The fluctuations in the number of points on a family of curves over a finite field

par Maosheng Xiong

ABSTRACT. Let $l \geq 2$ be a positive integer, \mathbb{F}_q a finite field of cardinality q with $q \equiv 1 \pmod{l}$. In this paper, inspired by [7, 4, 5] and using a slightly different method, we study the fluctuations in the number of \mathbb{F}_q -points on the curve C_F given by the affine model $C_F: Y^l = F(X)$, where F is drawn at random uniformly from the set of all monic l-th power-free polynomials $F \in \mathbb{F}_q[X]$ of degree d as $d \to \infty$. The method also enables us to study the fluctuations in the number of \mathbb{F}_q -points on the same family of curves arising from the set of monic irreducible polynomials.

1. Introduction

Given a finite field \mathbb{F}_q of cardinality q and a monic square-free polynomial $F \in \mathbb{F}_q[X]$ of degree $d \geq 3$, we get a smooth projective hyperelliptic curve C_F with the affine model

$$C_F: Y^2 = F(X)$$

having genus g = (d-2)/2 when d is even and g = (d-1)/2 when d is odd. The number of (affine) \mathbb{F}_q -points on C_F can be expressed as q + S(F), where S(F) is the character sum

$$S(F) = \sum_{x \in \mathbb{F}_a} \chi(F(x))$$

and χ is the quadratic character of \mathbb{F}_q^{\times} (with the convention that $\chi(0) = 0$). In an interesting paper ([7]) Kurlberg and Rudnick investigated the fluctuations in the number of (affine) \mathbb{F}_q -points on C_F or more precisely the value of S(F) when F is drawn at random from the set of all monic square-free polynomials $F \in \mathbb{F}_q[X]$ of degree d. They found that

- (i) For q fixed and the genus $g \to \infty$, S(F) is distributed asymptotically as a sum of q independent identically distributed (i.i.d.) trinomial random variables $\{X_i\}_{i=1}^q$, i.e., random variables taking values in $0, \pm 1$ with probabilities $1/(q+1), 1/2(1+q^{-1})$ and $1/2(1+q^{-1})$, respectively.
- (ii) When both $g \to \infty$ and $q \to \infty$, $S(F)/\sqrt{q}$ has a Gaussian value distribution with mean zero and variance unity.

These results complement the well-known theorem due to Katz and Sarnak [8, 9], which states that, if the genus g is fixed and $q \to \infty$, then $S(F)/\sqrt{q}$ is distributed as the trace of a random matrix in the group USp(2q) of $2g \times 2g$ unitary symplectic matrices. Showing consistency with (ii), if both $q, g \to \infty$ with $q \to \infty$ first, then $S(F)/\sqrt{q}$ is distributed as that of the trace of a random matrix in USp(2g) as $g \to \infty$, which is known to be a standard Gaussian by a theorem of Diaconis and Shahshahani [6]. Related to this work [7], problems of similar flavor with various arithmetic and geometric applications have been considered before by Larsen [12], Knizhnerman and Sokolinskii [10, 11] and Bergström [1]. Recently, extending the results of Kurlberg and Rudnick [7], Bucur, David, Feigon and Lalín in a series of two beautiful papers [4, 5] successfully obtain interesting results on the distribution of the trace of the Frobenius endomorphism Frob_C over moduli spaces of cyclic l-fold covers of genus g when $g \to \infty$. Interested reader may refer to their papers [4, 5] for more details and for other results related with the subject.

The proofs of [7, 4, 5] are similar and are based on an ingenious counting argument. The main purpose of this paper is to give a slightly treatment of the proof. We start with the observation that, in writing

$$S(\chi, F) = \sum_{x \in \mathbb{F}_q} \chi_x(F),$$

where $\chi_x(F) = \chi(F(x))$ for each $F \in \mathbb{F}_q[X]$, then $\chi_x : \mathbb{F}_q[X] \to \mathbb{C}$ is a Dirichlet character of order 1 modulo X - x. Our strategy is to study the distribution of $S(\chi, F)$ by manipulating appropriate character sums, which in term can be treated by using various tools such as the Riemann hypothesis for algebraic curves over finnite fields [14], the Möbius function and other arithmetic functions. The results of [7, 4, 5] then can be derived directly. Our proofs follow the ideas of [7, 4, 5], however, the properties of character sums will be used in an essential way.

