HKUST

MATH1003 Calculus and Linear Algebra

Final exam (Version A)	Name:	
14th December 2016	Student ID:	
12:30 - 14:30	Seat Number:	
S H Ho Sports Hall	Lecture Section:	

Directions:

- Do NOT open the exam until instructed to do so.
- Please turn off all phones and pagers, and remove headphones.
- Please write your name, student ID, Seat number and Lecture Section in the space provided above.
- When instructed to open the exam, please check that you have 10 pages in addition to the cover page.
- Answer all questions. Show an appropriate amount of work for each problem. If you do not show enough work, you will get only partial credit.
- Any forms of calculators are NOT allowed.
- This is a closed book examination.
- Cheating is a serious offense. Students caught cheating will receive a zero score for the midterm exam, and will also be subjected to further penalties imposed by the University.

Question No.	Points	Out of
Q. 1-9		45
Q. 9		20
Q. 10		20
Q. 11		20
Total Points		105

Part I: Answer the following multiple choice questions.

Put your MC question answers in CAPTICAL letters in the following boxes.

Question	1	2	3	4	5	Total
Answer	A	D	В	A	C	

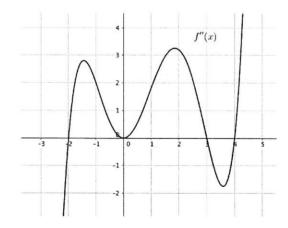
Question	6	7	8	9	Total
Answer	<u>C</u>	A	C	D	

Each of the following MC questions is worth 5 points. No partial credit.

1. Air is pumped into a spherical balloon at the rate of 8 cubic centimeters per minute. What is the rate of change of the surface area per minute when the radius of the balloon is 2 centimeters? (The volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$ and the surface area is $S = 4\pi r^2$.)

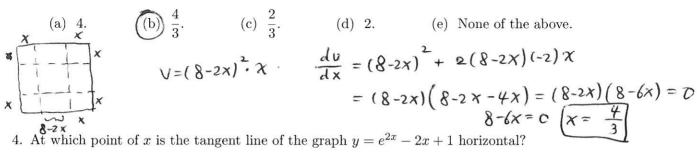
(a) 8. (b)
$$8\pi$$
. (c) 4π . (d) 2π . (e) 4.
$$V = \frac{4}{3}\pi r^3 \qquad \frac{dv}{dt} = \frac{4}{3}\pi 3 r^2 \frac{dr}{dt} = 8 \qquad \frac{dr}{dt} = \frac{8}{4\pi r^2} \qquad \frac{r=2}{4\pi r^2}$$
$$S = 4\pi r^2 \qquad \frac{dS}{dt} = 4\pi 2 r \frac{dr}{dt} \qquad \frac{dS}{dt} = 8\pi r \frac{dr}{dt} = 8\pi r \frac{8}{4\pi r^2} = \frac{16}{r} = 8\pi r \frac{dr}{dt}$$

2. The following is a plot of f''(x), the second derivative of a function f(x). Find ALL the inflection points of f(x).



(a)
$$x = 0, 3.5$$
. (b) $x = -1.5, 1.8$. (c) $x = -1.5, 0, 1.8, 3.5$. (d) $x = -2, 3, 4$. (e) $x = -2, 0, 3, 4$.

3. A candy box is to be made out of a piece of cardboard that measures 8 by 8 inches. Squares of equal size will be cut out of each corner, and then the ends and sides will be folded up to form a rectangular box. What size square should be cut from each corner to obtain a maximum volume?



(a)
$$x = 0$$
. (b) $x = \frac{\ln 2}{2}$ (c) $x = 1$ (d) $x = \frac{\ln 3}{2}$ (e) None of the above $y' = e^{2x}$, $z - 2 = 0$ $e^{2x} = 1 \implies 2x = 0$ $x = 0$

5. What is f''(0) for $f(x) = \ln(1 + e^x)$?

(a) 0. (b)
$$\frac{1}{2}$$
. (c) $\frac{1}{4}$. (d) e. (e) None of the above
$$f'(x) = \frac{e^x}{1 + e^x} = 1 - \frac{1}{1 + e^x} \qquad f''(x) = -\frac{o - (1 + e^x)^2}{(1 + e^x)^2} = \frac{e^x}{(1 + e^x)^2}$$
$$f''(o) = \frac{1}{(1 + e^x)^2} = \frac{1}{4}$$

6. Which of the following number is the slope of the tangent line to the curve given by

$$\ln(xy) = y^2 - 1$$

at the point (x, y) = (1, 1)?

