MATH 1003 Calculus and Linear Algebra (Lecture 29)

Maosheng Xiong
Department of Mathematics, HKUST

A typical example

Question
Find the area R bounded by $y=f(x)$ and $y=g(x)$ for $a \leq x \leq b$.
Idea
It is important to find the sign chart of $f(x)-g(x)$, that is, it is important to know for which x one has $f(x)-g(x) \geq 0$ and for which x one has $f(x)-g(x) \leq 0$ where $a \leq x \leq b$. For example, if we know that

$$
\begin{array}{ll}
f(x)-g(x) \geq 0 & \text { if } a \leq x \leq c \\
f(x)-g(x) \leq 0 & \text { if } c \leq x \leq b,
\end{array}
$$

Then the area R is

$$
R=\int_{a}^{c} f(x)-g(x) d x+\int_{c}^{b} g(x)-g(x) d x
$$

Example

Find the area bounded by $y=6 x-x^{2}$ and $y=0$ for $1 \leq x \leq 4$.
Remark
Let $f(x)=6 x-x^{2}, g(x)=0$. It is important to find the sign chart of $f(x)-g(x)=\left(6 x-x^{2}\right)-0$, that is, it is important to know for which x one has $f(x)-g(x)>0$ and for which x one has $f(x)-g(x)<0$ where $1 \leq x \leq 4$.

Solution

We now target the two curves. One is characterised by $y=6 x-$ x^{2}, the other by $y=0$ (x-axis). We need to decide which $f(x)$ and $g(x)$ are, respectively.

As $1 \leq x \leq 4,6 x-x^{2} \geq 0$. So let

$$
f(x)=6 x-x^{2}, \text { and } g(x)=0
$$

Therefore, the area is

$$
\int_{1}^{4}\left(6 x-x^{2}\right) d x=\left.\left(3 x^{2}-\frac{x^{3}}{3}\right)\right|_{1} ^{4}=24
$$

Examples - Areas between a curve and x-axis

Solution - Part 1
If we choose $f(x)=x^{2}-2 x$, then we first check $x^{2}-2 x=0$ and we have two zeros $x=2$ or $x=0$. In this case,

$$
f(x)\left\{\begin{array}{l}
\geq 0, \quad 0 \leq x \leq 1 \\
\leq 0, \quad-1 \leq x \leq 0
\end{array}\right.
$$

Therefore, the total area is the sum of two parts:

$$
A_{1}=\int_{-1}^{0} f(x)-0 d x
$$

and

$$
A_{2}=\int_{0}^{1} 0-f(x) d x .
$$

Examples - Areas between a curve and x-axis

Solution - Part 2
Since

$$
\int\left(x^{2}-2 x\right) d x=\frac{x^{3}}{3}-x^{2}+C
$$

the required area is

$$
\begin{aligned}
& \int_{-1}^{0}\left(x^{2}-2 x\right) d x-\int_{0}^{1}\left(x^{2}-2 x\right) d x \\
= & \left.\left(\frac{x^{3}}{3}-x^{2}\right)\right|_{-1} ^{0}+\left.\left(x^{2}-\frac{x^{3}}{3}\right)\right|_{0} ^{1} \\
= & -\left(\frac{(-1)^{3}}{3}-(-1)^{2}\right)+\left(1^{2}-\frac{1^{3}}{3}\right)=2 .
\end{aligned}
$$

Example
Find the area bounded by the graphs of $y=5-x^{2}$ and $y=2-2 x$.

Solution - Part 1
Similar to previous examples, we need to solve $\left(5-x^{2}\right)-(2-2 x)=0 \Rightarrow x=-1$ and 3 .
Further we find
$\left(5-x^{2}\right)-(2-2 x) \begin{cases}\geq 0, & -1 \leq x \leq 3 \\ \leq 0, & x \geq 3 \text { or } x \leq-1 .\end{cases}$

So the bounded region is $-1 \leq x \leq 3$, with $f(x)=5-x^{2}$ and $g(x)=2-2 x$.

Examples - Areas bounded by two curves

Example
Find the area bounded by the graphs of $y=x^{2}-x$ and $y=2 x$ for $-2 \leq x \leq 3$.

Solution - Part 1
If we set $f(x)=x^{2}-x$ and $g(x)=2 x$, then solving $f(x)-g(x)=x^{2}-3 x=0$ gives rise to $x=0$ or $x=3$.
Further we find here

$$
f(x)-g(x) \begin{cases}\geq 0, & -2 \leq x \leq 0 \\ \leq 0, & 0 \leq x \leq 3\end{cases}
$$

The total area is computed separately:

$$
A_{1}=\int_{-2}^{0}(f(x)-g(x)) d x
$$

and

$$
A_{2}=\int_{0}^{3}(g(x)-f(x)) d x
$$

