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MATH1003 Calculus and Linear Algebra

Final exam (Version A) Name:
14th December 2016 Student ID:
12:30 - 14:30 Seat Number:
S H Ho Sports Hall Lecture Section:
Directions:

e Do NOT open the exam until instructed to do so.

e Please turn off all phones and pagers, and remove headphones.

e Please write your name, student ID, Seat number and Lecture Section in the space provided

above.

e When instructed to open the exam, please check that you have 10 pages in addition to the

cover page.

e Answer all questions. Show an appropriate amount of work for each problem. If you do not

show enough work, you will get only partial credit.
e Any forms of calculators are NOT allowed.

e This is a closed book examination.

e Cheating is a serious offense. Students caught cheating will receive a zero score
for the midterm exam, and will also be subjected to further penalties imposed

by the University.

Question No. Points Out of
Q. 1-9 45
Q.9 20
Q. 10 20
Q. 11 20

Total Points

105




Part I: Answer the following multiple choice questions.

Put your MC question answers in CAPTICAL letters in the following boxes.
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Each of the following MC questions is worth 5 points. No partial credit.

1. Air is pumped into a spherical balloon at the rate of 8 cubic centimeters per minute. What is the
rate of change of the surface area per minute when the radius of the balloon is 2 centimeters? (The
volume of a sphere of radius r is V = §7T'r3 and the surface area is S = 4zr?.)
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2. The following is a plot of f”(x), the second derivative of a function f(z). Find ALL the inflection
points of f(x).

(@) £=0,35. (b) z=-1518  (c) =—1.5,0,18,35. z=-2,3,4 (e
r=-2,0,3,4.



3. A candy box is to be made out of a piece of cardboard that measures 8 by 8 inches. Squares of
equal size will be cut out of each corner, and then the ends and sides will be folded up to form a
rectangular box. What size square should be cut from each corner to obtain a maximum volume?

(b)Y % (c) % (d) 2. (e) None of the above.
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4. At which point of z is the tangent line of the graph y = € — 22 + 1 horizontal? :

In2 B In3
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(a) 0. (b) % % (d) e. (e) None of the above

’S;/(X)': = (- — ) = - - x ~ v
(+eX +e ((+€") ((+€)
" i [
hadie ek = o
.§ ((+)* 4
6. Which of the following number is the slope of the tangent line to the curve given by
In(zy) = y* — 1
at the point (z,y) = (1,1)?
(a) 0. (b) % @ 1. (d) 2. (e) None of the above.
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7. What value of A would make the function

f(z) = Aze: if0<z<?2
0 otherwise

a probability density function?
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8. The shelf life (in years) of a laser pointer battery is a continuous random variable with probability
density function

- ifz >0
= m ! -
@) { 0 otherwise

What is the probability that a randomly selected laser pointer battery has a shelf life of from 1 to
4 years?

(a) 1. (b) 2. @ L. (d) % (e) None of the above.
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9. Which of the following is the value of the definite integral
2
/ In (megx) dxz?
i
(@) 2In2+1. (b) m2+3. (¢) m2+1. f(d))2In2+2. (e) None of the above.
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Part II: Answer each of the following 3 long questions. Unless otherwise specified, nu-
merical answers should be either exact or correct to 2 decimal places.

2 +x+2

10. Consider the graph of the function f(z) = i
-

(five sub-problems).

(1). What is the domain of f(z)? What are the vertical and horizontal asymptotes (if there are
any)? What are the z- and y-intercepts (if there are any)?
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(2). List all critical numbers if there is any. Find the intervals on which f(z) is increasing, and
those on which f(z) is decreasing.
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(3). List all inflection points if there is any. Find the intervals on which f(z) is concave upward,
and those on which f(z) is concave downward. 3
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(4) Find the local maximum and local minimum of y = f(x). Are they absolute maximum and
absolute minimum of y = f(z)? Why?
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(5) Use the above information to sketch the graph y = f(z).
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11. Calculate the indicated integrations (four sub-problems)
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12. Set-up the integral for computation
Instruction: just set-up the integral without explicitly computing it. For example, the area
bounded by y = x and the x axis over the interval [1, 2] is given by [, 12 xdz. No need to compute it.

(1). Find the area between the graph of f(z) = z® — 1 and the z axis over the interval [0, 3].

olf=(x-1)(X+I)
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(2). Find the area bounded by the graphs of f(z) = 2% — 1,9(z) = -2z — 3,2 = —1 and z = 2.
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(3). Find the area of the finite region bounded by the graphs of f(z) =5 — z? and g(z) = 2 — 2z.
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