Building upon this idea, let $l \geq 2$ be any positive integer such that $q \equiv 1 \pmod{l}$ and denote by $\mathcal{F}_{d,l} \subset \mathbb{F}_q[X]$ the set of monic l-th power-free polynomials of degree d, we investigate the fluctuations in the number of affine \mathbb{F}_q -points on the curve C_F given by the affine model

$$(1.1) C_F: Y^l = F(X),$$

where F is drawn at random uniformly from the set $\mathcal{F}_{d,l}$. Denote by $C_F^0(\mathbb{F}_q)$ the set of affine \mathbb{F}_q -points on C_F .

Theorem 1.1. (1). If q is fixed and $d \to \infty$, then as F ranges over all elements in $\mathcal{F}_{d,l}$, the limiting distribution of the value $\#C^0_F(\mathbb{F}_q) - q$ is that of a sum of q i.i.d random variables $\{Y_i\}_{i=1}^q$, where each Y_i takes values 0, -1, l-1 with probabilities $\left(1 - \frac{1-q^{-1}}{1-q^{-l}}, \frac{l-1}{l} \frac{1-q^{-1}}{1-q^{-l}}, \frac{1}{l} \frac{1-q^{-1}}{1-q^{-l}}\right)$ respectively.

(2). If d, q both tend to infinity, then as F ranges over all elements in $\mathcal{F}_{d,l}$, the limiting distribution of the value $(\#C_F^0(\mathbb{F}_q) - q)/\sqrt{q(l-1)}$ is a standard Gaussian with mean zero and variance one.

If q is fixed and d tend to infinity, or q and d both tend to infinity in such a way that $d \ge \frac{q(2l-1)}{l-1}$, we have a more precise statement.

Theorem 1.2. Let the random variables $\{Y_i\}_{i=1}^q$ be as in Theorem 1.1. Then for any $s \in \mathbb{Z}$, we have

$$\frac{\#\left\{F \in \mathcal{F}_{d,l} : \#C_F^0(\mathbb{F}_q) = q + s\right\}}{\#\mathcal{F}_{d,l}} = \operatorname{Prob}\left(\sum_{i=1}^q Y_i = s\right) \left(1 + O\left(2^q q^{-\left(1 - \frac{1}{l}\right)d + \left(1 - \frac{1}{l}\right)q}\right)\right).$$

One of the benefits of our method is its flexibility: it enables us to consider such statistics for other families of curves whenever similar estimates on the character sums apply. As another example, we study the fluctuations of $\#C_F^0(\mathbb{F}_q)$ for the same family of curves as F arises from $\mathcal{P}_d \subset \mathbb{F}_q[X]$, the set of monic irreducible polynomials of degree d.

Theorem 1.3. (1). If q is fixed and $d \to \infty$, then as F ranges over all elements in \mathcal{P}_d , the limiting distribution of the value $\#C_F^0(\mathbb{F}_q) - q$ is that of a sum of q i.i.d random variables $\{Y_i\}_{i=1}^q$, where each Y_i takes values -1, l-1 with probabilities $\left(1-\frac{1}{l}, \frac{1}{l}\right)$ respectively.

(2). If d, q both tend to infinity, then as F ranges over all elements in \mathcal{P}_d , the limiting distribution of the value $(\#C_F^0(\mathbb{F}_q)-q)/\sqrt{q(l-1)}$ is a standard Gaussian with mean zero and variance one.

If q is fixed and d tend to infinity, or q and d both tend to infinity in such a way that $d \ge 4q$, we have a more precise statement.

Theorem 1.4. Let the random variables $\{Y_i\}_{i=1}^q$ be as in Theorem 1.3. Then for any $s \in \mathbb{Z}$, we have

$$\frac{\#\left\{F \in \mathcal{P}_d : \#C_F^0(\mathbb{F}_q) = q + s\right\}}{\#\mathcal{P}_d} = \operatorname{Prob}\left(\sum_{i=1}^q Y_i = s\right) \left(1 + O\left(2^q q^{(2q-d)/2}\right)\right).$$

