MATH 1003 Calculus and Linear Algebra (Lecture 30)

Maosheng Xiong Department of Mathematics, HKUST 1. Average Value of a Continuous Function

Definition

Let f(x) be a continuous function on [a, b]. The average value of f(x) on [a, b] is given by

$$\frac{1}{b-a}\int_a^b f(x)dx.$$

Interpretation

Т

One may divide the interval [a, b] into *n* sub-intervals. Then from each subinterval I_k , we sample one point x_k and take the average:

$$\bar{A}_n = \frac{f(x_1) + \dots + f(x_n)}{n} = \underbrace{(f(x_1) + \dots + f(x_n)) \cdot \frac{b-a}{n}}_{\text{Riemman sum}} \cdot \frac{1}{b-a}.$$

herefore,
$$\lim_{n\to\infty} \bar{A}_n = \frac{1}{b-a} \int_a^b f(x) dx$$

MATH 1003 Calculus and Linear Algebra (Lecture 30)

2. Probability Density Functions

Maosheng Xiong Department of Mathematics, HKUST

A probability density function must satisfy the following three conditions:

- 1. $f(x) \ge 0$ for all real x;
- 2. The area under the graph of f(x) over the interval $(-\infty, \infty)$ is exactly 1;
- If [c, d] is a sub-interval of (-∞, ∞), then the probability of x falling in [c, d] is defined by:

$$P(c \le x \le d) = \int_c^d f(x) dx$$

Example

Average Value of a Continuous Function

Example

Given the demand function

Maosheng Xiong Department of Mathematics, HKUST

$$p = D(x) = 100e^{-0.05x}$$

find the average price (in dollars) over the demand interval [40, 60].

Solution

The average price is

$$\bar{p} = \frac{1}{b-a} \int_{a}^{b} D(x) dx = \frac{1}{60-40} \int_{40}^{60} 100 e^{-0.05x} dx$$
$$= \frac{100}{20} \left(\frac{e^{-0.05x}}{-0.05} \right) \Big|_{40}^{60} = 100 \left(e^{-2} - e^{-3} \right) \approx \$8.55.$$

▶ ▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ ○ ○

MATH 1003 Calculus and Linear Algebra (Lecture 30)

A Mini-Example

Example

Suppose there are two stocks A and B for investment. Historical data have shown the following information.

 Stock A is now \$60 per share, and in one year its share price increase x satisfies a probability density distribution

 $f_{\mathcal{A}}(x) = \begin{cases} \frac{3}{4000} \left(75 + 10x - x^2\right) & : & -5 \le x \le 15, \\ 0 & : & \text{for } x \text{ elsewhere.} \end{cases}$

Stock B is now \$70 per share, and in one year its share price increase x satisfies a probability density distribution:

 $f_B(x) = \begin{cases} rac{3}{500} \left(9 + 8x - x^2
ight) & : & -1 \le x \le 9 \\ 0 & : & ext{for } x ext{ elsewhere.} \end{cases}$

(a) Find the probabilities of a loss investing in A and B in one year.

A Mini-Example

Solution for (a)

Maosheng Xiong Department of Mathematics, HKUST

For A it can be checked that $f_A(x) \ge 0$ and $\int_{-5}^{15} f_A(x) dx = 1$. Investment loss means $x \le 0$.

$$P_{\mathcal{A}}(x \le 0) = \int_{-5}^{0} \frac{3(75 + 10x - x^2)}{4000} dx = \frac{3}{4000} \left(75x + 5x^2 - \frac{x^3}{3}\right) \Big|_{-5}^{0} = 0.156 \int_{-5}^{0.05} \int_{-5}^$$

Interpretation The chance of loss investing in A in one year is 15.6%.

A Mini-Example

Example

- (a) Find the probabilities of a loss investing in A and B in one year.
- (b) Find the probabilities of a 10% gain investing in each of the stocks A and B.

A Mini-Example

Maosheng Xiong Department of Mathematics, HKUST

Maosheng Xiong Department of Mathematics, HKUST

Solution for (a)

500

MATH 1003 Calculus and Linear Algebra (Lecture 30)

For B it can be checked that $f_B(x) \ge 0$ and $\int_{-1}^{9} f_B(x) dx = 1$. Investment loss means $x \le 0$.

$$P_{B}(x \leq 0) = \int_{-1}^{0} \frac{3(9 + 8x - x^{2})}{500} dx \qquad \stackrel{0.15}{\underset{0}{\xrightarrow{0.05}}} = \frac{3}{500} \left(9x + 4x^{2} - \frac{x^{3}}{3}\right) \Big|_{-1}^{0} = 0.0280 \qquad \stackrel{0.05}{\underset{0}{\xrightarrow{0.05}}} = \frac{3}{5} = 0.0280$$

Interpretation The chance of loss investing in B in one year is 2.8%. Which one is more risky?

