PAIR CORRELATION OF SUMS OF RATIONALS WITH BOUNDED
HEIGHT

EMRE ALKAN, MAOSHENG XIONG, AND ALEXANDRU ZAHARESCU

ABSTRACT. For each positive integer @, let .%, denote the Farey sequence of order Q). We
prove the existence of the pair correlation measure associated to the sum .#, +.%#, modulo
1, as @ tends to infinity, and compute the corresponding limiting pair correlation function.

1. INTRODUCTION

The study of local spacings, which measure the distribution of a sequence in a more subtle
way than the classical Weyl uniform distribution ([46]), was initiated by physicists (see
Wigner [47] and Dyson [11], [12], [13]), in order to understand the spectra of high energies.
These notions have received a great deal of attention in many areas of mathematical physics,
analysis, probability theory and number theory. In most cases of interest in number theory
it is very challenging to prove the existence of the limiting spacing measures. Many such
sequences are predicted to have a Poisson distribution, and some important results of this
type are due to Hooley [19], [20] on residue classes relatively prime with a large modulus ¢,
Gallagher [17] on gaps between primes, Sarnak [39] on values at integers of binary quadratic
forms, and Rudnick and Sarnak on pair correlation of fractional parts of polynomials [34].
Further results have been obtained by a number of authors. Primitive roots modulo p were
studied in [9], and the distribution of visible points from the origin in dilations of a region
) was established in [4]. The spacing distribution of fractional parts of lacunary sequences
has been obtained by Rudnick and one of the authors in [36] and [38] (see also [7]), and
the distribution of small powers of a primitive root was studied in [37]. Boca and one of
the authors [6] investigated the pair correlation of values of rational functions modulo p.
Kurlberg and Rudnick [27] (see also [26]) established the distribution of squares modulo
highly composite integers. The spacings between the energy levels of a two-dimensional
harmonic oscillator (see Pandey, Bohigas and Giannoni [32] and Bleher [2],[3]) are essentially
those between the numbers an (mod 1), where the gaps take at most three values (see S6s
[40] and Swierczkowski [41]). The distribution of energy levels of a boxed oscillator reduces
to that of an? (mod 1), which is conjectured to be Poissonian (see Berry and Tabor [1]).
Rudnick, Sarnak and one of the authors [35] (see also [50]) proved that this conjecture holds
true for a large class of numbers « satisfying certain Diophantine conditions. Eigenvalues on
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multidimensional flat tori, and values at integers of homogeneous polynomials, were studied
by Vanderkam [42], [43], [44]. Correlation densities of inhomogeneous quadratic forms were
investigated by Marklof [28], [29]. The distribution of fractional part of y/n was established
by Elkies and McMullen [14]. The distribution of imaginary parts of zeros of primitive L-
functions is believed to be the same as the GUE distribution studied by Random Matrix
Theory. Important work in this area was done by Montgomery [30], Rudnick and Sarnak
[33], and Katz and Sarnak [24], see also [25]. One striking difference between the GUE model
and the Poissonian model is that the density function vanishes at the origin in the GUE case
but not in the Poissonian case. For this reason, it is said that in the Poissonian case one has
“level clustering” while in the GUE case one has “level repulsion”. Here the word “level”,
coined by physicists, refers to the possibly infinitely many stages of a process. One has an
even stronger repulsion in the context described below.

Here we investigate a new type of question, which concerns two different notions: the pair
correlation of the given sequence and the natural additive structure of the ambient space.
More specifically, for each positive integer @ let .#, denote the Farey sequence of order @
(for basic properties of the Farey sequence see [18]), as the Qth level of our process, that
is, the set of all rationals in [0, 1] of height bounded by @ (the height of a rational number,
in irreducible form, is defined to be the maximum of the absolute values of its numerator
and denominator). The pair correlation measure associated to ., was proved to converge,
as () — oo, by Boca and one of the authors [8]. They showed that the limiting measure
is absolutely continuous with respect to the Lebesgue measure, and provided an explicit
formula for the corresponding limiting pair correlation function g(\),

T2\
g()\> = T2)\2 Z @(k) 10g§7

1<k

for any A\ > 0, where ¢ is Euler’s totient function.

Let #Z, ={% : 1<a<b<Q, (a,b) = 1} be the set of Farey fractions of order Q
and also let .7, +.%, C [0, 1) denote the set of all sums of pairs of fractions in .%, written
modulo 1. Our goal is to understand whether addition of Farey fractions influences the pair
correlation measure. For this purpose, we compare the pair correlation of .7, + .7, (mod
1) with that of %, as Q — oo. From a technical point of view the pair correlation measure
of the sum .7, + .7, is more difficult to handle than that of .%,. The Weil bounds [45],
[15] for Kloosterman sums, which played a decisive role in [8], fail to solve the problem.
A natural strategy would be to employ Deligne bounds [10] for two dimensional hyper-
Kloosterman sums, but the range of the sums turns out to be too short for this method to
succeed either. Karatsuba [21], [22], [23] devised a method for bounding certain exponential
sums, and Friedlander and Iwaniec applied it successfully in [16], but our short ranges are
outside the scope of this method either. As pointed out in [48], [49], one sometimes obtains
more cancellation by averaging the pair correlations themselves rather than by averaging
their expressions in terms of exponential sums. Inspired by this idea, we adjust our use of
exponential sums, and barely obtain enough cancellation to complete the proof. In order
to state our main result, we introduce a multiplicative arithmetic function ¢, which plays a
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similar role for .7, +.%,, to the one played by Euler’s function for .#,. We define 1 in terms
of its associated D1r1ch1et series,

) > U S TT )

prime

where ((s) is the Riemann Zeta function, and Hp(s) is given by

Hy(s) = 1+ L= {_ Loy (L= pt00=) 1 —pk(l—s>)4} .

p(p+3) p—1 (1 —pt=s)phC=2)

Theorem 1. The limiting pair correlation function of %, + %, modulo 1 exists, as () — oo,
on any subinterval T C [0, 1], and is given by

c T\
2\ = 53 > 4p(k)log? T

1<k

= I n) (- m)

p prime

k=1

for any A > 0, where

The above functions g(A) and g»(\) being distinct, we see that addition of Farey fractions
does influence, in this sense, the palr correlation. Their graphs are shown in Figure 1,

together with g, ,(A\) =1 — (smj\d) and g, . = constant equal to 1.

Acknowledgments. The author is grateful to the referee for many valuable suggestions.

2. A UNIFORM DISTRIBUTION RESULT

Let #, = {71,...,7n(q)} denote the Farey sequence of order @ with 1/Q = v < 7 <

- < v = 1 and F = (F,), Let x;; = v +; (mod 1) and denote by the set
G, =1z : 1 <4,j < N(Q)} = F, +.%, (mod 1) counting multiplicities. The sequence of
sequences G = (G,,) .y is uniformly distributed along the unit interval. More precisely,

Lemma 1. For any subinterval I C [0,1], denote Gi(Q) := G, (L. Then

9|1
#61Q) = Q"+ 0 (@10Q)")
Our method actually gives a more general counting result. For any continuously differentiable
function f: R¥ — R with compact support, we define

_Jof of  of
Df= <ax1’ax2"“"axk>

and

f

0z

HDfHoozz

J=1
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FIGURE 1. Graphs of g()), g2()), 9epp(A) and g, .

Lemma 2. Suppose 1 is a finite interval, G € C*(R) with Supp (G) C I. Define

gy) =D Gly+n), Sec= Y, 9(v+7).

ne”Z 'y,w’efj’\Q
Then

9 4
Sq.c = (/G(x)dJU) —ﬁ + Eqa,
I

where

Foe < Q*(1og Q)| DG ]| + Q*log Q \ / G(a)da

Proof of Lemma 2: For y € R, let

9(y) =D ane(ny)

neZ
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be the Fourier series expansion of g. Then

Soc = D > aemy+Y) = a, Y e(ny) > e(ny)

w,v’eﬁQ ne”Z neZ veyQ v’eﬂQ
2

- Y| T dM(%)

nez 1<d<@Q
din
Q Q
—_ Z dldgM (d_l M d_2 Z CL[dth]l.

