MATH 1003 Review: Part 2. Matrices

Maosheng Xiong
Department of Mathematics, HKUST
(i) System of linear equations in 2 variables (L.5, Ch4.1)

- Find solutions by graphing
- Supply and demand curve
(ii) Basic ideas about Matrices (L.6, Ch4.2)
- To know a matrix

$$
2^{\text {nd }} \text { row }\left(\begin{array}{ccc}
3 & -2 & 5 \\
4 & 1 & 0 \\
6 & -9 & 7
\end{array}\right)_{1_{\text {Principal }}^{a^{3 t}} \text { column }}^{\substack{a_{21} \\
\text { diagonal }}} \begin{gathered}
\text { 3-by-3 matrix } \\
\text { Square matrix } \\
\text { of order 3 }
\end{gathered}
$$

- Row operation

$$
R_{i} \leftrightarrow R_{j}, \quad k R_{i} \rightarrow R_{i}, \quad R_{i}+k R_{j} \rightarrow R_{i}
$$

Matrices (Ch.4)

(v) Inverse Matrix (L.10, Ch4.5)

- Identity matrix I

$$
I M=M I=M
$$

- Given a square matrix M, its inverse matrix M^{-1} satisfies

$$
M M^{-1}=M^{-1} M=I
$$

- Find the inverse matrix M^{-1} :
\triangleright Of order 2: $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $M^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
\triangleright Of order 3: $(M \mid I)^{\text {Row operation }}\left(I \mid M^{-1}\right)$
\triangleright Not all matrices are invertible
(vi) Matrix Equation (L.11, Ch4.6)
- Solver to system of linear equations (method 2 to solve systems of linear eqns): if A is invertible,

$$
A X=B \quad \Rightarrow \quad X=A^{-1} B
$$

(vii) Leontief input-output analysis (L.12, Ch.4.7)

- Technology matrix M for n-industry is constructed:

To produce		A	B	C	\cdots
Need	A	m_{11}	$\mathrm{~m}_{12}$	$\mathrm{~m}_{13}$	\cdots
	B	$\mathrm{~m}_{21}$	$\mathrm{~m}_{22}$	$\mathrm{~m}_{23}$	\cdots
	C	m_{31}	$\mathrm{~m}_{32}$	$\mathrm{~m}_{33}$	\cdots
	\cdots	\cdots	\cdots	\cdots	\cdots

- The final demand matrix D and the output matrix X are $n \times 1$ matrices.
- The matrix equation for the model is

- Therefore, $X=(I-M)^{-1} D$ if $I-M$ is invertible.

Example
Given

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & -5 \\
-2 & -1 & 2
\end{array}\right),
$$

$C=A B$. Find the second column of matrix C.

Problems and Solutions

Solution

A is of size 2×2 and B is of size 2×3, so C is of size 2×3. For its second column, we only need to calculate c_{12} and c_{22}.

- For c_{12}, the 1 st row of A and the 2 nd column of B are needed:

$$
c_{12}=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\binom{1}{-1}=1 \cdot 1+3 \cdot(-1)=-2 .
$$

- For c_{22}, the 2 nd row of A and the 2 nd column of B are needed:

$$
c_{22}=\left(\begin{array}{ll}
2 & 0
\end{array}\right)\binom{1}{-1}=2 \cdot 1+0 \cdot(-1)=2 .
$$

The second column of C is $\binom{-2}{2}$.

Example

Given a system of linear equations:

$$
\left\{\begin{array}{l}
x_{1}-x_{2}+2 x_{3}=1 \\
x_{1}+x_{2}+4 x_{3}=5 \\
2 x_{1}+h x_{3}=k
\end{array}\right.
$$

(a) Write down the corresponding augmented matrix $(A \mid b)$ from $A x=b$.
(b) For what value of h, the system can not have a unique solution (either no or infinite number). Is A invertible in this case?
(c) Then for what value of k, the system has infinite number of solution. Express the resulting solution.

Solution

(a) The augmented matrix is $\left[\begin{array}{ccc|c}1 & -1 & 2 & 1 \\ 1 & 1 & 4 & 5 \\ 2 & 0 & h & k\end{array}\right]$
(b) To find the reduced form

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 \\
1 & 1 & 4 & 5 \\
2 & 0 & h & k
\end{array}\right] \xrightarrow{\substack{-R_{1}+R_{2} \rightarrow R_{2} \\
-2 R_{2}+R_{3} \rightarrow R_{3}}}\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 \\
0 & 2 & 2 & 4 \\
0 & 2 & h-4 & k-2
\end{array}\right] \xrightarrow{R_{2} / 2 \rightarrow R_{2}}} \\
& {\left[\begin{array}{ccc|c}
1 & -1 & 2 & 1 \\
0 & 1 & 1 & 2 \\
0 & 2 & h-4 & k-2
\end{array}\right] \xrightarrow{\substack{R_{2}+R_{1} \rightarrow R_{1} \\
-2 R_{2}+R_{1} \rightarrow R_{3}}}\left[\begin{array}{ccc|c}
1 & 0 & 3 & 3 \\
0 & 1 & 1 & 2 \\
0 & 0 & h-6 & k-6
\end{array}\right]}
\end{aligned}
$$

if $h=6$, the last equation is $0=k-6$, where there is either infinite number of or no solutions. A is NOT invertible in this case.
Maosheng Xiong Department of Mathematics, HKUST MATH 1003 Review: Part 2. Matrices

