1. Average Value of a Continuous Function

Definition

Let $f(x)$ be a continuous function on $[a, b]$. The average value of $f(x)$ on $[a, b]$ is given by

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Interpretation

One may divide the interval $[a, b]$ into n sub-intervals. Then from each subinterval I_{k}, we sample one point x_{k} and take the average:

$$
\bar{A}_{n}=\frac{f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)}{n}=\underbrace{\left(f\left(x_{1}\right)+\cdots+f\left(x_{n}\right)\right) \cdot \frac{b-a}{n}}_{\text {Riemman sum }} \cdot \frac{1}{b-a} .
$$

Therefore, $\lim _{n \rightarrow \infty} \bar{A}_{n}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

2. Probability Density Functions

A probability density function must satisfy the following three conditions:

1. $f(x) \geq 0$ for all real x;
2. The area under the graph of $f(x)$ over the interval $(-\infty, \infty)$ is exactly 1 ;
3. If $[c, d]$ is a sub-interval of $(-\infty, \infty)$, then the probability of x falling in $[c, d]$ is defined by:

$$
P(c \leq x \leq d)=\int_{c}^{d} f(x) d x
$$

Example

$$
\begin{aligned}
\bar{p} & =\frac{1}{b-a} \int_{a}^{b} D(x) d x=\frac{1}{60-40} \int_{40}^{60} 100 e^{-0.05 x} d x \\
& =\left.\frac{100}{20}\left(\frac{e^{-0.05 x}}{-0.05}\right)\right|_{40} ^{60}=100\left(e^{-2}-e^{-3}\right) \approx \$ 8.55
\end{aligned}
$$

Maosheng Xiong Department of Mathematics, HKUST

Example

Suppose there are two stocks A and B for investment. Historical data have shown the following information.

- Stock A is now $\$ 60$ per share, and in one year its share price increase x satisfies a probability density distribution

$$
f_{A}(x)=\left\{\begin{array}{cl}
\frac{3}{4000}\left(75+10 x-x^{2}\right) & :-5 \leq x \leq 15 \\
0 & : \\
\text { for } x \text { elsewhere }
\end{array}\right.
$$

- Stock B is now $\$ 70$ per share, and in one year its share price increase x satisfies a probability density distribution:

$$
f_{B}(x)=\left\{\begin{array}{cl}
\frac{3}{500}\left(9+8 x-x^{2}\right) & :-1 \leq x \leq 9 \\
0 & : \quad \text { for } x \text { elsewhere }
\end{array}\right.
$$

(a) Find the probabilities of a loss investing in A and B in one year.

Example

(a) Find the probabilities of a loss investing in A and B in one year.
(b) Find the probabilities of a 10% gain investing in each of the stocks A and B .

A Mini-Example

Solution for (a)

For A it can be checked that $f_{A}(x) \geq 0$ and $\int_{-5}^{15} f_{A}(x) d x=1$.
Investment loss means $x \leq 0$.

$$
\begin{aligned}
& P_{A}(x \leq 0)=\int_{-5}^{0} \frac{3\left(75+10 x-x^{2}\right)}{4000} d x x_{0.1}^{0.15} \\
= & \left.\frac{3}{4000}\left(75 x+5 x^{2}-\frac{x^{3}}{3}\right)\right|_{-5} ^{0}=0.156 \underbrace{0.05}_{0.5} \underbrace{5}_{0}{ }_{x}^{10}
\end{aligned}
$$

Interpretation The chance of loss investing in A in one year is 15.6\%.

Solution for (a)
For B it can be checked that $f_{B}(x) \geq 0$ and $\int_{-1}^{9} f_{B}(x) d x=1$.
Investment loss means $x \leq 0$.

$$
\begin{aligned}
& P_{B}(x \leq 0)=\int_{-1}^{0} \frac{3\left(9+8 x-x^{2}\right)}{500} d x \\
&=\left.\frac{3}{500}\left(9 x+4 x^{2}-\frac{x^{3}}{3}\right)\right|_{-1} ^{0}=0.0280 \\
& 0.0 .1 \\
& 0.05 \\
& 0.0 \\
& 0
\end{aligned}
$$

Interpretation The chance of loss investing in B in one year is 2.8%. Which one is more risky?

A Mini-Example

A Mini-Example

Solution for (b)

10% profit from A means $x \geq 60 \times 0.1=6$.

$$
\begin{aligned}
& P_{A}(x \geq 6)=\int_{6}^{15} \frac{3\left(75+10 x-x^{2}\right)}{4000} d x \\
= & \left.\frac{3}{4000}\left(75 x+5 x^{2}-\frac{x^{3}}{3}\right)\right|_{6} ^{15}=0.4253 \int_{0.5}^{0.15} \quad \text { Gain with } 10 \% \text { interest }
\end{aligned}
$$

Interpretation The chance of 10% gain investing in A in one year is 42.53\%

Example

Example

The life expectancy (in years) of a microwave oven is a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{2}{(x+2)^{2}} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the probability that a randomly selected microwave oven lasts at most 6 years.
(b) Find the probability that a randomly selected microwave oven lasts 6 to 12 years.