1<d1,d2<Q lez

Consider for each y > 0 the function

and using Poisson summation formula,

> gy =Y G([dy, da]l) = > Glay.an) () = > Gl ().

leZ leZ leZ leZ

Soa= D, M (g) M (dg) 2 il ([dl,l dQ]) |

1<d1,d2<@Q

Thus

Applying Lemma 8 of [5], we obtain

2 [dljldz]G ([dlfdﬂ) - /IG(m)(M o (HDGHOO ([df‘dz] i [d1»2d2]2)> '

Soc = (/IG(x)dx) ( > didyM (dgl) M (d%)) + Eg,

1<d1,d2<Q

_ (/IG(ar)dx) ( S am (%))2“5@,1,

1<d<Q

Therefore,

where

Ega< ), @ (HDGHOO ([dflb] * [d1»2d2}2>) '

1<d1,d2<Q
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Since
1
1<dzd:< [d1,d2] B Z Z dl,dz Z Z 0q1G2
<d1,d2<Q 1<6<Q 1<d;,d2<Q 1<6<Q 1<q1,32<Q
(d1,d2)=6 (q1,92)=1
< (logQ)*,
and

D

1<d1,d2<Q

. 3
[d17d22_ Z Z q(b_(Z ﬁ) = o),

1<6<Q 1<q1, q2<Q 1<6<@Q
(q1,92)=1

it follows that,
By < Q* (logQ)’ || DG||s 1)
Moreover we observe that

S dum (%) =AY w =) Y d

d<Q d<Q  r<Q/d r<Q d<Q/r

= 3 ulr) (g + 0(1)>2

r<@
2
- < ZM 0(QlogQ),
r<@

and therefore

ZdM(%) = %2( +O(22)>+0(Q10g62)

d<Q
2
- X o@us0),

( > dM (%))2 - 97%4+O(Q310g69).

1<d<Q

which finally gives

Combining all these estimates completes the proof of Lemma 2. g

Proof of Lemma 1. We will approximate the characteristic function yy of I by a C*
function. To this end, consider the function f(z) = 3z — 223 for x € [0,1]. First note the
following properties:

o f'(x) =6x(1—2x)>0and |f'(z) <3/2for x € [0,1];

o ['(0 ) f'(1)=0,£(0)=0,f(1) =

° fO x)dr = 1/2.
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For real numbers a < b < ¢ < d, we define the function g,p.q: R — [0, 1] by

0 : t<a;
F(E2) - a<t <
Gabed(l) = 1 c b<t<g
F-t2) @ c<t<d

0 : o d<t.

It is easy to see that gupcq € C*(R) with Supp (guped) C [a,d], and
3 1 1
l) a,b,c m>§ ) 7 3 )
[1Dgas.cal 2max<b_a d—c)
b—a d-—c

a,b,c dr =c—10
/Rg,b,,d(x)x c + 5 + 5

Now let G = ¥, the characteristic function of interval I = [a,b] C [0,1]. Putting a; =
a—€a=a+eb=b+eby=b—cand Gy = galabbl,Gz = Ga,a0,b0,b, We may denote by

ZGZJ+” fily ZGl (y +n)

nez nez
and fo(y) = > ,cz G2(y + n), to obtain that

Soc= Y, f0+7).Sec= >, h(v+7).8%c= Y., LO+7).
VY€, 1Y ETG TVEF

Since Gy < G = Xa) < (G1, we have
50,6, < 5¢.¢ < 5q,61-

Noticing that
/Gl(x)dx:b—a+e:|I|+e, /Gg(x)dx:b—a—e:m—e,
R R

and

3 3
DGl <2, [IDGallo < 2.

we may use lemma 2 to obtain
9
Socn = (+65Q + Eoa,

9
Soc, = (I - 6);@4 + EqQ.Ga;
where 5
Eqc, < Q*(log Q)" =(|T] +2¢) + Q" log Q(|T] + ),

and 3
Eqa, < Q* (log Q)° =T + @ log Q(|I| — ¢).
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Choosing
_ (logQ)*?
Q )
we have
9\I| s
So.cn = Sqa, = — Q"+ E,
where
E < Q*(log Q)*?,
Therefore 9|I|
#G1(Q) = So.c = —1 Q'+ 0 (Q*(log Q)*?),

which completes the proof of Lemma 1. |

3. PAIR CORRELATION OF SUMS OF FAREY FRACTIONS

For each positive integer @, let .7, = {71,...,7n (@)} denote the Farey sequence of order
Q with 1/Q = 11 < 72 < -+ < 7n@) = 1. Let I be a subinterval of [0,1]. Denote by
Ty =Y+7; (mod 1) and G, == {ry; : 1 <0, < N(Q)} = F,+.F, (mod 1), the set of sum
of Farey sequences of order () counted with multiplicity, G = (G,), and Gi(Q) := G, (L
Let #G1(Q) be the cardinality of Gi(Q). It is known from Lemma 1 that

4
@) N = #g‘}ﬁ@ =2 0@ 105 @)).
Our goal is to estimate the quantity

Sou() = # { (0.0) € Gu(Q) x (@) )b g }

for any positive real number A as () — oco. In fact we prove a more general result.

Lemma 3. Given the functions G, H € C'(R) with Supp (G) C (0,1) and Supp (H) C (0, A)

for some N > 0, deﬁne
ZH (y+n)) ZGern

nez nez
and let

Soruc = Y hlz—y)g(x)g(y).

xyEgQ
Then we have

9@4
SQJJLG = C; dZ f{ 92( )d$—FfQQIH(%

where for any x > 0,

(3) g2(x) =
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Here

e T (1 550) (- 50):

p prime

W is the multiplicative function defined in (1) and for any n > 0,

a—L+
Eqine <imey, @ ="

L

Note that assuming Lemma 3 with the error term Q4*§+’7, for 0 <n < 4,

we may obtain

.S .S
llm Q7I7H7G — llm Q)I7H7G

Qo0 #G1(Q) Q—oo U )4

_ o Gz G|(I'T) az /0 H () go(x) da.

Let the smooth function G approach x,, the characteristic function of the interval I, so that

fol G(2)%dz
1]

—

Also let the smooth function H approach X0+ the characteristic function of the interval
(0, A\). By a standard approximation argument, we see that the pair correlation function of
G along the subinterval I of [0, 1] exists and is independent of the location and length of the
subinterval. This completes the proof of Theorem 1.

Proof of Lemma 3. The proof of lemma 3 will require several steps. Throughout the
proof, all constants implied by the big “O” or “<” notation may depend on the functions
H and G.

3.1. Fourier series expansion and Poisson summation formula. If the Fourier series
expansion of the functions h and g are given by

h(y) =Y cne(ny)

nel

and

9(y) = > ane(ny)

nel
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for y € R, then it follows that

Soruc = Y. Y cme(m(y +92) —m(y; +14)) %

'Yla“{Qle :'YQG/Q m

Za" n(n + ) ZQT (V1 + 7))
— Zcmanar Z e((m+n)y) Z e((m 4+ n)vyz) x

m,n,r ’YlESZQ ’YzEsz
N el(r—mm) Y el(r - m))
716'?Q 'yée?Q
2 2
= > cntaa, | 3 ellmtnpy) | [ Y el —m))
m,n,r 'yeyQ 7632@
Therefore
2 2
Sormc = Y Cmanay [ Y dM (%) > dMm <%>
m,n,T 1<d<@, 1<d<Q,
dlm+n dlr—m

Changing the summation indices using m+n =m’,r —m =n/,m = ', we have m = r',n =
m' —r',r =n' +1r'. Consequently in terms of m’,n’,r’, we have

2 2
Q Q
SQ,I,H,G = Z Cypt Q! —pt Agy! 4! Z dM (E Z dM E
m/,n',r! 1<d<Q, 1<d<Q,
dlm/ dln’

= Z d d4M (fi) M <d94> Z CrQm—rQpir -

1§d17d27d37d4§Q r,‘m,n€|Z,
di|m,da|m,
dz|n,d4|n,
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Using an argument similar to that from [8] with Poisson summation formula, the inner sum
on r,m,n is given as

Z Cr Z A[dy,da]m—r Z Alds,dg]n+r

- sl s ()
) ; : ([fﬁ}fizz d3<c[;: 2 ZH( ( o [d;d‘*])).

3.2. Further Reductions. We need several reductions to convert the expression of Sg 1 ¢
to a manageable form.

3.2.1. First Reduction. First of all, note that since Supp (G) C (0,1), Supp (H) C (0,A),
[di,ds], [ds,ds] < Q* and N ~ Q% if r # 0, then as Q is sufficiently large, we have
H (N <7‘ + ﬁ — W)) = 0. Hence we may assume that r = 0.