We remark that first, if l=2, Theorems 1.1 and 1.2 reduces to (i) and (ii) obtained by Kurlberg and Rudnick mentioned above. For a general l, Theorems 1.2 and 1.4 are analogous to [5, Theorems 1.1 and 1.4] obtained by Bucur, David, Feigon and Lalín in terms of the Frobenius endomorphism. Moreover, denote by $C_F(\mathbb{F}_q)$ the set of \mathbb{F}_q -points on the curve C_F given in (1.1) (i.e., including the points at infinity). For $F \in \mathcal{F}_{d,l}$ or $F \in \mathcal{P}_d$, we have

$$\#C_F(\mathbb{F}_q) = \#C_F^0(\mathbb{F}_q) + \begin{cases} 1: & d \not\equiv 0 \pmod{l}, \\ l: & d \equiv 0 \pmod{l}, \end{cases}$$

so Theorems 1.1–1.4 can be translated as statements about the distribution of $\#C_F(\mathbb{F}_q)$ for $F \in \mathcal{F}_{d,l}$ and $F \in \mathcal{P}_d$ as $d \to \infty$, and the results depend

on $d \equiv 0 \pmod{l}$ or not. It may be interesting know to what happens for these two familes $\mathcal{F}_{d,l}$ and \mathcal{P}_d if d is fixed and q goes to infinity instead.

In the above theorems and in all results below, the implied constants in the notation "O" and " \ll " are absolute.

Acknowledgment. The author would like to express his gratitude to Prof. Wen-Ching Winnie Li for bringing this problem to his attention. The author also thanks the anonymous referee for many valuable suggestions.

2. Preliminaries

In this section we collect several standard results which will be used later. We use Rosen [13] as a general reference.

2.1. The (partial) zeta function of the rational function field is

(2.1)
$$Z(U) := \prod_{P} \left(1 - U^{\deg P} \right)^{-1}, \quad |U| < q^{-1},$$

the product over all irreducible monic polynomials ("primes") in $\mathbb{F}_q[X]$. By the fundamental theorem of arithmetic in $\mathbb{F}_q[X]$, Z(U) can be expressed as a sum over all monic polynomials:

$$Z(U) = \sum_{F \text{ monic}} U^{\deg F},$$

and hence

(2.2)
$$Z(U) = (1 - qU)^{-1}$$
.

Denote by $\mathcal{V}_d \subset \mathbb{F}_q[X]$ the set of monic polynomials of degree $d \geq 0$. We use the Möbius function to pick out the l-th power-free polynomials via the formula

$$\sum_{A^l \mid F} \mu(A) = \left\{ \begin{array}{ll} 1 & : & F \text{ is } l\text{-th power-free} \\ 0 & : & \text{otherwise} \end{array} \right.$$

where we sum over all monic polynomials A whose l-th power divides F. Hence

$$\sum_{d\geq 0} \# \mathcal{F}_{d,l} U^d = \sum_{d\geq 0} \sum_{F\in \mathcal{V}_d} \sum_{A^l \mid F} \mu(A) U^{\deg F}.$$

Writing $F = A^l F'$, we have

$$\sum_{d\geq 0} \# \mathcal{F}_{d,l} U^d = \sum_A \mu(A) U^{l \operatorname{deg} A} \sum_F U^{\operatorname{deg} F}$$

$$= \prod_P \left(1 - U^{l \operatorname{deg} P} \right) \prod_P \left(1 - U^{\operatorname{deg} P} \right)^{-1},$$

where in the above equations and all results below, A, F denote monic polynomials and P is reserved for monic irreducible polynomials.

Using (2.1) and (2.2) we obtain

$$\sum_{d>0} \# \mathcal{F}_{d,l} U^d = Z(U)/Z(U^l) = \left(1 - qU^l\right) (1 - qU)^{-1}.$$

Expanding the right hand side as a power series in terms of U and equating the coefficients on both sides, we find

(2.3)
$$\#\mathcal{F}_{d,l} = q^d \left(1 - q^{1-l}\right), \quad d \ge l.$$

Lemma 2.1. Suppose that $\psi : \mathbb{F}_q[X] \to \mathbb{C}$ is a non-trivial Dirichlet character modulo $h \in \mathbb{F}_q[X]$. Then for any $d \geq 1$,

$$\left| \sum_{F \in \mathcal{F}_{d,l}} \psi(F) \right| \ll q^{\frac{d}{l} + \left(1 - \frac{1}{l}\right) \deg h}.$$

