

1. (P.667, Q. 1) Identify the following based on the function graph:
(a) the intervals on which $f^{\prime}(x)<0:(-\infty, b) \cup(0, e) \cup(e, g)$
(b) the intervals on which $f^{\prime}(x)>0: \overline{(b, d) \cup(d, 0) \cup(g,+\infty)}$
(c) the intervals on which $f(x)$ is increasing: $(b, d) \cup(d, 0) \cup(g,+\infty)$
(d) the intervals on which $f(x)$ is decreasing: $(-\infty, b) \cup(0, e) \cup(e, g)$
(e) the x coordinates of local maximum: \qquad
(f) the x coordinates of local minimum: \qquad
(g) the intervals on which $f^{\prime \prime}(x)<0:(-\bar{\infty}, a) \cup(d, e) \cup(h,+\infty)$
(h) the intervals on which $f^{\prime \prime}(x)>0$: $(a, d) \cup(e, h)$
(i) the intervals on which $f(x)$ is concave upward: \qquad
(j) the intervals on which $f(x)$ is concave downward: $\underline{(-\infty, a) \cup(d, e) \cup(h,+\infty)}$
(k) the x coordinates of the inflection point: \qquad
(l) the horizontal asymptotes: \qquad
(m) the vertical asymptotes: \qquad
2. (P. 668, Q.9) Sketch a graph of f satisfying the following conditions:
(a) Domain of f includes all real numbers except $x=2$ and $x=-2$;
(b) $f(-3)=-1, f(0)=0, f(3)=1$;
(c) $f^{\prime}(x)<0$ on $(-\infty,-2)$ and $(2,+\infty)$;
(d) $f^{\prime}(x)>0$ on $(-2,2)$;
(e) $f^{\prime \prime}(x)<0$ on $(-\infty,-2)$ and $(-2,0)$;
(f) $f^{\prime \prime}(x)>0$ on $(0,2)$ and $(2,+\infty)$;
(g) vertical asymptotes: $x=2$ and $x=-2$;
(h) horizontal asymptotes: $y=0$.

3. (P. 668, Q.27) Sketch $f(x)=x-\ln x$.

Domain: $x>0$.

First-order Derivative:

$$
f^{\prime}(x)=1-\frac{1}{x} \begin{cases}<0 & \text { when } 0<x<1 ; \quad \text { (decreasing) } \\ =0 & \text { when } x=1 ; \quad \text { (critical number \& local minimum) } \\ >0 & \text { when } x>1 . \\ \text { (increasing })\end{cases}
$$

Second-order Derivative:

$$
f^{\prime \prime}(x)=\frac{1}{x^{2}}>0 .(\text { concave upward })
$$

Vertical Asymptote: $x=0$.
4. (P. 669, Q. 73)(Revenue) The marketing research department for a computer company used a large city to test the market for the firm's now laptop. The department found that the relationship between unit price p (in dollars) and demand x (units sold per week) was approximately given by

$$
p(x)=1296-0.12 x^{2} \quad 0 \leqslant x \leqslant 80
$$

Therefore the weekly revenue is given by

$$
R(x)=1296 x-0.12 x^{3} \quad 0 \leqslant x \leqslant 80
$$

Graph R.

Domain: $0 \leq x \leq 80$.
First-order Derivative:

$R^{\prime}(x)=1296-0.36 x^{2} \begin{cases}>0 & \text { when } 0<x<60 ; \\ =0 & \text { when } x=60 ; \quad \text { (critical numbering) } \\ >0 & \text { when } x>60 . \\ \text { (decreasing) }\end{cases}$
Second-order Derivative:

$$
R^{\prime \prime}(x)=-0.72 x<0 .(\text { concave downward })
$$

5. (P. 670, Q. 83)(Medicine) A drug is injected into a patient's bloodstream through her right arm. The drug concentration (in milligrams per cubic centimeter) in blood stream of the left arm t hours after the injection is given by

$$
C(t)=\frac{0.14 t}{t^{2}+1}
$$

Graph C.

Domain: $t \geq 0$.
First-order Derivative:

$$
C^{\prime}(x)=\frac{-0.14\left(t^{2}-1\right)}{\left(t^{2}+1\right)^{2}} \begin{cases}>0 & \text { when } 0<t<1 ; \quad(\text { increasing }) \\ =0 & \text { when } t=1 ; \quad(\text { critical number \& local maximum }) \\ >0 & \text { when } t>1 .(\text { decreasing })\end{cases}
$$

Second-order Derivative:

$$
C^{\prime \prime}(x)=\frac{0.28 t\left(t^{2}-3\right)}{\left(t^{2}+1\right)^{3}} \begin{cases}<0 & \text { when } 0<t<\sqrt{3} ; \quad(\text { concave downward) } \\ =0 & \text { when } t=\sqrt{3} ; \quad \text { (inflection point) } \\ >0 & \text { when } t>\sqrt{3} . \quad(\text { concave upward) }\end{cases}
$$