3.2.2. Second Reduction. For positive integers dy, ds, ds, dy, let u = ([dy, ds], [ds, d4]) and
[dla dQ] _ [d37 d4]

€l = —=—, € po

u u
Since (e1,e5) = 1, there is a unique integer as such that 0 < @y < e1,a2e5 = 1 (mod ey).
Choose a; = (1 — ageq)/eq, so that aje; + azes = 1. Changing the summation indices with

m' = eam — ein, n’ = aym + asn, we have m = aam’ + ein/, n = —ay;m’ + eyn’, and hence

£ ()i )
> ol %) (i 5) " (@ania)

m/ n'€Z

Using
M (%) = > ulr),

r<Q/d
and changing the order of summation we rewrite Sg 1 m,¢ as

dydadsdy

SraG = Z (1) pre) p(rs ) pu(ra) Z m X
1<r1,72,r3,r4<Q dy<Q/ry, b1 THLES T
da<Q/ra,

aam n —am n Nm
G + =G +=|H|——— ).
m;ez ( [d1, do)] U) ([d& da] U> ( [dy, da, d3, d4] >
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3.2.3. Third Reduction. For positive integers dy, ds, d3, ds, denote

dydadsdy

§— _Gdsts
[d17 d27 d37 d4]

If @ is sufficiently large, then

9Q*

%(1—E)<N<?(1+6),

4

s
for any 0 < € < 1. Since Supp (H) C (0,A), to have a non-zero contribution from H, we
need

0< mrlr2r3r4—4(1 —€)-0 < mT1T2T3T4£ )
T Q*
< MITITersry al -0
179737 4d1dad3dy
Nm
T [ dadedy ~
which reduces to the condition
A
Mrirersrsd < 9(1—_6)
Denoting
A
(4) Ch = T’
and choosing € sufficiently small, we have
1 < mrirorsryd < Ch.
3.2.4. Fourth Reduction. Fix m,r, 79,735,174 and 6 = —4%ddi Hounded by Ch. Since

[d1,d2,d3,d4]
u|d, and Supp (G) C [0, 1], to have a non-zero contribution from G, we need

aom n
[dl,dg] u

There are only finitely many integers n satisfying this inequality. Denote by A the finite set
consisting of all possible values of such n. Changing the order of summation we obtain that

Serng = Y. wroumulur)s Y =

0<

mrirar3rad<Ch, d;<Q/r;,1<i<4,
neA, dydydsds s
[d1,dg,d3,dq]

([d1,d2],[d3,d4]) =1,

Aom n —am n Nmo )
a2+ 2)a + o) H (=22,
([dl, dg] U) ( [dl, dQ] U) <d1d2d3d4
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3.2.5. Fifth Reduction. Since a;e; + azes = 1, we have

a n ax u
[d37 d4] [dla dQ] [dh d?] : [d?n d4] ’

asm +ﬁ_<—51m+ﬁ>’_
[dly dQ] a [d17 d2] 'lj [dla d?] [dla d?]
mu m mo Ch

= < ,
[di,do] - [d3, da]  [dr,d2, ds,da]  didadsdy — didadzdy

—aim n aam n 1
Gl——+=)=G +=]|+0(—].
([dl, o] U) ([dl, o] U) (d1d2d3d4>
As a result of this reduction, we get

Sorma = > plro)p(rs)p(rs)p(ra)s -y +E,

mr1rer3rad<Ch,
neA,

and it follows that

aom —am

and

where the inner sum is given by

E E 1 asm n\’ Nmo
(5) = =G ( + :) H (—) ‘
d;<Q/r;,1<i<4, u [dl’ d2] Uu d1d2d3d4
_dydpdzdy _ ¢
[dy,dg,d3,dg] 7

([dl,dg],[d3,d4])=ﬁ,

Moreover the error term Fjy can be estimated as

1
6 E ) < (logQ) "
1<d1,d2,d3,d4<Q,

for any n > 0.

3.2.6. Sixth Reduction. Fix integers m,ry,ry,r3,74,0,n and u. Define
(7) Ps ={a € N: for any prime p, pla => p|d}.

For positive integers dy, da, d3, dg, d; < Q/r;, 1 <i < 4 with % and ([dy, do), [ds, d4]) =

u, factoring di,ds,ds,ds as di = ai1qi,ds = asqa,d3 = azqs,dy = asqs with a; € Ps and

(gi,0) = 1 for 1 < i < 4 together with [dy,ds] = [a1,as]qiqe, w = ([dy1,ds], [d3,d4]) =

([a1, as], [as, a4]), and % = ¢ implies that

a G034 5 419249394

[alua’27a3aa4] ’ [9176127%7(14]
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Here (¢;,q;) = 1 for i # j. Using these observations we can rewrite »  in (5) as

1
(8) > = > =)
u 1
a;<Q/r,1<i<4,
a1,a2,a3,a4€ Py,
ajagagzay ¢
l[a1,ag,a3,a4]
([a1,a2],[a3,a4])=7,

where the inner sum in (8) is given by

2
1 aam Nmo
9 = Gl=|——— H .
( ) Zl Z <u ( [ahaz}‘h‘h + n) ) (a1a2a3a4q1q2q3q4)

qi<Q/a;r;,1<i<4, u
(qi,q5)=1,i#],
(g:,9)=1,

3.2.7. Seventh Reduction. Next fix positive integers aq, as, a3, ay € Ps. Let

(10) a= [al,’v@], b= [G3La4], so that (a,b) =1 and a|d, b|d, u|d.
U U
Define the functions
1 2 N
11 =G| =- , h(z,y, 2, =H )
(1) 1) =G (5 tmo ) oz = a1 ()
where
(12) Ao M0,
1020304
We have
e = b do] _ [ar, azlngs aqigs < Q7
U U
ds,d
e = Wndl_ [t aslasts bazqs < Q7
U U
and
(13) 0 <ay <aqiqa, az(bgzqs) =1 (mod aqiqa).
Denoting

we can rewrite (9) in the form

[
(15) Zl = Z f( )h(Q1,Q27Q3>Q4)-
. aqi142
4:<Q/0;,1<i<4,
(gi,0)=1,

3.3. Further Estimations. We will need some further estimations in several stages.
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3.3.1. First Step. We know that

(16) 1fll = O(1),  [IDf]loe = O(1)
Choosing 0 < € < 1/2, one has
90 9Q* 90" 270"

for @ sufficiently large. Since Supp (H) C (0,A), and h(x,y, z,w) # 0 for 0 < x < Q/01,0 <
y < Q/62,0<2z<Q/)3and 0 < w < @Q/d4, we must have that 0 < x]yvﬁ < A. This implies

that
9Q*ms
Q N NA S DT re—— _ Imorirarsry Q
0 Ayzw — Q@ A 24N 51

az27r2a3r3a4ry

Similar lower bounds can be obtained for y, z, w too. Denoting

I9morirorsr
(17) en = #
we have
cn- Q)0 <z < Q/d,
(18) h(z,y,z,w) #0 = cn - Q)0 <y < Q)0

cn - Q[0 < 2 < Q/6s,
chn - Q[0 <w < Qf6s.

>

Next for the function h, using

(19) Al = O(1),
and
] - (2] 224
ox TYzWw TYzw T
from (18), we obtain that
oh 01 01
2 — <||DH||oo - N+ — < —.
20) St z0)| < IDHI A 2 <
Similarly,
oh 02
21 —(z,y,z,w)| K€ —
@1 Sz <
(22) ‘%(m,y, z,w)| K %
oh 4]
(23) ‘%(as,y, z,w)| K 5.
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3.3.2. Second Step. We rewrite (15) in the form

(24) .= > > f( c )h(ql,qz,Q3,Q4)-

a
@1<Q/61,  ¢3<Q/ds, 0192

q2<Q/d2, qa<Q/é4,
(q1,920)=1, (g3,9126)=1,
(92,0)=1, (g4,9192939)=1,

Fixing ¢1, g2, we may denote the inner sum in (24) as

(25) >, = 2 f<a312q2) 15 G2, G35 4)-

¢3<Q/d3,
q4§Q/547
(g3,91920)=1,
(g4,9192939)=1,

Let K3, K4 be large positive integers to be chosen later and T3, Ty be real numbers such that