Proof. If $d \leq l$, then the statement of Lemma 2.1 is trivial. Now suppose $d \geq l$. We write

$$\sum_{F \in \mathcal{F}_{d,l}} \psi\left(F\right) = \sum_{F \in \mathcal{V}_d} \psi(F) \sum_{A^l \mid F} \mu(A) = \sum_{\deg A \leq d/l} \mu(A) \psi(A)^l \sum_{\deg F = d-l \deg A} \psi(F),$$

where the sums are over monic polynomials. It is easy to see that

$$\sum_{\deg F=n} \psi(F) = 0, \quad n \ge \deg h,$$

hence we have

$$\left| \sum_{F \in \mathcal{F}_{d,l}} \psi(F) \right| = \left| \sum_{(d+1-\deg h)/l \le \deg A \le d/l} \mu(A) \psi(A)^l \sum_{\deg F = d-l \deg A} \psi(F) \right|$$

$$\le \sum_{(d+1-\deg h)/l \le n \le d/l} q^{d-ln+n} \ll q^{\frac{d}{l} + \left(1 - \frac{1}{l}\right) \deg h}.$$

This completes the proof of Lemma 2.1.

Lemma 2.2. Suppose that $h \in \mathbb{F}_q[X]$ is a polynomial with deg $h = m \ge 1$. Then for any d > 1, we have

$$\sum_{\substack{F \in \mathcal{F}_{d,l} \\ \gcd(F,h)=1}} 1 = q^d \left(1 - q^{1-l}\right) \prod_{P|h} \frac{1 - q^{-\deg P}}{1 - q^{-l\deg P}} + O\left(q^{\frac{d}{l} + \left(1 - \frac{1}{l}\right)m}\right).$$

Proof. We may assume that $d \geq m$. First we compute

$$\sum_{\substack{F \in \mathcal{V}_d \\ \gcd(F,h) = 1}} 1 = \sum_{F \in \mathcal{V}_d} \sum_{D|F,D|h} \mu(D) = \sum_{D|h} \mu(D) \sum_{\deg F = d - \deg D} 1.$$

This in turn gives

(2.4)
$$\sum_{\substack{F \in \mathcal{V}_d \\ \gcd(F,h)=1}} 1 = \sum_{D|h} \mu(D) q^{d-\deg D} = q^d \prod_{P|h} \left(1 - q^{-\deg P}\right).$$

Next

$$\sum_{\substack{F \in \mathcal{F}_{d,l} \\ \gcd(F,h)=1}} 1 = \sum_{\substack{F \in \mathcal{V}_d \\ \gcd(F,h)=1}} \sum_{\substack{A^l \mid F \\ \gcd(A,h)=1}} \mu(A) = \sum_{\substack{\deg A \le d/l \\ \gcd(A,h)=1}} \mu(A) \sum_{\substack{\deg Q = d-l \deg A \\ \gcd(Q,h)=1}} 1.$$

We find that

$$I_2 = \sum_{\substack{\deg A > (d-m)/l \\ \gcd(A,h) = 1}} \sum_{\substack{\deg Q = d - l \deg A \\ \gcd(Q,h) = 1}} 1 \le \sum_{n > (d-m)/l} q^n q^{d-ln} \ll q^{\frac{d}{l} + \left(1 - \frac{1}{l}\right)m}.$$

On the other hand, using (2.4) we have

$$I_1 = \sum_{\substack{\deg A \le (d-m)/l \\ \gcd(A,h) = 1}} \mu(A) \sum_{\substack{\deg Q = d-l \deg A \\ \gcd(Q,h) = 1}} 1 = \sum_{\substack{\deg A \le (d-m)/l \\ \gcd(A,h) = 1}} \mu(A) q^{d-l \deg A} \prod_{P \mid h} \left(1 - q^{-\deg P}\right) ,$$

and this gives us

$$I_1 = \sum_{\substack{A \\ \gcd(A,h)=1}} \mu(A)q^{d-l\deg A} \prod_{P|h} \left(1 - q^{-\deg P}\right) + O(I_2).$$

The main term can be rewritten as

$$q^{d} \prod_{P|h} \left(1 - q^{-\deg P}\right) \prod_{\gcd(P,h)=1} \left(1 - q^{-l \deg P}\right),$$

which is

$$q^{d} \prod_{P|h} \left(1 - q^{-\deg P}\right) \prod_{P|h} \left(1 - q^{-l \deg P}\right)^{-1} \left(1 - q^{1-l}\right),$$

by appealing to (2.1) and (2.2). Since

$$\sum_{\substack{F \in \mathcal{F}_{d,l} \\ \gcd(F,h)=1}} 1 = I_1 + O(I_2),$$

this completes the proof of Lemma 2.2.

