MATH1003 Calculus and Linear Algebra, 2017-18 Fall Week 05 — Worksheet: Mid-term Review

Part I: Multiple Choice Questions.

Each of the following MC questions is worth 10 points, for a total of 50 points. No partial credit. Put your MC question answers in the following table.

1. Solve the system of linear equations

$$\begin{cases} x - 2y + 2z &= 3\\ 3x - 7y + 5z &= 4\\ 2x - 4y + 5z &= 9 \end{cases}$$

We find z = ?

- (b) z = 2 (c) z = 3
- (d) z = 0 (e) None of the above
- 2. A note will pay \$15,000 at maturity 5 years from now. How much should you be willing to pay for the note now if money is worth 5.2% compounded quarterly?
 - (a) \$13,640.6
- (b) \$13,257.8
- (c) \$12,305.7
- (d) * \$11,585.2
- (e) \$10,650.2
- - (a) [5, 1]. (b) [7, 2]
- (c) [15, 36]
- (d) [1, -3]
- (e) [2,3]
- 4. How many days will it take money to double if it is invested at 7.5% compounded daily? (Use a 365-day
 - (a) 9.24
- (b) 3200
- (c) 3374
- (d) 10.53
- (e) 3650

Part II: Answer each of the following 2 long questions. Unless otherwise specified, numerical answers should be either exact or correct to 2 decimal places. Write all steps.

- 5. [25 pts] A person purchased a \$250,000 home 10 years ago by paying 20% down and signing a 30-year mortgage at 12% compounded monthly.
 - (a) Find the monthly payment for the mortgage. $\frac{1 \left(1 + \frac{12\%}{12}\right) 30.12}{1 \left(1 + \frac{12\%}{12}\right)}$

(b) Find the unpaid balance of the mortgage now (or how much does he still owe to the bank).

un paid balance = PMT
$$\frac{1-(1+\frac{12}{12})^{-(30\cdot12+10\cdot12)}}{12}$$

(c) How much interest has he paid to the bank so far?

(d) Now the owner got a deal from a bank: he paid down 20% of the unpaid balance, and signed a new 20-year mortgage at 8% compounded monthly. What is the monthly payment for the new mortgage?

186835. 99 X 0.8 = New PMT
$$\frac{1-(1+\frac{8}{12})^{-20\cdot12}}{\frac{8}{12}}$$

(e) With refinancing, what is the total interest the person will pay during the next 20-year period?

Total interest = new pmT · 140 - mew principal
$$= |250.22 \times 240 - |8683599 \times 0.8$$

$$= |50584.0|$$

- 6. [25 pts] An economy is based on two sectors, energy (E) and water (W). To produce one dollar's worth of E requires 0.6 dollar's worth of E and 0.1 dollar's worth of W, and to produce one dollar's worth of W requires 0.2 dollar's worth of E and 0.7 dollar's worth of W.
 - (a) Find the technology matrix M for the economy.

$$M = \begin{bmatrix} 0.6 & 0.2 \\ 0.1 & 0.7 \end{bmatrix}$$

(b) Find the total output for each sector that is needed to satisfy a final demand of \$40 billion for energy and \$30 billion for water.

$$\begin{bmatrix}
I-M \\
 = \begin{cases}
 -0.1 \\
 -0.1
\end{bmatrix}$$

$$D = \begin{pmatrix} 40 \\
 30
\end{pmatrix}$$

$$(I-M)^{-1} = \begin{pmatrix} 3 & 1 \\
 2 & 4
\end{pmatrix}$$

$$X = (I-M)^{-1}D = \begin{bmatrix} 150 \\
 200
\end{bmatrix}$$
output for energy: 150 output for water: 200

(c) Find the final demand for each sector if the total output of energy is \$60 billion and the total output of water is \$70 billion.

$$P = (I-M) \times = \begin{pmatrix} 0.4 & -0.2 \\ -0.1 & 0.3 \end{pmatrix} \begin{pmatrix} 60 \\ 70 \end{pmatrix}$$

$$= \begin{pmatrix} 10 \\ 15 \end{pmatrix}$$
Final demand for energy: 10

Final demand for water: 15.