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1. Average Value of a Continuous Function

Definition
Let f (x) be a continuous function on [a, b]. The average value of
f (x) on [a, b] is given by

1

b − a

∫ b

a
f (x)dx .

Interpretation

One may divide the interval [a, b] into n sub-intervals. Then from
each subinterval Ik , we sample one point xk and take the average:

Ān =
f (x1) + · · ·+ f (xn)

n
= (f (x1) + · · ·+ f (xn)) · b − a

n︸ ︷︷ ︸
Riemman sum

· 1

b − a
.

Therefore, limn→∞ Ān = 1
b−a

∫ b
a f (x)dx
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Average Value of a Continuous Function

Example

Given the demand function

p = D(x) = 100e−0.05x ,

find the average price (in dollars) over the demand interval [40, 60].

Solution
The average price is

p̄ =
1

b − a

∫ b

a
D(x)dx =

1

60− 40

∫ 60

40
100e−0.05xdx

=
100

20

(
e−0.05x

−0.05

)∣∣∣∣
60

40

= 100
(
e−2 − e−3

)
≈ $8.55.
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2. Probability Density Functions

A probability density function must satisfy the following three
conditions:

1. f (x) ≥ 0 for all real x ;
2. The area under the graph of f (x) over the interval (−∞,∞)

is exactly 1;
3. If [c , d ] is a sub-interval of (−∞,∞), then the probability of

x falling in [c , d ] is defined by:

P(c ≤ x ≤ d) =

∫ d

c
f (x)dx

Example
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A Mini-Example

Example

Suppose there are two stocks A and B for investment. Historical
data have shown the following information.

I Stock A is now $60 per share, and in one year its share price
increase x satisfies a probability density distribution

fA(x) =

{
3

4000

(
75 + 10x − x2

)
: −5 ≤ x ≤ 15,

0 : for x elsewhere.

I Stock B is now $70 per share, and in one year its share price
increase x satisfies a probability density distribution:

fB(x) =

{
3

500

(
9 + 8x − x2

)
: −1 ≤ x ≤ 9

0 : for x elsewhere.

(a) Find the probabilities of a loss investing in A and B in one year.
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A Mini-Example

Example

(a) Find the probabilities of a loss investing in A and B in one
year.

(b) Find the probabilities of a 10% gain investing in each of the
stocks A and B.

Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 30)

A Mini-Example

Solution for (a)

For A it can be checked that fA(x) ≥ 0 and
∫ 15
−5 fA(x)dx = 1.

Investment loss means x ≤ 0.

PA(x ≤ 0) =

∫ 0

−5

3(75 + 10x − x2)

4000
dx

=
3

4000

(
75x + 5x2 − x3

3

)∣∣∣∣
0

−5

= 0.1563

Interpretation The chance of loss investing in A in one year is
15.6%.
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A Mini-Example

Solution for (a)

For B it can be checked that fB(x) ≥ 0 and
∫ 9
−1 fB(x)dx = 1.

Investment loss means x ≤ 0.

PB(x ≤ 0) =

∫ 0

−1

3(9 + 8x − x2)

500
dx

=
3

500

(
9x + 4x2 − x3

3

)∣∣∣∣
0

−1

= 0.0280

Interpretation The chance of loss investing in B in one year is 2.8%.
Which one is more risky?
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A Mini-Example

Solution for (b)

10% profit from A means x ≥ 60× 0.1 = 6.

PA(x ≥ 6) =

∫ 15

6

3(75 + 10x − x2)

4000
dx

=
3

4000

(
75x + 5x2 − x3

3

)∣∣∣∣
15

6

= 0.4253

Interpretation The chance of 10% gain investing in A in one year is
42.53%.
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A Mini-Example

Solution for (b)

10% profit from B means x ≥ 70× 0.1 = 7.

PB(x ≥ 7) =

∫ 9

7

3(9 + 8x − x2)

500
dx

=
3

500

(
9x + 4x2 − x3

3

)∣∣∣∣
9

7

= 0.1040

Interpretation The chance of 10% gain investing in B in one year is
10.4%.
Combination of A and B - Portfolios
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Example

Example

The life expectancy (in years) of a microwave oven is a continuous
random variable with probability density function

f (x) =

{
2

(x+2)2 x ≥ 0

0 otherwise

(a) Find the probability that a randomly selected microwave oven
lasts at most 6 years.