2.2. Denote by $\mathcal{P}_d \subset \mathbb{F}_q[X]$ the set of monic irreducible polynomials of degree $d \geq 1$. The prime number theorem for polynomials [13] states that

(2.5)
$$\#\mathcal{P}_d = \frac{q^d}{d} \left(1 + O\left(q^{-d/2}\right) \right).$$

The following result is also standard, based on a deep result of Weil ([14]), the analogue of the Riemann hypothesis for function fields over a finite field.

Lemma 2.3. Let $\psi : \mathbb{F}_q[X] \to \mathbb{C}$ be a non-trivial Dirichlet character modulo Q in $\mathbb{F}_q[X]$, then

$$\left| \sum_{P \in \mathcal{P}_d} \psi(P) \right| \ll \frac{\deg(Q)}{d} \ q^{d/2} \,.$$

3. Proofs of Theorem 1.1 and Theorem 1.3

We first prove a general result, then Theorem 1.1 and Theorem 1.3 can be derived directly. The idea of the proof is similar to that of [7, 4, 5], though it is presented in a slightly different way via character sums.

Let $l \geq 2$ be a positive integer such that $q \equiv 1 \pmod{l}$. Denote $\zeta_l = \exp{(2\pi i/l)}$. We fix a non-trivial character $\chi : \mathbb{F}_q^{\times} \to \mathbb{C}$ of order l. For each $x \in \mathbb{F}_q$, let $\chi_x : \mathbb{F}_q[X] \to \mathbb{C}$ be the Dirichlet character given by

$$\chi_x(F) := \chi(F(x)), \quad F \in \mathbb{F}_q[X].$$

For any $U \subset \mathbb{F}_q$, denote

$$g(U) := \prod_{x \in U} (X - x).$$

For the curve C_F given by the affine model (1.1), denote by $C_F^0(\mathbb{F}_q)$ the set of the affine \mathbb{F}_q -points on C_F . It is known that

(3.1)
$$#C_F^0(\mathbb{F}_q) = q + \sum_{j=1}^{l-1} \sum_{x \in \mathbb{F}_q} \chi_x^j(F).$$

For each d, there is a finite subset $\mathcal{X}_d \subset \mathbb{F}_q[X]$, on which we assign the uniform probability measure, so that $\{\chi_x\}_{x\in\mathbb{F}_q}$ can be viewed as q random variables. We assume that there exist $C, \epsilon > 0$ and $0 \le \gamma_q \le 1$ such that (a). For any non-trivial Dirichlet character $\psi : \mathbb{F}_q[X] \to \mathbb{C}$ modulo $h \in \mathbb{F}_q[X]$, we have

$$\frac{1}{\#\mathcal{X}_d} \sum_{F \in \mathcal{X}_+} \psi(F) \le q^{-\epsilon d + C \deg h} \ .$$

(b). For any $U \subset \mathbb{F}_q$,

$$\frac{1}{\#\mathcal{X}_d} \sum_{\substack{F \in \mathcal{X}_d \\ \gcd(F, g(U)) = 1}} 1 = \gamma_q^{\#U} + O\left(q^{-\epsilon d + C \# U}\right) .$$

Theorem 3.1. For each d, suppose that $\mathcal{X}_d \subset \mathbb{F}_q[X]$ satisfies the conditions (a) and (b). Then

- (1). For q fixed and $d \to \infty$, on \mathcal{X}_d , $\#C_F^0(\mathbb{F}_q)$ is distributed asymptotically as a sum of q i.i.d. random variables $\{Y_x\}_{x\in\mathbb{F}_q}$, where for each x, Y_x takes the values 0, -1, l-1 with probabilities $\left(1 \gamma_q, \frac{(l-1)\gamma_q}{l}, \frac{\gamma_q}{l}\right)$ respectively.
- (2). Moreover, if $\lim_{q\to\infty} \gamma_q = \gamma > 0$, then as $q,d\to\infty$, on \mathcal{X}_d , the limiting distribution of $\frac{\#C_F^0(\mathbb{F}_q)-q}{\sqrt{q(l-1)\gamma}}$ is a standard Gaussian with mean zero and variance one.