T3K3—5% TyKy = g

Therefore (25) becomes

(26) ZQ = > > f( 2 )h(ql,q2,q37q4)-

1<ks<K a1 q2

<k3<Ks, (k3—1)T3<q3<k3T3,

1<ka<Ku, (kg—1)Ty<qa<ksTy,
(g3,91920)=1,
(q4,9192q39)=1,

Since (ks — 1)Ts < g3 < ksTs = 242, (ks — 1)Ty < qu < kyTy = £ 4%, using (22) and (23) we
have

Qks QFky ) ’ (03 + 04) (T3 + Ty)
h ) ) ) - h ) ) < .
‘ (Q1 q2, 43 Q4) (Ch q2 53 K3 54 K, 0

Inserting this into (26), we deduce that

Qks Q k4) ( as > /
27 > = > hlae > + B,
( ) 2 <q1 & (5 K3 54 K4 (ks—1) f aqi14go 2

1<k3<K3, —1)T5<q3<k3T3,
1Sk‘4SK4, (k‘471)T4<(]4§]~€4T47
(g3,91920)=1
(94,9192939)=1,

where the error term E in (27) can be estimated as

/ Q Q ([ (65 + 04)(T5 +Ty)
(28) E, < 505 ( Q

) < (T3 +Ty)Q.
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3.3.3. Third Step. For fixed ¢, q2, k3, k4, let K’ be a large positive integer to be chosen
later and let T” be a real number such that

T'K' = aqig; < Q*.
We can now rewrite the inner sum of the main term of ), from (27) as

29) DD SIED I A E

a
1<K <K' (ks—1)Ts<qs<ksTs, 2
(ka—1)Tx<qa<kqTy,

(¢3,91920)=1,
(q4,9192939)=1,
(K =1)T"<a2<K'T’,
a2-bgzqa=1 (mod aqiq2)

For (k' — 1)T" < as < K'T’, we have
(k' — 1)1 _ [ < KT K

aq1qs aqiqa ~ aqiqy K"
so that
s K T 1
apge  K'| T aqge K"
and
Qs k' Qs k'
_ 2V < IDFlla - _ .
/ (GQ1Q2) / (K'>' < 1D aq1qa K’ < K’

Therefore (29) becomes

k' y
) S-S () X em
1<k’ <K’ (k3—1)T3<q3<k3T3,
(ka—1)Tu<qa<ksTyu,
(g3,9120)=1,
(q4,9192939)=1,
(K —1)T'<as<k'T’,
a2-bg3qa=1 (mod aqigz)

where the error term E% in (30) can be estimated as
13T, Q?
K" 0304K'K3Ky

(31) E, <

3.4. A Counting Lemma. For fixed q1, qo, k3, k4, our next goal is to estimate the inner
sum of the main term of ), from (30), which can be written in the simpler form

ST D!

melneld,
(m,m)=(mn,8)=1,

R e (o],
with T = ((ks — )Ty, ksT] © (0,Q/64),3 = (ke — 1)Ta, kaTa] © (0,Q/84],
q=aqnq < Q?
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(’“'_ql)T/ B =5 = g3,n = qu where b is a fixed integer satisfying (b, ¢) = 1. Here for

an integer x such that (x, q) = 1, we denote by = the multiplicative inverse of x modulo g,
ie. 0 <z <qgand Zx =1 (mod q).

o =

3.4.1. First Step. Defining the set

b
V= {xm,n=$ rmeLne€ld, (mmn)=(mn,q)= 1}>

we have

(32) S =# (v M@ 5]) .

We will obtain the formula

S, = # (v Nes) =58 T (1-52) + 8

pldagqiqz

6 Q> 2
= 1-——_)+E
720304 K3 K, K' 11 ( p+1)+ *

ploq192

where the error term FE) is to be estimated later. To this end first note that

I VEEEEED SRED SRE TR DID 35 SHTt)

melned, mel, ned, mel, neJ dn,
(mvn):(mnqu)zl) (m,q&)zl, (n,mqé):l, (qué)il d\mq6
- Y Y- ¥ X wa(lsom)
mel,  d|mgd, d|n, mel,  d|mgd,
(m,qd)=1, nel, (m, qé)—l
w(mqo) mq5
= 3 ) Z D 4 0,(1Q) - Z +0,(1Q"
mel,  djmgé, mGI
(mqé)— (m,q0)=
80
= Z + O, (I11Q7).
mel,
(m,qd)=1,

We observe that

B S L D VD Dl

mel, mel, dim d<Q, dlm,mel,
(m,q(S):l, (qué):L (dvqé):]-v (m,qé)zl,
_ pi(d)
= > o 2!
dSQv m’e L N
(d.g9)=1 =
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Recall the elementary result that if the function f € C''(R) has compact support, I is a finite
interval, A is a fixed positive integer and [ an integer, then

(3) > 1)~ 2 [ fla)da] < oo(A) (IDlelt] + 2011c).

(1,A)=1
where the number of divisors function satisfies

go(A) =D 1< A

d|A

for every fixed € > 0. Using this result we have

p(m) pu(d) [ »(qd) / .
Y. o= D T [, L+ 0a (@)
mel, d<Q, d
(m,qé):l, (d,q5):1,
B pu(d) (o) 1| .
- (Al 0@
d<Q,
(d,g6)=1
_ plg9) p(d)
= F2m Y MP 4 0,@)
d<Q,
(d,q6)=1
Completing the convergent sum above gives
1(d) p(d) pu(d)
IO D Dl D DR
d<Q, d>1, a>Q,
(d,qE):L (d>q6):17 (d,qé):L
Hp (1_1?) 1
= 1 +O 6
Ipjas (1_17>
Since
1 6
I (-5) =

p prime

and |I| < @, we obtain

Z SO(mm) _ 90(95)”’% 1 ) L0, Q).

) 70
(m”;(se)l’: . 1 Hp\qé (

|~

P
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Inserting this into the above expression for #V finally gives

_qP@d) [ e(gd) 6 1 n n
A N pq5<1_p%>+on<@> +0,(1iQY)
[ (1= 2
1131 a1 1) +0,(11Q7) +0,(TQ")
Hp\fﬁ (1_17>
= LRI (1-52) o + 13-

plgd

3.4.2. Second Step. By the Erdés-Turan inequality([31]),

# (V@A) - -a#v| <« Tr 3 L] Y e

1<K<L Tmn€V
J| S
< + —.
> %
1<K<L

Here L is a large real number to be chosen later and

Sk = Z e(KTmpn)|-

Tm,n ev

Define, for 1 < K < L,

[
SLIsel)= > Y ( m”)
mel, nEJ
(m,gd)=1, (n,q6)=

and note that taking z,,, = %Tﬁ, Sk can be rewritten as

(34) S — Z Z (Kbmn) _ Z Z (Kbmﬁ)Zu

mel, ned, mel, nGJ
(m,qd)=1, (n, mq5) 1, (m,qd)=1, (n,qd)= d‘

Y w3 Z <Kbd2mn>

dSQ m637 77167
(d,qd)= (m,qd0)=1, (n, q5)
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I J _
— E -2 2 ).
,u(d)S (d,d,é,q,[(bd)

d<Q7
(d,gd)=1

We use the trivial estimate

12 — +

:M+E+ﬂ+1
d? d d ’

and let R be a real number to be chosen later with 0 < R < |I], to deduce that

3 14l )
Kbd? || < —+—+1
D S R [ O e
gfcg)g@, R<d<Q,
7q

<Y (DY @

d>R d>R

I-|J
<<LRH+(|I\+\J])logQ+Q.

The main difficulty comes from small values of d, namely if 1 < d < R, then we write

S = S< 5q,Kbd2> Z Z (KW“”).

