HKUST

MATH1003 Calculus and Linear Algebra

Final exam (Version C)
Name: \qquad
14th December 2016
Student ID: \qquad
12:30-14:30
Seat Number: \qquad
S H Ho Sports Hall
Lecture Section: \qquad

Directions:

- Do NOT open the exam until instructed to do so.
- Please turn off all phones and pagers, and remove headphones.
- Please write your name, student ID, Seat number and Lecture Section in the space provided above.
- When instructed to open the exam, please check that you have 10 pages in addition to the cover page.
- Answer all questions. Show an appropriate amount of work for each problem. If you do not show enough work, you will get only partial credit.
- Any forms of calculators are NOT allowed.
- This is a closed book examination.
- Cheating is a serious offense. Students caught cheating will receive a zero score for the midterm exam, and will also be subjected to further penalties imposed by the University.

Question No.	Points	Out of
Q. 1-9		45
Q. 9		20
Q. 10		20
Q. 11		20
Total Points		105

Part I: Answer the following multiple choice questions.

Put your MC question answers in CAPTICAL letters in the following boxes.

Question	1	2	3	4	5	Total
Answer						

Question	6	7	8	9	Total
Answer					

Each of the following MC questions is worth 5 points. No partial credit.

1. Air is pumped into a spherical balloon at the rate of 8 cubic centimeters per minute. What is the rate of change of the surface area per minute when the radius of the balloon is 2 centimeters? (The volume of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$ and the surface area is $S=4 \pi r^{2}$.)
(a) 8.
(b) 8π.
(c) 4π.
(d) 2π.
(e) 4 .
2. The following is a plot of $f^{\prime \prime}(x)$, the second derivative of a function $f(x)$. Find ALL the inflection points of $f(x)$.

(a) $x=0,3.5$.
(b) $x=-1.5,1.8$.
(c) $x=-1.5,0,1.8,3.5$.
(d) $x=-2,3,4$.
(e)
$x=-2,0,3,4$.
3. A candy box is to be made out of a piece of cardboard that measures 8 by 8 inches. Squares of equal size will be cut out of each corner, and then the ends and sides will be folded up to form a rectangular box. What size square should be cut from each corner to obtain a maximum volume?
(a) 4 .
(b) $\frac{4}{3}$.
(c) $\frac{2}{3}$.
(d) 2 .
(e) None of the above.
4. At which point of x is the tangent line of the graph $y=e^{2 x}-2 x+1$ horizontal?
(a) $x=0$.
(b) $x=\frac{\ln 2}{2}$
(c) $x=1$
(d) $x=\frac{\ln 3}{2}$
(e) None of the above
5. What is $f^{\prime \prime}(0)$ for $f(x)=\ln \left(1+e^{x}\right)$?
(a) 0 .
(b) $\frac{1}{2}$.
(c) $\frac{1}{4}$.
(d) e.
(e) None of the above
6. Which of the following number is the slope of the tangent line to the curve given by

$$
\ln (x y)=y^{2}-1
$$

at the point $(x, y)=(1,1)$?
(a) 0 .
(b) $\frac{1}{2}$.
(c) 1 .
(d) 2 .
(e) None of the above.
7. What value of A would make the function

$$
f(x)= \begin{cases}A x e^{\frac{x}{2}} & \text { if } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

a probability density function?
(a) $\frac{1}{4}$.
(b) 2 .
(c) $\frac{1}{2}$.
(d) 4 .
(e) 1
8. The shelf life (in years) of a laser pointer battery is a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{2}{(x+2)^{2}} & \text { if } x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

What is the probability that a randomly selected laser pointer battery has a shelf life of from 1 to 4 years?
(a) $\frac{1}{4}$.
(b) $\frac{1}{6}$.
(c) $\frac{1}{3}$.
(d) $\frac{2}{5}$.
(e) None of the above.
9. Which of the following is the value of the definite integral

$$
\int_{1}^{2} \ln \left(x e^{2 x}\right) d x ?
$$

(a) $2 \ln 2+1$.
(b) $\ln 2+3$.
(c) $\ln 2+1$.
(d) $2 \ln 2+2$.
(e) None of the above.

Part II: Answer each of the following 3 long questions. Unless otherwise specified, numerical answers should be either exact or correct to 2 decimal places.
10. Consider the graph of the function $f(x)=\frac{x^{2}+x+2}{x-1}$ (five sub-problems).
(1). What is the domain of $f(x)$? What are the vertical and horizontal asymptotes (if there are any)? What are the x - and y-intercepts (if there are any)?
(2). List all critical numbers if there is any. Find the intervals on which $f(x)$ is increasing, and those on which $f(x)$ is decreasing.
(3). List all inflection points if there is any. Find the intervals on which $f(x)$ is concave upward, and those on which $f(x)$ is concave downward.
(4) Find the local maximum and local minimum of $y=f(x)$. Are they absolute maximum and absolute minimum of $y=f(x)$? Why?
(5) Use the above information to sketch the graph $y=f(x)$.
11. Calculate the indicated integrations (four sub-problems)
(1).

$$
\int\left(x^{3}+\frac{1}{x}+e^{x}\right) d x
$$

(2).

$$
\int x\left(e^{x}+e^{x^{2}}\right) d x
$$

(3).

$$
\int\left(\ln x+\frac{1}{x}\right) d x
$$

(4).

$$
\int\left(\ln x+\frac{1}{x}\right)^{2} d x
$$

12. Set-up the integral for computation

Instruction: just set-up the integral without explicitly computing it. For example, the area bounded by $y=x$ and the x axis over the interval $[1,2]$ is given by $\int_{1}^{2} x d x$. No need to compute it.
(1). Find the area between the graph of $f(x)=x^{2}-1$ and the x axis over the interval $[0,3]$.
(2). Find the area bounded by the graphs of $f(x)=x^{2}-1, g(x)=-x-3, x=-1$ and $x=2$.
(3). Find the area of the finite region bounded by the graphs of $f(x)=5-x^{2}$ and $g(x)=2-2 x$.
(4). Find the area of the finite region bounded by the graphs of $f(x)=x^{3}+5 x^{2}+5 x$ and $g(x)=x$.

Scratch paper