7. What value of A would make the function

$$f(x) = \begin{cases} Axe^{\frac{x}{2}} & \text{if } 0 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

a probability density function?

$$1 = \int_{0}^{2} A \times e^{\frac{x}{4}} dx = A \int_{0}^{1} 2y e^{y} 2dy = 4A \int_{0}^{1} y e^{y} dy = 4A \left(y e^{y} - \int e^{y} dy \right)$$

$$\frac{x}{2} = y \quad x = 2y$$

$$dx = 2dy$$

$$\begin{cases} x = 0 \Rightarrow y = 0 \\ x = 2 \Rightarrow y = 1 \end{cases}$$

$$\begin{cases} x = 0 \Rightarrow y = 0 \\ x = 2 \Rightarrow y = 1 \end{cases}$$

$$\begin{cases} x = 0 \Rightarrow y = 0 \\ x = 2 \Rightarrow y = 1 \end{cases}$$

$$\begin{cases} x = 0 \Rightarrow y = 0 \\ x = 2 \Rightarrow y = 1 \end{cases}$$

8. The shelf life (in years) of a laser pointer battery is a continuous random variable with probability density function

$$f(x) = \begin{cases} \frac{2}{(x+2)^2} & \text{if } x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

What is the probability that a randomly selected laser pointer battery has a shelf life of from 1 to 4 years?

(a)
$$\frac{1}{4}$$
. (b) $\frac{1}{6}$. (c) $\frac{1}{3}$. (d) $\frac{2}{5}$. (e) None of the above
$$\int_{1}^{4} \frac{2}{(x+2)^{2}} dx = 2 \frac{(x+2)^{-2+1}}{-2+1} \Big|_{1}^{4} = 2 \left(-\frac{1}{(x+2)} \right) \Big|_{1}^{4}$$
$$= 2 \left(\frac{1}{3} - \frac{1}{6} \right) = \frac{1}{3}$$

9. Which of the following is the value of the definite integral

$$\int_{1}^{2} \ln (xe^{2x}) dx?$$
(a) $2 \ln 2 + 1$. (b) $\ln 2 + 3$. (c) $\ln 2 + 1$. (d) $2 \ln 2 + 2$. (e) None of the above.
$$\int_{1}^{2} \ln x + 2x dx = \int_{1}^{2} \ln x dx + x^{2} \Big|_{1}^{2} = \left(x \ln x - \int x \frac{1}{x} dx\right) + x^{2} \Big|_{1}^{2}$$

$$= \left(x \ln x - x + x^{2}\right) \Big|_{1}^{2}$$

$$= \left(x \ln x - x + x^{2}\right) \Big|_{1}^{2}$$

$$= \left(2 \ln 2 - 2 + 4\right) - \left(0 - 1 + 1\right)$$

$$= \left(2 \ln 2 + 2\right)$$

- Part II: Answer each of the following 3 long questions. Unless otherwise specified, numerical answers should be either exact or correct to 2 decimal places.
- 10. Consider the graph of the function $f(x) = \frac{x^2 + x + 2}{x 1}$ (five sub-problems).
 - (1). What is the domain of f(x)? What are the vertical and horizontal asymptotes (if there are any)? What are the x- and y-intercepts (if there are any)?

domain:
$$x \neq 1$$

$$x=0: f(0) = \frac{2}{-1} = -2$$

The vertical asymptotole is
$$x = 1$$
. No horizontal asymptote.

(2). List all critical numbers if there is any. Find the intervals on which f(x) is increasing, and those on which f(x) is decreasing.

$$f(x) = \frac{x^2 + 2x - 2 + 4}{x - 1} = x + 2 + \frac{4}{(x - 1)}$$

$$f(x) = 1 - \frac{4}{(x-1)^2} = \frac{(x-1)^2 - 4}{(x-1)^2} = \frac{(x-3)(x+1)}{(x-1)^2} = 0$$

sign chart of fix)



increasing:
$$(-\infty, -1) \cup (3, \infty)$$

(3). List all inflection points if there is any. Find the intervals on which f(x) is concave upward, and those on which f(x) is concave downward.

$$f''(x) = (1 - 4(x-1)^{-2})' = (-4)(-2)(x-1)^{-3} = \frac{8}{(x-1)^3}$$

(4) Find the local maximum and local minimum of y = f(x). Are they absolute maximum and absolute minimum of y = f(x)? Why?

By the 1st or 2nd derivative test,
$$x=3$$
 is a local min $x=-1$ is a local max. They are not absolute max/min.

(5) Use the above information to sketch the graph y = f(x).