Problems and Solutions

Example

Find the solution $x_{1}, x_{2} x_{3}$ and x_{4} for the following system:

$$
\left\{\begin{array}{l}
x_{1}-x_{3}+2 x_{4}=0 \\
3 x_{1}-4 x_{2}+2 x_{3}=13 \\
x_{1}+x_{2}-3 x_{4}=-1 \\
2 x_{1}+x_{2}-x_{3}-5 x_{4}=-1
\end{array}\right.
$$

Solution

(c) To have infinite number of solution, $k=6$, then the augmented matrix is $\left[\begin{array}{lll|l}1 & 0 & 3 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So the system of linear equations is transformed to

$$
\left\{\begin{array}{l}
x_{1}+3 x_{3}=3 \\
x_{2}+x_{3}=2
\end{array}\right.
$$

If we set $x_{3}=t$ as the free variable, the solution becomes

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
2 \\
0
\end{array}\right)+t\left(\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right)
$$

Problems and Solutions

Solution - Part 1

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
1 & 0 & -1 & 2 & 0 \\
3 & -4 & 2 & 0 & 13 \\
1 & 1 & 0 & -3 & -1 \\
2 & 1 & -1 & -5 & -1
\end{array}\right] \xrightarrow{\substack{-3 R_{1}+R_{2} \rightarrow R_{2} \\
-R_{1}+R_{3} \rightarrow R_{3} \\
-R_{1}+R_{4} R_{4}}}\left[\begin{array}{cccc|c}
1 & 0 & -1 & 2 & 0 \\
0 & -4 & 5 & -6 & 13 \\
0 & 1 & 1 & -5 & -1 \\
0 & 1 & 1 & -9 & -1
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftrightarrow R_{4}}\left[\begin{array}{ccccc|c}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 1 & -9 & -1 \\
0 & 1 & 1 & -5 & -1 \\
0 & -4 & 5 & -6 & 13
\end{array}\right] \xrightarrow{\substack{-R_{2}+R_{3} \rightarrow R_{3} \\
4 R_{2}+R_{4}+R_{4}}}\left[\begin{array}{cccc|c}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 1 & -9 & -1 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 9 & -42 & 9
\end{array}\right]
\end{aligned}
$$

Solution - Part 2

$$
\left.\xrightarrow{\substack{\frac{R_{3}}{\begin{subarray}{c}{R_{4}} R_{3} }} \boldsymbol{R _ { 4 }}}\end{subarray}}\left[\begin{array}{cccc|c}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 1 & -9 & -1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & -\frac{14}{3} & 1
\end{array}\right] \xrightarrow{R_{3} \leftrightarrow R_{4}}\left[\begin{array}{cccc|c}
1 & 0 & -1 & 2 & 0 \\
0 & 1 & 1 & -9 & -1 \\
0 & 0 & 1 & -\frac{14}{3} & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]\right] .
$$

Solution - Part 2

Therefore, $x_{1}=1, x_{2}=-2, x_{3}=1, x_{4}=0$.

Problems and Solutions

Example

Which of the following matrices is in reduced form?

$$
\begin{gathered}
A=\left(\begin{array}{lllll}
1 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{lllll}
1 & 2 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
C=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
\end{gathered}
$$

Answers may be found somewhere in the neighbouring slides

Example

An economy is based on two sectors, energy (E) and water (W). To produced one dollar's worth of E requires 0.4 dollar's worth of E and 0.2 dollar's worth of W , and to produce one dollar's worth of W requires 0.1 dollaar's worth of E and 0.3 dollar's worth of W.
(a) Find the technology matrix M for the economy.
(b) Find the total output for each sector that is needed to satisfy a final demand of $\$ 40$ billion for energy and $\$ 30$ billion for water.

Answers to the question in the previous slide: B.

Problems and Solutions

Solution

To produce

(a)

(b) By setting x_{1} - output for E and x_{2} - output for W , we have

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
0.4 & 0.1 \\
0.2 & 0.3
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{40}{30} \\
\Rightarrow\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
0.6 & -0.1 \\
-0.2 & 0.7
\end{array}\right)^{-1}\binom{40}{30}=\binom{77.5}{65}
\end{gathered}
$$