(b) Find the probability that a randomly selected microwave oven
lasts 6 to 12 years.
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Example

Solution (a) Let Y be the life expectancy of a microwave oven.
Then

Pr(Y ≤ 6) =

∫ 6

0

2

(x + 2)2
dx

=

∫ 6

0
2(x + 2)−2 dx

=
−2

x + 2

∣∣∣∣
6

0

= −2

8
+ 1 = 0.75.
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Example

Solution (b)

Pr(6 ≤ Y ≤ 12) =

∫ 1

6
2

2

(x + 2)2
dx

=
−2

x + 2

∣∣∣∣
12

6

= − 2

14
+

1

4
= 0.107.
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Income Distribution of a Society

The following is the family in-
come distribution in U.S., 2006

Income Level x y

< $20, 000 0.20 0.03

< $38, 000 0.40 0.12

< $60, 000 0.60 0.27

< $97, 000 0.80 0.49

The variable x represents the cumulative percentage of families at
or below a given income level, and y represents the cumulative
percentage of total family income received. For example, the point
(0.40, 0.12) means that the bottom 40% of families (incomes
under $ 38,000) received 12% of the total income for all families.
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Income Distribution of a Society

The blue curve in the graph of
y = f (x) is called the Lorenz
curve. For example, it may be
expressed by

f (x) = xα

with α ≥ 1.

The variable x represents the cumulative percentage of families at
or below a given income level, and y represents the cumulative
percentage of total family income received. For example,
(0.40, 0.12) is the point on the Lorenz curve and means that the
bottom 40% of families received 12% of the total income for all
families.
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Absolute Equality and Inequality

Remarks

I Any Lorenz curve is below the 45 degree line.

I If the income were distributed with absolute equality, the
Lorenz curve would coincide with the 45 degree line.

I If the income were distributed with absolute inequality, the
Lorenz curve would coincide with the horizontal axis and the
right vertical axis.
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Gini Index

Let us define the Gini index, a measurement of the degree of
inequality in the distribution of income in a society:

Definition
If the Lorenz curve is given by
y = f (x), then Gini index (G ) is
defined to be

G = 2

∫ 1

0
(x − f (x))dx

Remarks

I G is the ratio between A1 (the area enclosed by y = x and
y = f (x)) and A2 (the area enclosed by y = x , y = 0 and
x = 1) and 0 ≤ G ≤ 1.

I As G increases, the degree of inequality in the distribution of
income increases.
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Gini Index

Example

A country is planning changes in tax structure in order to provide a
more equitable distribution of income. The two Lorenz curves are:
f (x) = x2.3 currently and g(x) = 0.4x + 0.6x2 proposed. Will the
proposed changes work?
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Gini Index

Solution
Currently, the Gini index is

2

∫ 1

0
(x − x2.3)dx = 2

(
x2

2
− x3.3

3.3

) ∣∣∣
1

0
= 0.39

After the proposed changes, the Gini index is

2

∫ 1

0
[x − (0.4x + 0.6x2)]dx = 2

(
0.6x2

2
− 0.6x3

3

) ∣∣∣
1

0
= 0.20

Therefore, the proposed changes will work because the Gini index
becomes lower.
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Consumers’ Surplus

Example

If (x̄ , p̄) is a point on the graph of the price-demand equation
p = D(x), the consumers’ surplus CS at a price level of p̄ is

CS(x̄) =

∫ x̄

0
D(x)− p̄ dx .

This is the area between p = p̄ and p = D(x) from x = 0 to x = x̄ .
The consumers’ surplus represents the total savings to consumers
who are willing to pay more than p̄ for the product but are still
able to buy the product for p̄.
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Consumers’ Surplus

Example

Find the consumers’ surplus at a price level of p̄ = 120 for the
price-demand equation

p = D(x) = 200− 0.02x .

Solution First, find the demand when the price is p̄ = 120:

120 = p̄ = 200− 0.02x̄ =⇒ x̄ = 4000.
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Consumers’ Surplus

Solution Second, find the consumers’ surplus:

CS(x̄) =

∫ x̄

0
D(x)− x̄ dx

=

∫ 4000

0
200− 0.02x − 120 dx

=

∫ 4000

0
80− 0.02x dx

= (80x − 0.01x2)|4000
0

= 320000− 160000 = $160000.
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