MATH 1003 Calculus and Linear Algebra

 (Lecture 31)Maosheng Xiong
Department of Mathematics, HKUST

The product rule of differentiation:

$$
(u(x) v(x))^{\prime}=u^{\prime}(x) v(x)+u(x) v^{\prime}(x) .
$$

Integrating on both sides with respect to x :

$$
u(x) v(x)=\int u^{\prime}(x) v(x) d x+\int u(x) v^{\prime}(x) d x
$$

If we set $u=u(x)$ and $v=v(x)$, we have the integration by parts formula:

$$
\int u \underbrace{d v}_{v^{\prime} d x}=u v-\int v \underbrace{d u}_{u^{\prime} d x}
$$

Integration by Parts - Examples

Solution
0). Observe that other methods do not work, so we are forced to use integration by parts.
1). We split " $x e^{x} d x$ " into two parts: the " u " part and the " $d v$ " part. which is u and which is $d v$? This depends on experience. We choose

$$
u=x, \quad d v=e^{x} d x
$$

Thus

$$
d u=d x, \text { and } v=\int e^{x} d x=e^{x}
$$

According to the integration by parts formula, we have

$$
\int x e^{x} d x=u v-\int v d u=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

What will you get by choosing $u=e^{x}$ and $d v \equiv x d x$? Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Calculus and Linear Algebra (Lecture 31)

Example
Find $\int x \ln x d x$.

Solution - Part 1
We let

$$
u=\ln x, \quad d v=x d x
$$

Then we have

$$
d u=\frac{1}{x} d x, \quad v=\int x d x=\frac{x^{2}}{2} .
$$

Therefore, by the integration by parts formula, we have

$$
\int x \ln x d x=u v-\int v d u=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x
$$

Solution - Part 2

$$
\begin{aligned}
\int x \ln x d x & =\frac{x^{2}}{2} \ln x-\int \frac{x}{2} d x \\
\Rightarrow \int x \ln x d x & =\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C
\end{aligned}
$$

Remarks
1). This method works for $\int x^{p} \ln x d x$, where $p \neq-1$.
2). What happens if $p=-1$? That is, how do you compute $\int x^{-1} \ln x d x$? (Hint: substitution: $u=\ln x$)
Example Calculate $\int \ln x d x$
Solution: Let $u=\ln x$ and $d v=d x$, so that $v=x$. You find $\int \ln x d x=x \ln x-x+C^{\square}$

Example
Find $\int x^{2} e^{-2 x} d x$.

Solution - Part 1
Let $u=x^{2}$ and $d v=e^{-2 x} d x$. Then we have $d u=2 x d x$ and

$$
v=\int e^{-2 x} d x \stackrel{t=-2 x}{=} \frac{-1}{2} \int e^{t} d t=-\frac{1}{2} e^{-2 x}
$$

Using the integration by parts formula, we get
$\int x^{2} e^{-2 x} d x=-\frac{x^{2} e^{-2 x}}{2}-\int 2 x \frac{-e^{-2 x}}{2} d x=-\frac{x^{2} e^{-2 x}}{2}+\int x e^{-2 x} d x$.

Integration by Parts for Definite Integrals

The following is the integration by parts formula for definite integrals:

$$
\int_{a}^{b} u v^{\prime} d x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v u^{\prime} d x
$$

or

$$
\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example
Find $\int_{1}^{2} x(\ln x)^{2} d x$.

Repeated Integration by Parts

Solution - Part 2

The integral on the right hand side is still not simple enough. We need to use integration by parts once more to calculate $\int x e^{-2 x} d x$. Let $u=x$ and $v^{\prime} d x=e^{-2 x} d x$. We get

$$
d u=d x \text { and } v=-\frac{1}{2} e^{-2 x} .
$$

Using the integration by parts formula, we get

$$
\int x e^{-2 x} d x=-\frac{1}{2} x e^{-2 x}+\frac{1}{2} \int e^{-2 x} d x=-\frac{1}{2} x e^{-2 x}-\frac{1}{4} e^{-2 x}
$$

Incorporating the above formula with the last formula in the previous slide gives

$$
\int x^{2} e^{-2 x} d x=-\frac{e^{-2 x}}{4}\left(1+2 x+2 x^{2}\right)
$$

Integration by Parts for Definite Integrals

Solution

Let $u=(\ln x)^{2}, d v=x d x$. Then $d u=2 \ln x / x d x$ and $v=\int x d x=x^{2} / 2$. Therefore, we have
$\int_{1}^{2} x(\ln x)^{2} d x=\left.\frac{x^{2}(\ln x)^{2}}{2}\right|_{1} ^{2}-\int_{1}^{2} x \ln x d x=2(\ln 2)^{2}-\int_{1}^{2} x \ln x d x$.
To calculate $\int_{1}^{2} x \ln x d x$, let $u=\ln x$ and $v^{\prime} d x=x d x$ and we have $d u=1 / x d x$ and $v=x^{2} / 2$. Hence we obtain

$$
\int_{1}^{2} x \ln x d x=\left.\frac{x^{2} \ln x}{2}\right|_{1} ^{2}-\frac{1}{2} \int x d x=2 \ln 2-\left.\frac{x^{2}}{4}\right|_{1} ^{2}=2 \ln 2-\frac{3}{4}
$$

The final answer is $\int_{1}^{2} x(\ln x)^{2} d x=2(\ln 2)^{2}-2 \ln 2+3 / 4$.

Summary of the integration by parts technique

Key: properly split the integrand to find u and $d v$

- To calculate $\int x^{n} e^{a x} d x$, we need

$$
u=x^{n}, \quad d v=e^{a x} d x \Rightarrow v=\frac{1}{a} e^{a x}
$$

- To calculate $\int x^{p}(\ln x)^{q} d x$, we need

$$
u=(\ln x)^{q}, \quad d v=x^{p} d x \Rightarrow v=\frac{1}{p+1} x^{p+1}
$$