Proof. For any vector of nonnegative integers $\mathbf{r} = (r_x)_{x \in \mathbb{F}_q}$, denote

$$n(\mathbf{r}) = \min \left\{ \sum_{x \in \mathbb{F}_q} r_x, q \right\}, \quad U(\mathbf{r}) = \left\{ x \in \mathbb{F}_q : r_x > 0 \right\}.$$

Let

$$M_{\mathbf{r}}(\chi, \mathbb{F}_q, \mathcal{X}_d) := \frac{1}{\# \mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \prod_{x \in \mathbb{F}_q} \chi_x^{r_x}(F).$$

If $r_x \not\equiv 0 \pmod{l}$ for some $x \in \mathbb{F}_q$, then $\prod_{x \in \mathbb{F}_q} \chi_x^{r_x}(F)$ is a non-trivial Dirichlet character modulo h = g(U(r)) with $\deg h \leq n(\mathbf{r})$; If $r_x \equiv 0 \pmod{l}$ for any $x \in \mathbb{F}_q$, then $\prod_{x \in \mathbb{F}_q} \chi_x^{r_x}(F)$ is a trivial Dirichlet character modulo h = g(U(r)) with $\deg h \leq n(\mathbf{r})$, and

$$\sum_{F \in \mathcal{X}_d} \prod_{x \in \mathbb{F}_q} \chi_x^{r_x}(F) = \sum_{\substack{F \in \mathcal{X}_d \\ \gcd(F, g(U(\mathbf{r}))) = 1}} 1.$$

Hence the conditions (a) and (b) can be summarized as

$$M_{\mathbf{r}}(\mathbf{r}) \mathbb{F}_q, \mathcal{X}_d) = \begin{cases} O\left(q^{-\epsilon d + Cn(\mathbf{r})}\right) & r_x \not\equiv 0 \pmod{l} \ \exists x \in \mathbb{F}_q, \\ \gamma_q^{\#U(\mathbf{r})} + O\left(q^{-\epsilon d + Cn(\mathbf{r})}\right) & r_x \equiv 0 \pmod{l} \ \forall x \in \mathbb{F}_q. \end{cases}$$

For any nonnegative integer k, we consider the k-th moment

$$M_k(d,q) = \frac{1}{\#\mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \left(\frac{\sum_{x \in \mathbb{F}_q} \sum_{j=1}^{l-1} \chi_x^j(F)}{\sqrt{q}} \right)^k.$$

We can expand

(3.3)
$$\left(\sum_{x\in\mathbb{F}_q}\sum_{j=1}^{l-1}\chi_x^j(F)\right)^k = \sum_{\mathbf{r}=(r_x)_{x\in\mathbb{F}_q}}a(\mathbf{r})\prod_{x\in\mathbb{F}_q}\chi_x^{r_x}(F),$$

where on the right hand side the sum is over all vectors of nonnegative integers $\mathbf{r} = (r_x)_{x \in \mathbb{F}_q}$ such that $n(\mathbf{r}) \leq \sum_x r_x \leq k(l-1)$, and $a(\mathbf{r})$'s are nonnegative combinatorial constants such that

(3.4)
$$\sum_{\mathbf{r}=(r_x)_{x\in\mathbb{F}_q}} a(\mathbf{r}) = (l-1)^k q^k.$$

Using (3.3) we find that

$$M_k(d,q) = q^{-k/2} \sum_{\mathbf{r} = (r_x)_{x \in \mathbb{F}_q}} a(\mathbf{r}) \frac{1}{\# \mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \prod_{x \in \mathbb{F}_q} \chi_x^{r_x}(F).$$

Applying (3.2) and (3.4) we obtain

$$M_k(d,q) = q^{-k/2} \sum_{\substack{\mathbf{r} = (r_x)_{x \in \mathbb{F}_q} \\ (***)}} a(\mathbf{r}) \gamma_q^{\#U(\mathbf{r})} + O\left(l^k q^{-\epsilon d + \frac{k}{2} + C\min\{k(l-1), q\}}\right),$$

where the extra condition (***) means that $r_x \equiv 0 \pmod{l}$ for any $x \in \mathbb{F}_q$. On the other hand, let $\{X_x\}_{x \in \mathbb{F}_q}$ be i.i.d. random variables, taking value 0 with probability $1 - \gamma_q$ and each value ζ_l^j , $1 \leq j \leq l$ with equal probability γ_q/l , we have for each positive integer $\lambda > 0$,

$$(3.5) \mathbb{E}\left(X_x^{\lambda}\right) = \left\{ \begin{array}{ll} 0 & \lambda \not\equiv 0 \pmod{l} \\ \gamma_q & \lambda \equiv 0 \pmod{l} \end{array} \right., \quad x \in \mathbb{F}_q.$$

