac{1}{3} (2^{3} - 1^{3}) = \frac{7}{3}.$$

Maosheng Xiong Department of Mathematics, HKUST

MATH 1003 Calculus and Linear Algebra (Lecture 28)