(uqé) 1 (vq(S) 1

Applying Holder’s inequality and noting that (u,¢d) = 1 implies (u,q) = 1, we have

3 4
Kbd%uv
(37) ISt < ] - e
2 22|
UEE’ ueg, 'UGE,
(u,qd)=1, (u,q)=1, |(v,g9)=1

We will distinguish two cases, namely that ¢ < %l and ¢ > %. First assuming ¢ < | d‘,

observe that there are < % consecutive intervals of length ¢ covering all of the interval :1'
Therefore we obtain from (36) that

(38) |S|4<< (‘2‘) 5 Z Z (Kbd2 U1+U_2_U_3_U_4)> '

q
v1,02,V3, ’U4€J 1<u<g,
(v5,q8)=1,  (WaO)=1,
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As u runs through a reduced residue system modulo ¢, then so is bd2, so that (37) becomes

S S

J 1<u<q, q

1)11121}31)6

(UZ q5) (’lL q) 1
I\ 1 Kl 46— v — )
V1,V2,V3, v4eJ 1<u<q o
(vi00)= slq,
I\ 1 Kt(0, + 0 — 03 — 1)
sla v1,v2,v3,04€ 5, 1<t<E s
(vi,q0)=1

Using the fact that

. (Kt(271+172 — U3 —774)) q
S

q
1<t<4 s
when
K(?J_1+T}_2—T)_3—1)_4)EO (I’IlOd g)
s
and zero otherwise, we have from (38) that
1
40 S|* —
(40) st < (W) o
v; € %7 (Ulvqé) =1
# {(Ul’w’v?”v“) K(o+ 0y — 03 —03) =0 (mod €) [

A similar argument for the case ¢ > | d' gives

(41) yS|4<<(|I|> Z x

slg

v; € %, (vi,q6) =1
# {(v1,v2,v37 V) K(01 40— 03 —13) =0 (mod %)

Since % < Q and ¢ < Q? (39) and (40) can be combined under the single estimate

(42) ElS (|I|) Q2Z x

slq
v; €2, (v,q6) =1
(2 d) (3
#{(U17U2’US’U4) K(U_1+'U_2—’U_3—U_4) =0 (HlOd %)
We need to control the number of all admissible tuples (v, vq,v3,v4) appearing in (41).
Although it is possible to obtain reasonable upper bounds for individual ¢, the quality of
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these bounds would not be good enough to arrive at an error term which is o(Q?*). Therefore
we prefer to average over all ¢ < Q?. Clearly the condition

K(QJ_1+1}_2—1)_3—1)_4)EO (HlOd g)
for s | ¢ implies
K (v1v9(v3 + v4) — v3v4(v1 +02)) =0 (mod g).

s
Consequently we have
1
9 >y
9<Q? slq
v; € %7 (UHQ(S) =1
#{(UI,U27U37’U4) K(/U—l_f_v—2_v—3_/u—4) =0 (mOd %)

1
<22
q<Q? slq s
v; €% (v5,q0) =1
(2 d?’ (2
i {(U17U2,v3,v4) K (v1v2(v3 + v4) — v304(01 + 12)) =0 (mod 9)
1 v €2, (v5,q0) =1
-2 #{mm b =1 |
T K — =0 d4
ot (v1v2(v3 4+ v4) — v304(V1 + v2)) (mod %)
slq
Fixing s < Q% temporarily, we observe that

v; € %, (vi,qd) =1

(44) Z 7 {(Ul’ U2, U3, V4) K (v1v2(vs 4 v4) — v304(v1 +v2)) =0 (mod %) }

a<Q?

slq
q S Q27 V; € JJ S | q
< d .
< # {(%111,1)2,1)3,2]4) K(U1U2(U3 + U4) _ v3v4(v1 + v2)) =0 (mod %)
In order to find a useful upper bound for the number of admissible tuples (g, vy, v, vs, v4),
we have to distinguish two cases. First of all, if vyvs(v3 + v4) # v3v4(v1 + v2), then using the

fact that

% | K(U1’U2(U3 + U4) — U3U4(’U1 + UQ))

and

0 7& ’K(’Ulvg(v3 + ’04) — ’031}4(1)1 + ’UQ))| < 2@5
it follows that the number of such integers £ is bounded by the number of divisors of
K (vivg(vg + vg) — vzvg(vy + v3)), which is <<7, Q" for n > 0. Since s is fixed, for each
tuple (v1,vq,v3,v4), the number of admissible ¢ is again <, @". In conclusion, the number

of all admissible tuples (g, v1, va, v3,v4) is

< ('J') Q"
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In the other case, if v1v9(v3 + v4) = v3vg(v] + Vo), then fix v3, vy € % N Z and put
1 I a
ou e b
where a,b are integers with (a,b) = 1, |al, |b| < Q?. We consider solutions of the equation
1 1 a
v v b

fi)r vy, V2 € % N Z. Equivalently, we may write b(v; + vg) = avyvy. Taking (vy,vs) = d,v; =
dn, vy = dm with (m,n) = 1, gives

b(m +n) = admn.
Using (m,m+n) = (n,m+n) = 1, we have m|b, n|b, and the number of such pairs (m,n) is

<, b7 <, Q". Since d|b(m+n), the number of d for fixed m, n is <, Q". Therefore for fixed
v3, Uy, the number of such pairs (vi,vs) is also <, Q". Observing that there are at most Q?

2
choices for ¢ and at most < (\JI) choices for the pairs (v, v4), the number of admissible

<< (|J’) QQ—H}

Usmg | < @ and combining the two cases, we see that

q S Q27 (% € %7 S q
K(v1v(v3 + v4) — v3vg(v1 +v2)) =0 (mod )

<< ('J‘) Q2+77

for n > 0. Combining (42), (43) and (44), we deduce
! i € J’ Iz 6 =1
(46) Z Zg i {(01,02,03,1)4) v €5, (vi,q0) | }

K('l}_1—|—7)_2—’l]_3—’l}_4)50 (HlOdg
q<Q? slq

RS I \ 1 |
<y (7 Q¥ Z p <y Q" og Q <, Q"
s<Q?
for p > 0. Let 0 < 0 < 1 be a parameter which we will fix later. As a result of (45), the

number of ¢ < Q? such that
1 vi€ed, (v,q0)=1 TN
(47) Z s # {(Ul’ V2, U3, Ua) K +v; —v3—1v3) =0 (mod %) “\q

slq

tuples (g, vy, va, v3,v4) in this case is

(45) o {(q,Ulan,Us,sz)

18
Q2+n

<,
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Let B, k1 (Q) be the set of all ¢ < Q? such that (46) holds. Clearly we have
Q2+n

(ﬂ) 1—0"

d

Also let GQK%(Q) be the complementary set of BQK’%(Q) in (0,Q%. If ¢ < @*and q €
GC,’K’%(Q), then it follows from (41) that

I‘ 3 |J’ 3—o
St < |_ 2 (M

st (5) e ()
and consequently that

3 3—¢ 3 3—0o
I I I3 - ]
4 < Q2 =Q .
( 9) |S| — (d d dﬁza

Therefore if ¢ € (Vg GmK’%(Q), then

(48) Bos(@) <,

(SIS

1] i - 35
[ 1 :
(50) > wd)s (E,Ejé,q, Kbd?) <D O
d<R, d<R,
(d,q8)=1
< QT I,
since
6-0 > 0 > 1
4 4 '
In conclusion, for
q € m ﬂ GO’,K,%(Q)’
1<K<Ld<R

one has from (34), (35) and (49) that

IJ — 117J -

1 < d -, = Kbd? d -, = Kbd?

0 Ses| 3 us (G oaii®)| 4| S s (G 500 10)
(d.0)=1 (d,q6)=1

< (B o+ antogQ + @) + (it 11+

R
Finally we obtain for such ¢ that
Ij-[J S
(52) (V) — (3 - ] < FEHL5m B

1<K<L

Ij-|J Ij-|J =
< L (B o+ ) 10s @ + @ + QU135 ) s
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3.4.3. Third Step. Recall that

T
apqgy K’

‘I‘ = T37 ’J‘ = T47q = aq192, and 6 — =

Choosing
R=L<T5<Q,
we see that
log R =1og L <logQ <, Q".
In this way (51) becomes

# (V@) - (- apv| <, (T?’LT4+@+Q%T§-T§4”) Q"

Recall that

#V = 6773?4 11 (1 — L) +O0,((Ts + Ty) - Q")

1
pldgq P

and

_6TT, 2 T+Ty o,
(ﬁ_a)'#v_7T2Kf1_5[(1_p+1>+0”( K’ Q)'
plog

Since K313 = Q/d3, K4Ty = Q)/d4 and ald, from (32) we obtain, as promised in the beginning
of Section 3.4, that

B SN =5 11 () e

pldagiqz
6 Q? 2
= 1—— E
7T26354K3K4K/ H ( p+1)+ b
p|dq1q2

where the error term FE, is estimated as

T3+ T, 13T, 1 3 3¢
(54) E, <, 3K,4-Q”—|—( 24+Q+Q2T34-T44)Q”

TxT, 3 3-c
<<n( QU QT T )Qn'