Expanding $M_k = \mathbb{E}\left\{\left(\frac{\sum_{x \in \mathbb{F}_q} \sum_{j=1}^{l-1} X_x^j}{\sqrt{q}}\right)^k\right\}$ in the same way as for $M_k(q,d)$,

we see that

$$M_k = q^{-k/2} \sum_{\substack{\mathbf{r} = (r_x)_{x \in \mathbb{F}_q} \\ (***)}} a(\mathbf{r}) \gamma_q^{\#U(\mathbf{r})},$$

where the condition (***) is the same as in the expression of $M_k(q, d)$. All other terms become zero because of independence of X_x 's and the identities (3.5). We conclude that for any nonnegative integer k,

$$M_k(d_3q_0) = \mathbb{E}\left\{\left(\frac{\sum_{x \in \mathbb{F}_q} \sum_{j=1}^{l-1} X_x^j}{\sqrt{q}}\right)^k\right\} \left(1 + O\left(l^k q^{-\epsilon d + k + C\min\{k(l-1), q\}}\right)\right).$$

Finally, denote

$$Y_x = \sum_{j=1}^{l-1} X_x^j, \quad \forall x \in \mathbb{F}_q.$$

It is easy to see that $\{Y_x\}_{x\in\mathbb{F}_q}$ are q i.i.d. random variables and for any $x\in\mathbb{F}_q$,

$$\begin{cases} \operatorname{Prob}(Y_x = 0) &= 1 - \gamma_q, \\ \operatorname{Prob}(Y_x = -1) &= \frac{(l-1)\gamma_q}{l}, \\ \operatorname{Prob}(Y_x = l - 1) &= \frac{\gamma_q}{l}. \end{cases}$$

From [3, Section 30] and the relation (4.4) we know that as $d \to \infty$, on the probability space \mathcal{X}_d , the value $\#C_F^0(\mathbb{F}_q) - q$ is distributed asymptotically as $\sum_{x \in \mathbb{F}_q} Y_x$, and as $d, q \to \infty$, since $\mathbb{E}(Y_x) = 0$, \mathbb{V} ar $(Y_x) = (l-1)\gamma_q$ and $\gamma_q \to \gamma > 0$ as $q \to \infty$, the limiting distribution of the normalized sum $\frac{\#C_F^0(\mathbb{F}_q)-q}{\sqrt{q(l-1)\gamma}}$ is a standard Gaussian with mean zero and variance one. This completes the proof of Theorem 3.1.

Now we can prove Theorem 1.1 and Theorem 1.3.

Proofs of Theorem 1.1 and Theorem 1.3. For $\mathcal{F}_{d,l}$, from (2.3), Lemma 2.1 and Lemma 2.2 in Section 2, we see that $\mathcal{F}_{d,l}$'s satisfy the conditions (a) and (b) with

$$\epsilon = 1 - \frac{1}{l}, \ C = 1 - \frac{1}{l}, \ \gamma_q = \frac{1 - q^{-1}}{1 - q^{-l}} \,,$$

and $\gamma_q \to 1$ as $q \to \infty$. For \mathcal{P}_d , since $P \in \mathcal{P}_d$ is irreducible of degree d, if $d \geq 2$, then $\gcd(P, g(U)) = 1$ for any $U \subset \mathbb{F}_q$. So the condition (b) is automatically satisfied with $\gamma_q = 1$. Moreover, from (2.5) and Lemma 2.3, we find that condition (a) is also satisfied with

$$\epsilon = \frac{1}{2} \,, \ C = 1 \,.$$

Then Theorem 1.1 and Theorem 1.3 follow from Theorem 3.1 directly. \Box

4. Proofs of Theorem 1.2 and Theorem 1.4

We also prove a general result first, and Theorem 1.2 and Theorem 1.4 can be derived directly.

Kurlberg and Rudnick proved a similar result in [7], and their idea has been used by Bucur, David, Feigon and Lalín in [4, 5] to obtain various interesting results. We follow their ideas, however, our proof is based on properties of character sums.

