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Integration by Parts

The product rule of differentiation:

(u(x)v(x))′ = u′(x)v(x) + u(x)v ′(x).

Integrating on both sides with respect to x :

u(x)v(x) =

∫
u′(x)v(x)dx +

∫
u(x)v ′(x)dx .

If we set u = u(x) and v = v(x), we have the integration by parts
formula: ∫

u dv︸︷︷︸
v ′dx

= uv −
∫

v du︸︷︷︸
u′dx
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Example

Find

∫
xexdx .
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Integration by Parts - Examples

Solution
0). Observe that other methods do not work, so we are forced to
use integration by parts.
1). We split “xexdx” into two parts: the “u” part and the “dv”
part. which is u and which is dv? This depends on experience. We
choose

u = x , dv = exdx .

Thus

du = dx , and v =

∫
exdx = ex .

According to the integration by parts formula, we have

∫
xexdx = uv −

∫
v du = xex −

∫
exdx = xex − ex + C

What will you get by choosing u = ex and dv = xdx?
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Integration by Parts - Examples

Example

Find

∫
x ln xdx .
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Integration by Parts - Examples

Solution - Part 1
We let

u = ln x , dv = xdx .

Then we have

du =
1

x
dx , v =

∫
xdx =

x2

2
.

Therefore, by the integration by parts formula, we have

∫
x ln xdx = uv −

∫
v du =

x2

2
ln x −

∫
x2

2
· 1

x
dx .
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Integration by Parts - Examples

Solution - Part 2

∫
x ln xdx =

x2

2
ln x −

∫
x

2
dx

⇒
∫

x ln xdx =
x2

2
ln x − x2

4
+ C

Remarks

1). This method works for

∫
xp ln xdx , where p 6= −1.

2). What happens if p = −1? That is, how do you compute∫
x−1 ln xdx? (Hint: substitution: u = ln x)

Example Calculate
∫

ln xdx
Solution: Let u = ln x and dv = dx , so that v = x . You find∫

ln xdx = x ln x − x + C
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Repeated Integration by Parts

Example

Find

∫
x2e−2xdx .
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Repeated Integration by Parts

Solution - Part 1
Let u = x2 and dv = e−2xdx . Then we have du = 2xdx and

v =

∫
e−2xdx

t=−2x
=
−1

2

∫
etdt = −1

2
e−2x

Using the integration by parts formula, we get

∫
x2e−2xdx = −x2e−2x

2
−
∫

2x
−e−2x

2
dx = −x2e−2x

2
+

∫
xe−2xdx .
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Repeated Integration by Parts

Solution - Part 2
The integral on the right hand side is still not simple enough. We
need to use integration by parts once more to calculate

∫
xe−2xdx .

Let u = x and v ′dx = e−2xdx . We get

du = dx and v = −1

2
e−2x .

Using the integration by parts formula, we get

∫
xe−2xdx = −1

2
xe−2x +

1

2

∫
e−2xdx = −1

2
xe−2x − 1

4
e−2x .

Incorporating the above formula with the last formula in the
previous slide gives

∫
x2e−2xdx = −e−2x

4

(
1 + 2x + 2x2

)
.
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Integration by Parts for Definite Integrals

The following is the integration by parts formula for definite
integrals: ∫ b

a
uv ′dx = uv

∣∣∣
b

a
−
∫ b

a
vu′dx

or ∫ b

a
udv = uv

∣∣∣
b

a
−
∫ b

a
vdu

Example

Find

∫ 2

1
x(ln x)2dx .
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Integration by Parts for Definite Integrals

Solution
Let u = (ln x)2, dv = xdx . Then du = 2 ln x/x dx and
v =

∫
xdx = x2/2. Therefore, we have

∫ 2

1
x(ln x)2dx =

x2(ln x)2

2

∣∣∣∣
2

1

−
∫ 2

1
x ln xdx = 2(ln 2)2−

∫ 2

1
x ln xdx .

To calculate
∫ 2
1 x ln xdx , let u = ln x and v ′dx = xdx and we have

du = 1/x dx and v = x2/2. Hence we obtain

∫ 2

1
x ln xdx =

x2 ln x

2

∣∣∣∣
2

1

− 1

2

∫
xdx = 2 ln 2− x2

4

∣∣∣∣
2

1

= 2 ln 2− 3

4
.

The final answer is
∫ 2
1 x(ln x)2dx = 2(ln 2)2 − 2 ln 2 + 3/4.
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Summary of the integration by parts technique

Key: properly split the integrand to find u and dv

I To calculate
∫
xneaxdx , we need

u = xn, dv = eaxdx ⇒ v =
1

a
eax ;

I To calculate
∫
xp(ln x)qdx , we need

u = (ln x)q, dv = xpdx ⇒ v =
1

p + 1
xp+1.
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