3.5. Estimation of Error Terms.
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3.5.1. First Step. Denoting

1<d< L, 1<K<L
U, = ﬂ {GJ,K,‘;<Q>’ 1<k <K, J= ((k‘4 _ 1)T4,/€4T4] }7

for aqiqs € Us,, and gathering > ., >, from (30), (52) we have

B K 6Q° 2 ,
Zs = 2 f(ﬁ) 72030, K3 K, K’ 11 (1_p+1>+E4 +E

1<k'<K’ plog1q2
o 1 (-75) % X/ (%)
- v 1— Z f + B
2 H 3
d 5354K3K4 p|0q1g2 p +1 1<k'<K'’

where
F{ < K'E, + FEj,
and using the estimates for £, and E} from (31), (53) we get

Y
L

Q2

55 B S S
(55) 3 < < NN

L Q4+ QITE T U)K/Qn—i-

Recall that if the function f € C*(R) and K is any positive integer, then

%if(%) —/Olf@)da: <

k=1

D[l
50 D/l

Using this elementary result and (16), one has

1<;K/f( ) /f dx+O<K/>,

so that
6Q?
s S 1— )d E.
2 = w1 ( P+ 1) / fla)de + By,
plog1g2
where we can estimate F3 as

Q2

57 E El4—2
(57) 3 < 5304 K3 K, K

27
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3.5.2. Second Step. Going back to ), from (27) and using the error term, for aqig> € U,
we have

Z _ Z A Q k3 Q k4 «
5 Q17q275 Kg 54K4

1<k3<Ks3,
1<ks <Ky,

6Q*
_ 1-— )d E E,
7T253§4K3K4 H ( p—l—l) / f 37+ 3 +

6Q?
- 7T253(54/ f dl‘ H ( p—i—l) %

pldg1g2
1 QFks Qky
Z h (QI)q% +E§/,
K3K4 | <ks<Ks, 53 T3 54 T4
1<ks<K4
where
(58) Fy < K3K,FE3 + Ey < K3K, F3 + (T3 + T4) Q.

Applying (56) two times to the sum

1 Z h QFks Qky
K3k, Wt 5 ST,

1<k3< K3,
1<k4<Ky,

1 QFks Qky // Q
—w | d
KKy Zh(%,fh,(s T, 54T4) o @, @2 5 z 54w zdw +

1<k3< K3,
1 1
O —+—1.
(K3+K4)

1<ks<Kjy,
6@2 2
= d l1——
>, 720504 (/ fla x) ( i 1) %
ploq1q2

// <917Q2, Q ) dZdU}-’-EQ,
0,1]2 54

(59) B, < Q? <L + —) + EY.

we get

Therefore
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3.5.3. Third Step. Now returning to >, from (24), we may write it as

- ¥ (X )
@1<Q/51, \aq1q2€Us  aq1q2¢Us
42<Q/62,

(q1,920)=1,
(g2,0)=1

!/ "
= 2t
As we know the complement of U, is given by
_ 1<d<L, 1<K<L
v, = U {BmK,;’(Q) ‘ 1< by < Ky, J = (ks — )Ty, kaTy] }
c (0,Q7%,

and using (47),

. 2+n 2+n 241
#U, <y > ANy > dvT < KL o

T 1—0o Tl o Tl—a
1<ks<Ka, | d 4 g<L 4
1<K<L,
1<d<L,

29

Since the number of divisors of every integer in U, is <, Q", the number of triples (a, 1, g2)

with aqiqo € U, fixed is <, Q% for n > 0 and therefore

#{(a7 qi1, QQ) S N: aqi142 € UO’} <<r] QU : #Um
for every fixed n > 0. It follows that

Q4+77
T} 7665

Combining this with the result of the Second Step, for fixed a, we have

IDEEDIEDS

@1<Q/d1, aq1g2€Us

Q2

(60) E' = Z <, QM- #U, - - < KL -

92<Q/62,
(g1,g20)=1
(q276):17

ST () T

aqi1gq2¢€ Us

Q Q >
h , 42, dzdw + FE.
//[071]2 ((11 q2 5 54 zaw 2}

2
1—— | x
p+1

pldq1q2
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(1-757)~
p+1

Therefore one has

IIEIDINE = (/ fla d‘”)

q1<Q/d1, pldg1qo
q2§Q/627
(q1,920)=1,
(g2,0)=1
// h (ql, o, Qz, Qw) dzdw + Eg] + O (EY)
0,112 03 04

_ 6@2 1 )
El‘l’ 25354 (/0 f(vx)dl’):!.;(!:(l—m)x

2 Q Q )
1——— ) h{q,q, —2 —w)|dzdw,
//[o 12 ( P+ 1) (Ch o 03 04

@1 <Q/d1, plaige

2<Q/62,
(q1,920)=1
(g2,9)=1,
where
(61) B, < E} + Q*E,.

In conclusion we have

(62) Zl: (35@324 </ fla dx)

2 Q_ Q
//[;)71}2 Z H (1 - m) h (QI;Q2, 5 54 ) dz dw

1<Q/d1, plogige
92<Q/d2,
(q1,920)=1
(g2,0)=1

where F is estimated above in (61).

3.5.4. Fourth Step. Let us now complete the estimation of the error term FE;. Note that
using Ty K, = % in (59), we have

K4L3—GQ4+T]
E// < < K2—0L3—0' 3+0+77‘
1 n T4170'5162 n 4 Q
Also from (58),
2 2
By~ + 2 4+ B!
o K @ + 7, + Ly,

where by (57)
F) < K3K, E3 + (T3 + T4)Q.
Finally combining (54) and (56) one has
15T, 1352 / Q?
E 3T, | KQ"+ ———————.
3 S ( L B > O KAk, K
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Gathering all of the above estimates together,

El << Eil + Q2E2

4 Q4 Q4
<y K570L370Q3+U+n + ?3 + ?4 + E +

K’ 1 1o,
Q"] . <Q4f +K3K4K/Q3 ‘I—K/K34K44 Q4—4) )
Choosing
L:QUl’ K3:K4:K/%Q0—27
one obtains
B <, Q@) (B-o)ortdtotn | o2 4
Qn . <Q4+U2—01 + Q3+302 + QGTTUUQ‘Hl_%) )

Taking o1 = 209, this reduces to
E <<77 Q’Z <Q3+a(1—302)+802 _|_Q4—02 +Q3+302 —|—Q6TTU‘72+4_%> ‘

In order to balance all the terms above, it suffices to solve the system

{ 34+ 0(1—303)+80y = 4— 09,

oGy +4—2 = 4 — 09,

4 4

with 0 < o < 1 to obtain that

C10-v61 11

(o} ~ > —.
? 39 17.8 7 18
For convenience we may take oy = 1—18, o, = é, o= % and arrive at the concluding estimate
for /| as
(63) By <, Q' s,

3.6. Final Reductions. Let
Ao =TT (1-527)
1 Cha p|n p+1 9

and note that fi(n) is a multiplicative function with |f1(n)| < 1. Our next objective is
to eliminate the dependence on ¢, ¢, in the main term of ), from (61). To this end, we
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consider the sum over ¢, g2 appearing in ), and put

W = Z f1(5Q1Q2>h (CI1,Q2, (%Z, 59410>

@1<Q/d1,
QZSQ/(S??
(q1,920)=1
(g2,6)=1

Q Q
= E f1(5Q1) E f1(612)h qi1,92, =%, W | .
03 04
1<q1<Q/é1, 2<Q/d2,
(q1,0)=1, (g2,q10)=1

If we define the Dirichlet convolution of u and f; as

gi(m) = (ux fi)(m) = p(d fl( )

dlm

then f; =1 % g; so that for any prime p,

Therefore one has, |g1(p)| < %, and

2w(d)

lg1(d)] < for every d > 1,
where w(d) is the number of distinct prime divisors of d. In this way the inner sum of W
becomes

th = Z f1(Q2)h (q1,q27 (%Z, (%w)

2<Q/62,
(g2,q16)=1

= ). h(@ll% z, )Zgl

2<Q/d2, Dlg2
(g2,9190)=1

_ Q Q
DSQ/&Q, mSDQéQ
(DHI(;):L (mq16) 1,
For fixed q1,z,w and D, define F'(m) := h(q;,mD, z,w), and note that ||F||» < 1, and
from (21),

Db,

o |on
|F(m)]—D-‘a— 5
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Applying the result (33),