Example

 ThenSolution for (b)
10% profit from B means $x \geq 70 \times 0.1=7$.

$$
\begin{aligned}
& P_{B}(x \geq 7)=\int_{7}^{9} \frac{3\left(9+8 x-x^{2}\right)}{500} d x \\
= & \left.\frac{3}{500}\left(9 x+4 x^{2}-\frac{x^{3}}{3}\right)\right|_{7} ^{9}=0.1040
\end{aligned}
$$

Interpretation The chance of 10% gain investing in B in one year is 10.4%.
Combination of A and B - Portfolios

Solution (a) Let Y be the life expectancy of a microwave oven.

$$
\begin{aligned}
\operatorname{Pr}(Y \leq 6) & =\int_{0}^{6} \frac{2}{(x+2)^{2}} d x \\
& =\int_{0}^{6} 2(x+2)^{-2} d x \\
& =\left.\frac{-2}{x+2}\right|_{0} ^{6} \\
& =-\frac{2}{8}+1=0.75 .
\end{aligned}
$$

Solution (b)

$$
\begin{aligned}
\operatorname{Pr}(6 \leq Y \leq 12) & =\int_{6}^{1} 2 \frac{2}{(x+2)^{2}} d x \\
& =\left.\frac{-2}{x+2}\right|_{6} ^{12} \\
& =-\frac{2}{14}+\frac{1}{4}=0.107
\end{aligned}
$$

Income Distribution of a Society

The blue curve in the graph of $y=f(x)$ is called the Lorenz curve. For example, it may be expressed by

$$
f(x)=x^{\alpha}
$$

with $\alpha \geq 1$.

The variable x represents the cumulative percentage of families at or below a given income level, and y represents the cumulative percentage of total family income received. For example, $(0.40,0.12)$ is the point on the Lorenz curve and means that the bottom 40% of families received 12% of the total income for all families.

Let us define the Gini index, a measurement of the degree of inequality in the distribution of income in a society:

Definition

If the Lorenz curve is given by $y=f(x)$, then Gini index (G) is defined to be

$$
G=2 \int_{0}^{1}(x-f(x)) d x
$$

Remarks

- G is the ratio between A_{1} (the area enclosed by $y=x$ and $y=f(x)$) and A_{2} (the area enclosed by $y=x, y=0$ and $x=1)$ and $0 \leq G \leq 1$.
- As G increases, the degree of inequality in the distribution of income increases.

Consumers' Surplus

Example

A country is planning changes in tax structure in order to provide a more equitable distribution of income. The two Lorenz curves are: $f(x)=x^{2.3}$ currently and $g(x)=0.4 x+0.6 x^{2}$ proposed. Will the proposed changes work?

Solution

Currently, the Gini index is

$$
2 \int_{0}^{1}\left(x-x^{2.3}\right) d x=\left.2\left(\frac{x^{2}}{2}-\frac{x^{3.3}}{3.3}\right)\right|_{0} ^{1}=0.39
$$

After the proposed changes, the Gini index is

$$
2 \int_{0}^{1}\left[x-\left(0.4 x+0.6 x^{2}\right)\right] d x=\left.2\left(\frac{0.6 x^{2}}{2}-\frac{0.6 x^{3}}{3}\right)\right|_{0} ^{1}=0.20
$$

Therefore, the proposed changes will work because the Gini index becomes lower.

Gini Index

Example

If (\bar{x}, \bar{p}) is a point on the graph of the price-demand equation $p=D(x)$, the consumers' surplus CS at a price level of \bar{p} is

$$
C S(\bar{x})=\int_{0}^{\bar{x}} D(x)-\bar{p} d x .
$$

This is the area between $p=\bar{p}$ and $p=D(x)$ from $x=0$ to $x=\bar{x}$.
The consumers' surplus represents the total savings to consumers who are willing to pay more than \bar{p} for the product but are still able to buy the product for \bar{p}.

Example

Find the consumers' surplus at a price level of $\bar{p}=120$ for the price-demand equation

$$
p=D(x)=200-0.02 x .
$$

Solution First, find the demand when the price is $\bar{p}=120$:

$$
120=\bar{p}=200-0.02 \bar{x} \Longrightarrow \bar{x}=4000
$$

Solution Second, find the consumers' surplus:

$$
\begin{aligned}
\operatorname{CS}(\bar{x}) & =\int_{0}^{\bar{x}} D(x)-\bar{x} d x \\
& =\int_{0}^{4000} 200-0.02 x-120 d x \\
& =\int_{0}^{4000} 80-0.02 x d x \\
& =\left.\left(80 x-0.01 x^{2}\right)\right|_{0} ^{4000} \\
& =320000-160000=\$ 160000 .
\end{aligned}
$$