500

MATH 1003 Calculus and Linear Algebra (Lecture 30)

Solution for (b) 10% profit from A means $x \ge 60 \times 0.1 = 6$. $P_{A}(x \ge 6) = \int_{6}^{15} \frac{3(75 + 10x - x^{2})}{4000} dx \int_{0}^{0.15} \int_{0}^{0} \int_{0}^{0.15} \int_{0}^{0} \int_{0}$	Solution for (b) 10% profit from B means $x \ge 70 \times 0.1 = 7$. $P_B(x \ge 7) = \int_7^9 \frac{3(9+8x-x^2)}{500} dx$ $= \frac{3}{500} \left(9x+4x^2-\frac{x^3}{3}\right) \Big _7^9 = 0.1040$ Interpretation The chance of 10% gain investing in B in one year is 10.4%. Combination of A and B - Portfolios
CIDE CORRECT Constraints of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)	A C D A C Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)
Example The life expectancy (in years) of a microwave oven is a continuous random variable with probability density function $f(x) = \begin{cases} \frac{2}{(x+2)^2} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$ (a) Find the probability that a randomly selected microwave oven lasts at most 6 years. (b) Find the probability that a randomly selected microwave oven lasts 6 to 12 years.	Solution (a) Let Y be the life expectancy of a microwave oven. Then $Pr(Y \le 6) = \int_0^6 \frac{2}{(x+2)^2} dx$ $= \int_0^6 2(x+2)^{-2} dx$ $= \frac{-2}{x+2} \Big _0^6$ $= -\frac{2}{8} + 1 = 0.75.$
イロン イラン イラン イラン モラン モーン (の) Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)	イロトイラトイミト ミーシュー Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)

A Mini-Example

Solution (b)

$$\Pr(6 \le Y \le 12) = \int_{6}^{1} 2\frac{2}{(x+2)^{2}} dx$$
$$= \frac{-2}{x+2} \Big|_{6}^{12}$$
$$= -\frac{2}{14} + \frac{1}{4} = 0.107.$$

The following is the family income distribution in U.S., 2006

Income Level	X	у
< \$20,000	0.20	0.03
< \$38,000	0.40	0.12
< \$60,000	0.60	0.27
< \$97,000	0.80	0.49

The variable x represents the cumulative percentage of families at or below a given income level, and y represents the cumulative percentage of total family income received. For example, the point (0.40, 0.12) means that the bottom 40% of families (incomes under \$ 38,000) received 12% of the total income for all families.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30) Income Distribution of a Society

The blue curve in the graph of y = f(x) is called the Lorenz curve. For example, it may be expressed by

$$f(x) = x^{\alpha}$$

イロト 不得 トイヨト イヨト 二日

Sac

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

with $\alpha \geq 1$.

The variable x represents the cumulative percentage of families at or below a given income level, and y represents the cumulative percentage of total family income received. For example, (0.40, 0.12) is the point on the Lorenz curve and means that the bottom 40% of families received 12% of the total income for all families.

Percent of income

Absolute Equality and Inequality

Maosheng Xiong Department of Mathematics, HKUST

Remarks

- Any Lorenz curve is below the 45 degree line.
- If the income were distributed with absolute equality, the Lorenz curve would coincide with the 45 degree line.
- If the income were distributed with absolute inequality, the Lorenz curve would coincide with the horizontal axis and the right vertical axis.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

MATH 1003 Calculus and Linear Algebra (Lecture 30)

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)

Gini Index

Let us define the Gini index, a measurement of the degree of inequality in the distribution of income in a society:

Definition

If the Lorenz curve is given by y = f(x), then Gini index (G) is defined to be

 $G=2\int_0^1(x-f(x))dx$

>

Remarks

- G is the ratio between A₁ (the area enclosed by y = x and y = f(x)) and A₂ (the area enclosed by y = x, y = 0 and x = 1) and 0 ≤ G ≤ 1.
- As G increases, the degree of inequality in the distribution of income increases.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)

Gini Index

Solution

Currently, the Gini index is

$$2\int_0^1 (x - x^{2.3}) dx = 2\left(\frac{x^2}{2} - \frac{x^{3.3}}{3.3}\right)\Big|_0^1 = 0.39$$

After the proposed changes, the Gini index is

$$2\int_0^1 [x - (0.4x + 0.6x^2)]dx = 2\left(\frac{0.6x^2}{2} - \frac{0.6x^3}{3}\right)\Big|_0^1 = 0.20$$

Therefore, the proposed changes will work because the Gini index becomes lower.

Gini Index

Example

A country is planning changes in tax structure in order to provide a more equitable distribution of income. The two Lorenz curves are: $f(x) = x^{2.3}$ currently and $g(x) = 0.4x + 0.6x^2$ proposed. Will the proposed changes work?

Consumers' Surplus

Maosheng Xiong Department of Mathematics, HKUST

Example

If (\bar{x}, \bar{p}) is a point on the graph of the price-demand equation p = D(x), the consumers' surplus CS at a price level of \bar{p} is

$$CS(\bar{x}) = \int_0^{\bar{x}} D(x) - \bar{p} \, dx.$$

This is the area between $p = \bar{p}$ and p = D(x) from x = 0 to $x = \bar{x}$. The consumers' surplus represents the total savings to consumers who are willing to pay more than \bar{p} for the product but are still able to buy the product for \bar{p} .

 MATH 1003 Calculus and Linear Algebra (Lecture 30)

Example

Find the consumers' surplus at a price level of $\bar{p}=120$ for the price-demand equation

p = D(x) = 200 - 0.02x.

Solution First, find the demand when the price is $\bar{p} = 120$:

$$120 = \bar{p} = 200 - 0.02\bar{x} \Longrightarrow \bar{x} = 4000.$$

Solution Second, find the consumers' surplus:

$$CS(\bar{x}) = \int_{0}^{\bar{x}} D(x) - \bar{x} \, dx$$

= $\int_{0}^{4000} 200 - 0.02x - 120 \, dx$
= $\int_{0}^{4000} 80 - 0.02x \, dx$
= $(80x - 0.01x^2)|_{0}^{4000}$
= $320000 - 160000 = $160000.$

Aaosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30) Maosheng

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)