Q
) Doy
> h<ql,mD €% ) _ & QI)/ h<ql,Dy,Q @ )dy+EF
ey 5 54 (5(]1 0 53 54
(m7;1§)(sil7

p(0q) Q@ [ Q Q Q
5(]1 D52 h 175 y?éz 5411] dy+EF7

where the error term Er is estimated as

o2 @
Ep <, (0q1)" (? Do, + 1) <, Q.
Consequently,
Q
= D) —w | d E
Wa Dg 9:1(D) ( 5q1 52D ( Z 5411) Y+ Lp
<Q/62,
(D,q16)=1
1
D
2 ¢l (/ h<Q179y79279w>dy> ) + By,
(52 (5(]1 0 (52 (53 (54 D<Q/8 D

(qulls):l
where the error term E;l is estimated as

By, < Y |o(D)] Er <, (0gQ) Q" <, Q.
D<Q/d2,

(Duqlé)zl
since g (D) # 0 only for square-free D, 2*(”) = ¢4(D) for such D and
oo(D
> i< Y P < 00)?
D<Q/52 D<Q/52

by partial summation. Completing the convergent sum on D, we have

a(D) 91 u*(D)oo(D)
D o Z + 0 Z D2
D<Q/é2, D>1, D>Q/é2
(D,q10)=1, (D7Q15)=1,

Q-

_ I, (1 + %) o2
ol
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Using this we may rewrite W,, as

2
W. = 990(5%) Hp (1 B P(p+1)) /lh <q1 Qy Qz Qw) dy) +
q1 ) ) 1

where the error term E,, is still estimated as

B, <, Q"

Recall that

W= Z f1(0a)W,
1<q1<Q/d1,
(q176)21

fg(n>::1'[<1—%>, neN

p
pln
and note that f, is a multiplicative function with |fo(n)| < 1. It follows that

Let

1—2)(1-1

fl(n>g0(n) 1 _ ( p+1> ( p)
" Hp\n <1 o ﬁ) g (1 N ﬁ)

I (1-55) = o

pln

and rewriting W gives

CIQ > ROa)h (Q17 (%y, ?Z Qw) dy + By

0 1<Q1<Q/51 54

q1,0)=

where
2
c1 = 1-— —> > 0,
) gne ( p(p+1)
and the error term can be estimated as
Ey < 691 B, <, Q.

Similarly, if we define gy := p % fo, then fo = 1% gy and for any prime p,

-3 . n=1

n — p+2 ?
92(p ) { 0 n Z 27

3w(d) 22w(d)
< .
d — d

so that for every d > 1,
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We may now rewrite the inner sum inside the integral for W as

Wy = Z f2(0) falqr)h (QLQ QZ Qw)

"05 04
q1<Q/1,
(q1,6)=1
= L) Y, k@ Qy 292
" 0y 753 54
1<Q/d1,
(q1,0)=1
Q Q @
= D D, 2z, —
O Y wd) Y h(m 22 ).
D<Q/d1, m< Q.
(D,6)=1, Y

(m,d)=1,
Using (33) and (20), we obtain

Q Q @ p0) Q
> (mp e du) - S

Q
mS D51 )

(m,6)=

/ (g g ?32 (%w)dvaO(l),

and completing the convergent sum on D,

(D) g2(D) 1*(D)o3(D)
5 = 2 p ol X T
D<Q/é1, D>1, D>Q/6
(D,8)=1, (D,5)=1,

p
3
HP (1 - p(p+2)> 01
= ; +0 QL
s (1~ 569
Moreover using
o2(D
0(D)] < P12

and the well-known estimate
Z os(m) < t(logt)?,
m<t

we obtain by partial summation that

> (D) < (logQ)* <, Q"
D<Q/é,
(D,5)=1

35
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In conclusion we have

_ @) I, (1—p—(;’+2)) Q,9,9,9, .
p|d T p(p+2)

where the error term E* is estimated as
E* <, Q".
This completes the estimation of all error terms. Denoting

“7 H (1_1)(19?;2)) 0

p prime

and the multiplicative function

_ p(n) 1 3 4
(6 o= B —H(l—ﬁg),

we rewrite Y, from (61) as
B 6epcac(0
Z1 o 7T2(51625354 </ f d$>

// (Q Q Q Q )dxdydzdw—i—E
0,14 SN

Since E; <, QY wt. Q2E, <, Q¥ and Q3E* <, Q¥+, the final error term E can be
estimated as

(65) E < E+QEly + Q°E" <, QM 4+ QM <, QUi

for0 < n< li

Using (18) we have

Q @ Q Q
52 64 < <1
h (61 623/’ (53z (54 > # 0 - CAS>T, Y, 2, W > 1,

and combining (11),(12) and (14),
<Q Q Q Q ) _ g (Nmémmmm)
01 52 53 b4 Q*xyzw ’

By (2), we have

N 9 _
Qi = a TOn(@T),

‘H (Nm5r1r2r37‘4> o (9m57‘17“27“37‘4>’ <, Q-1+,

Q*xyzw mhryzw

so that
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Letting ¢ = c¢;co and rewriting 217 we get

Gee(d
Z1 o 251(52(5354 (/ f dx)

5
/ / <9m 4T1T2T3r4) dz dydz dw + E,
0 1]4 T Iyzw

E <, Q" st

where

Recall that, by (11),

m—+n

/Olf(x)dx - /OG<W+”> dx—m/ " Gl2)dz

< TG( )2dz+---+/mﬂn G(Z)Zdz),

n+m—1
u

ZZ/Olf(:v)dw = %m/o1 G(Z)zdl‘:ﬂ/ol G(z)%dz.

Recall that A is the finite set of all integers n satisfying

3=

and

asm n
— 4+ =< 1.
[dl,dg] u

Summing over all n € A, we obtain from (8) that

1
(66)
e, T i) 22
a1,az,a3,a4€Ps,

ajagagay
la1,a2,a3,a4]

0<

6ee(6)Q* / // 9Mmorirar3ry
= drdydzd E
Z ‘ {71251525354 (0,14 7T4:ryzw raydzdw +

a;<Q/ri,1<i<4,
a1,a2,a3,a4€Ps,
ajagazay _
lay,ag,a3,a4]
(la1,a2],]a3,a4])=10,

37

where ), is defined as in (9). If § = 1, then P; = {1} and a; = ay = a3 = a4 = 1. Otherwise

0 > 2, and we consider the prime factorization of § as
(67) §=pips?---piF, e, ...,ep > 1.
Writing the prime factorizations of a; as

68 a; = py'py?eeeppt, 1< <A,
1 72 k



38 ALKAN, XIONG, AND ZAHARESCU

a1a2a3a4

the condition
[a1,a2,a3,a4]

= ¢ implies that
(69) €15 + €25 + €3; + €45 — max{elj, €2j, €35, 64]'} = €y,
for 1 < j < k. Since a; < Q/r; < Q, it follows that

eijlog2 < e logpr + - - eix logpr, < logQ —logr;,

and

forany 1 <7 <4 and 1< j <k. Since 0 is absolutely bounded and w(d) = k, k is absolutely
bounded and

M " 4k n
D g2 < (logQ)* <, Q".

a; <Q/r;,1<i<4,

a1,a2,a3,a4€ Py,
ajagagay g

la1,a2,a3,a4]

Since §; = a;r;, 1 <1 < 4, we also have from (65)

6ce(S 2 O9mOr1Tar3Ty
d drdydzd E
(70) Z 7T251525354 (/ Gz Z) //01 < Tryzw > Ty QT

a; <Q/r;,1<i<4,

a1,a27a5,a46P5,
dajagazay g

l[a1,a2,a3,a4]

0
6cc (/ G(z dz) // <9ﬂ;42;2§r4> dx dy dz dwx
0,1]4

Q! 1
T1ToT3T a1aoa3a
17273 4ai<Q/Ti,1<i<4 157282354
a1,a2,a3,a4€Ps,
1620304 s
la1,a2,a3,a4]

+F,

where, by (64)
E <, Q1.