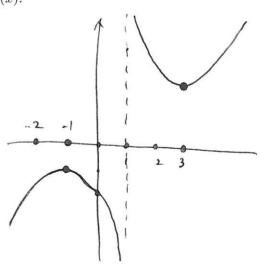
$$y = f(x) = \frac{x^2 + x + 2}{x - 1}$$

$$x = 2, \quad y = \frac{4 + 2 + 2}{1} = 8$$

$$x = 3 : \quad y = \frac{9 + 3 + 2}{2} = 7$$

$$x = -1 : \quad y = \frac{1 - 1 + 2}{-2} = -1$$

$$x = 0, \quad y = -2$$



11. Calculate the indicated integrations (four sub-problems)

(1).
$$\int \left(x^3 + \frac{1}{x} + e^x\right) dx.$$

$$\frac{\chi^4}{4} + \ln|\chi| + e^{\chi} + C.$$

(2).
$$\int x (e^{x} + e^{x^{2}}) dx.$$

$$\int x e^{x} dx + \int x e^{x^{2}} dx = A + B$$

$$A: \begin{cases} u = x \\ dv = e^{x} dx \end{cases} \Rightarrow \begin{cases} du = dx \\ v = e^{x} \end{cases} A = x e^{x} - \int e^{x} dx = x e^{x} - e^{x} + C$$

$$B: \begin{cases} u = x^{2} \\ du = 2x dx \end{cases} \Rightarrow B = \int \frac{1}{2} e^{u} du = \frac{1}{2} e^{u} + C = \frac{1}{2} e^{x} + C$$

..
$$A+B = xe^{x} - e^{x} + \frac{1}{2}e^{x^{2}} + c$$

 $xdx = \frac{1}{2}da$

(3).
$$\int \left(\ln x + \frac{1}{x}\right) dx.$$

$$I = \int \ln x \, dx + \ln |x| + C - A = \int \ln x \, dx$$

$$\int u = \ln x \Rightarrow \int u = \frac{1}{x} dx \qquad A = x \ln x - \int x + \frac{1}{x} dx = x \ln x - x + C$$

$$\int du = dx \Rightarrow \int u = x \qquad A = x \ln x - x + \ln x + C$$

$$\therefore I = x \ln x - x + \ln |x| + C = x \ln x - x + \ln x + C$$

(4).
$$\widetilde{A} = \int (\ln x + \frac{1}{x})^2 dx.$$

$$\widetilde{A} = \int (\ln x)^2 dx + 2 \int \frac{\ln x}{x} dx + \int \frac{1}{x^2} dx = A_1 + A_2 + A_3$$

$$A_1 : \begin{cases}
u = (\ln x)^2 \\
du = dx
\end{cases}
\qquad \Rightarrow \begin{cases}
du = 2 (\ln x) \frac{r}{x} dx \\
v = x
\end{cases}$$

$$A_2 = x(\ln x)^2 - 2 \int x^2 (\ln x) \frac{1}{x} dx = x(\ln x)^2 - 2 \int \ln x dx$$

$$= x(\ln x)^2 - 2 A = x(\ln x)^2 - 2(x \ln x - x) + C$$

$$A_2 : \begin{cases}
u = \ln x \\
du = \frac{1}{x} dx
\end{cases}$$

$$A_2 = 2 \int u du = u^2 + C = (\ln x)^2 + C$$

 $A_3 = \int x^{-2} dx = \frac{x^{-2+1}}{x^2+1} + C = -\frac{1}{x^2} + C$

50 A=A1+A2+A3 = x(lnx)2-2(xlnx+x)+(lnx)2-1x+C

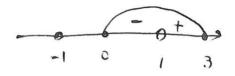
12. Set-up the integral for computation

Instruction: just set-up the integral without explicitly computing it. For example, the area bounded by y = x and the x axis over the interval [1,2] is given by $\int_1^2 x dx$. No need to compute it.

(1). Find the area between the graph of $f(x) = x^2 - 1$ and the x axis over the interval [0, 3].

$$\chi^2 - 1 = (\chi - 1)(\chi + 1)$$

Area =
$$\int_0^1 -(x^2-1) dx$$



(2). Find the area bounded by the graphs of $f(x) = x^2 - 1$, g(x) = -x - 3, x = -1 and x = 2.

$$\chi^{2} - 1 - (-\chi - 3) = \chi^{2} + \chi + 2 > 0$$
 for all χ as $\Delta = 1 - 4x^{2} = -\chi_{1}$

50 Area =
$$\int_{-1}^{2} \chi^2 + \chi + 2 dx$$
.

(3). Find the area of the finite region bounded by the graphs of $f(x) = 5 - x^2$ and g(x) = 2 - 2x.

$$f(x) = g(x) = 5 - x^{2} - (2 - 2x) = -x^{2} + 2x + 3$$

$$= -(x + 1)(x - 3) = 0$$

$$x = -1, x = 3 \cdot \text{ sign chart of } f(x) - g(x)$$

$$= -1 \cdot x = 3 \cdot \text{ sign chart of } f(x) - g(x)$$

$$= -1 \cdot x = 3 \cdot x = 3$$

(4). Find the area of the finite region bounded by the graphs of $f(x) = x^3 + 5x^2 + 5x$ and g(x) = x.

$$h(x) = f(x) - g(x) = \chi(x^2 + 5x + 4) = \chi(x + 1)(x + 4) = 0$$
 $x = 0, -1, -4$

sign chart: of $h(x)$

The area is
$$\int_{-4}^{-1} \chi(x+1)(x+4) dx + \int_{-1}^{0} -\chi(x+1)(x+4) dx$$
.