Our next goal is to estimate the sum

AE,T1,T2,T3,T4(Q> = Z 1

a1G20304
0 <Q/ri1<i<4, 120304
a1,a2,a3,a4€Ps,
4140304 _ 5
la1,a2,a3,a4]
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Again we may assume 9§
() — oo, we deduce that

Aé,mmﬂ‘:s,m (Q)

IN

and consequently

39

2 and (67), (68), (69). Since Asy ryrsr (Q) is increasing as

Z e11+ez1+e31+eq1, e12+e22+e32+eq2

€ij D1 P2 .. .pzlk+e2k+53k+€4k
00 4 ) 4
1 1
Z e | Z —
e=0 P e=0 Dy
k 1 4
H T 1| <%
Pl
lim A577’17T27T377‘4 (Q) = A(é)

Q—o0

for some constant A(J) depending only on ¢. Denoting the condition (69) as (e;;) € PP, we

obtain

A(p™) >
€i; >0,
(eij)EPP

1

Py Ps

e11+ez21+esziteqr e1xtezktesrtear

..pk

e12+ez2+e3ztesqs |

It is easy to see that A is a multiplicative function and for any prime number p and integer

m>1,

(71) A(p™)

1
Z p61+62+63+84 ’

€1,€2,€3,642>20

e1tezte3tes—max{er+ez2teztest=m

Furthermore,

|A5,7‘1 JT2,73,74 (Q) - A(d) |

where

<

2

e11 logp1+-+e1 log pr>log Q—log r1

>

e21 log p1+---+egr log pr. >log Q—log o

2

e31 log p1+--+ezk log pi. >log Q—log r3

2

eq1 log p1+--+eqi log pr. >log Q—log ry
Q1 + Qy + Q3 + Uy,

3

LB
Q=77 o
j=1 D;
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and

1
0 = > TR

e11 logp1++--+eip log pp>log Q—logry P1 Pr
We can estimate (2] as

1 1
Q) < > —n en ot > T

e11 log p1 >log Q—logry Py Py e1k log pr.>log Q—log r1 by Py

1
+ > PR

e11 logp1 <log Q—log r1, P

e1y, log p <log Q—log 71,
e11 logpi+--+eix log py>log Q—logry,

= Qi+ O+ Q.
Note that for €2y, eja, ..., €1, Tun through all nonnegative integers and since

1 < T1
ptiu Q’

k
1 1
My = — g c
(.:21—pj1> i

J e11 log p1 >log Q—log 1
k 1
1 [#} 1
< —.
1 1
(j=21_pj )1_p1 ¢

1
Ql’j<<67 forlgjgk
On the other hand, 2} can be estimated as

QO < D N

e11 log p1<log Q—logr1,

it follows that

IN

Similarly,

e1k log i Slgg Q—logm,

< <1ogQ —logry 1) o (logQ —logr 1)
Q log p1 log px.
(log Q)*

< 0 <, Q7

Combining all these estimates finally gives

Oy <, Q7.
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Similar estimates hold true for €2, €23 and €24, and we have

A(S,rl ..... T4 (Q) = A((S) + 077 (Q—H‘W) :

Returning to > from (5) and also to Sg 1.m.¢, we have in conclusion that

Sorne = 2 ( /lade) S )

s 1727374

mrirorsrad <Ca
Omorrorsry
— | dedydzdw + E,
[0, 1]4 TErYyzw

E <<77 Q4—1—18+77 + Q3+77 <<T] Q4—%+n’

where, by (64)

forany0<77<%

3.7. Completion of the proof. To complete the proof of Lemma 3 and to arrive at the
simple formula promised for the pair correlation function in Theorem 1, we need to do further

calculations. Recall that C)y = #TA and write Sg1.m,¢ as
6 4 1
(72) SoLuG = jg (/ G(z)2dz) Sy+ E,
0
where
Hy kep(ro) p(r2) p(rs) p(ra)
= - 0)A(0)0
(73) S 24 DY Povven c(8)A(6)5,
1§k§% mrirararad==k
and

H, = // ( )dxdydzdw.
o1t \7Trryzw

First, for fixed k£ with 1 < k < Cj, let

9k
Q=1[0,1" R* : 5.
[0,1] ﬂ{(I,%Z,w)G xyzw>7r4/\}

Changing variables by 2/ = 7r4§’;’w, Yy =y, 2 =2z, w =w, Qis mapped to the region

9k
QO = {(az’,y’,z’,w’) eR*:0<y, 2w <1, " <1< /\}.

Using the Jacobian of the transformation

Oz, y,z,w)

a(x/7 y/7 Z,J w/)

we have

%
1
H, = // ( : )dxdydzdw:/ H(x') - lzdx dy/ d2’' dw'.
miryzw o yzw
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Changing the dummy variables z’, v/, 2/, w’ back to x,y, z, w, this further gives
gimg Yy Y Yy

AN
= 2k H@OU(Eﬁ)dL

74 Jor a2 T
7\,4

where the function U : — [0, 00) is given by

Vdw dz dy ot y\ dz dy
= — 1 log 2| —= =2
U(t) // + w oz oy /t[(ng+Ogt> AT
dy 1. 4/(1
= —log =-1 - .
/t <t> Y 6Og <t>

3k 37rx
k—2—/ kdx.
oy

Next, we define a multiplicative function B by letting B(n) = c¢(n)A(n)n? for any n € N and
a multiplicative function 1 by the convolution

Thus

Y= ok pux ok pk Ig o B,
where I; is the identity function. It is easy to see that

Z kﬂ(ﬁ)ﬂ(@)ﬂ(%)ﬂ(m)0(5)A<5)6

r17rorsry

mrirorsrid=k

= 3 () pre)plrs)u(ra)e(8) A(6)8

mrirorsred=~k

= puxpkpxpxlygx B=1(k).

Returning to S, from (72), we get

3 (k “H 4
Sy = Z 2754) (/gk x(? log® g;dx)

1<k< TN =
H(x
= % / @b(l@) max{O log® 7;;} dz
s
1<k<
3 H

1<k<TE Tr £
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From (72) we finally obtain

9! ! 9 " H(z) cp(k), o wio
SQLHG = ?(/0 G(z) dz> /0 5 1 Z 5 log g—kdx + F,

T (e
o4

x
Sk<#5*

where
E <, QY st
Our last step is to compute the Zeta-function for 1 explicitly. For any k&, m > 1, define a
function H by

H(k,m) = > 1.

0<n1,n2,n3,n4<k
ni+nz2+nz+ns=m

By the definition of A from (71), we see that for any prime p and integer m > 1,

m 1
A<p ) - Z p61+62+63+64

e1,€2,e3,e4>0
e1+ez+e3z+es—max{er,e2,e3,e4}=m

o0

1
- Z pk+m Z 1

k=1 e1+estestes=k+m
max{e1,e2,e3,e4 }=k

! 1 1

By R

k=1 0<e1,e2,e3,4<k 0<eq,e2,e3,e4<k—1

e1+ez+ezt+es=k+m e1+ez+ezt+es=k+m
[o.¢]
H(k,k+m)—H(k—1,k+m)

- k+m :

k=1 p

Then for s € C with Re(s) sufficiently large and for any prime number p,

2m 4 m
= B(p™) =P (1_p(p+3)>A(p )
Hy(s) = 1+ o =1+> i
m=1 m=1

o oo pm (1_%> (H(k,k+m) — H(k — 1,k +m))

mspk+m
k=1 m=1 pp "
4 N ey = [(H(k,m) H(k—1,m)
= 1+ (1_ ( +3)> Zp( ! Z ( m(s=1)  pm(s—1) :
p\p k=1 m=k+1 p p

It is easy to see that

o] 41\ 4
S HEmgm= Y g <_1 —a )
m=0

l—gq
0<n1,n2,n3,n4<k
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for 0 <m <k,
m+3
(kom)= Y ("37)
n1,n2,m3,14>0
ni+nz+nz+ns=m
and for £ > 1,

H(k,k)—H(k—1,k) = > 1=4.

0<n1,n2,n3,n4<k
ni+ng+nz+na==~k
max{ni,n2,n3,n4 }=~k

Therefore, denoting ¢ = p'~*, the inner sum of H,(s) on m is
p

> H(k, " H(k,m) °°H—1 "“H—1

m=0 m=0 m=0 =0

- <:+qif>4—i<m;3>qm)—

Replacing ¢ by p'~* we obtain that

Hy(s) = 1+< p+3>2’”2

—s -5 4
1 - p( J(k+1) N 1- p(l )k _ 4p(1fs)k
1 — pl—s 1 — pl—s
) s 4 _s)k\4
(P—1)p+4) { +Z — )(k’“)) - (1) }

p(p+3) — pl=s)ph=s)

= 1+

k=1
Since
V=pxpxpxpxlygx B,

it is clear that

oo

n 5—1
SO = T

p prime

This completes the proof of Lemma 3, and therefore also the proof of Theorem 1.
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