Theorem 4.1. For each d, suppose that $\mathcal{X}_d \subset \mathbb{F}_q[X]$ satisfies the conditions (a) and (b) as in Theorem 3.1. Denote

$$T_l = \left\{ \zeta_l^j : 1 \le j \le l \right\} \bigcup \{0\}.$$

Then for any vector $(s_x)_{x \in \mathbb{F}_q} \in T_l^q$, we have

$$\operatorname{Prob}_{\mathcal{X}_d}\left(\chi_x = s_x, \forall x \in \mathbb{F}_q\right) = \operatorname{Prob}\left(X_x = s_x, \forall x \in \mathbb{F}_q\right) \left(1 + O\left(2^q q^{-\epsilon d + Cq}\right)\right),$$

where $\{X_x\}_{x\in\mathbb{F}_q}$ are i.i.d. random variables and for each $x\in\mathbb{F}_q$, X_x takes value 0 with probability $1-\gamma_q$ and each value ζ_l^j , $1\leq j\leq l$ with equal probability $\frac{\gamma_q}{l}$.

Proof. For $(s_x)_{x\in\mathbb{F}_q}\in T_l^q$, we need to compute

$$L = \operatorname{Prob}_{\mathcal{X}_d} (\chi_x = s_x, \forall x \in \mathbb{F}_q)$$
.

Let

$$A = \{x \in \mathbb{F}_q : s_x = 0\}, \quad B = \mathbb{F}_q/A.$$

Write

$$L = \frac{1}{\# \mathcal{X}_d} \# \left\{ F \in \mathcal{X}_d : \begin{array}{l} \chi_x(F) = 0, & \forall x \in A \\ \chi_x(F) = s_x \neq 0, & \forall x \in B \end{array} \right\}.$$

It is easy to see that

$$1 - \chi_x^l(F) = \begin{cases} 1 : \chi_x(F) = 0, \\ 0 : \chi_x(F) \neq 0, \end{cases}$$

and for any $s_x \in \left\{ \zeta_l^j : 1 \le j \le l \right\}$,

$$\frac{1}{l} \sum_{r_x=1}^{l} (\chi_x(F) s_x^{-1})^{r_x} = \begin{cases} 1 : \chi_x(F) = s_x, \\ 0 : \chi_x(F) \neq s_x. \end{cases}$$

Hence

$$L = \frac{1}{\# \mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \prod_{x \in A} \left(1 - \chi_x^l(F) \right) \prod_{x \in B} \frac{1}{l} \sum_{r_x = 1}^l \left(\chi_x(F) s_x^{-1} \right)^{r_x}.$$

For any $U \subset \mathbb{F}_q$, denote

$$\chi_U = \prod_{x \in U} \chi_x.$$

We can expand

(4.1)
$$\prod_{x \in A} \left(1 - \chi_x^l(F) \right) = \sum_{A' \subset A} (-1)^{\#A'} \chi_{A'}^l(F),$$

where the sum is over all sets A' with $A' \subset A$, and

$$(4. \mathbf{P}) \underbrace{\frac{1}{l} \sum_{r_x=1}^{l} \left(\chi_x(F) s_x^{-1} \right)^{r_x}}_{1 \le r_x} = \underbrace{\frac{1}{l^{\#B}} \sum_{\substack{1 \le r_x \le l \\ \forall r \in B}} \left(\prod_{x \in B} s_x^{-r_x} \right) \left(\prod_{x \in B} \chi_x^{r_x}(F) \right).$$

Using (4.1) and (4.2) and changing the order of summation we obtain

$$L = \frac{1}{l^{\#B}} \sum_{A' \subset A} (-1)^{\#A'} \sum_{\substack{1 \le r_x \le l \\ \forall x \in B}} \left(\prod_{x \in B} s_x^{-r_x} \right) \frac{1}{\#\mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \chi_{A'}^l \prod_{x \in B} \chi_x^{r_x}(F) .$$

If for some $x \in B$, $r_x \neq l$, then $\chi_{A'}^l \prod_{x \in B} \chi_x^{r_x}$ is a non-trivial Dirichlet character, and from the condition (a),

$$\frac{1}{\#\mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \chi_{A'}^l \prod_{x \in B} \chi_x^{r_x}(F) \ll q^{-\epsilon d + Cq}.$$

The total contribution from such cases is bounded by

$$\ll \frac{1}{l^{\#B}} \sum_{A' \subset A} 1 \sum_{\substack{1 \le r_x \le l \\ \forall x \in B}} q^{-\epsilon d + Cq} \le 2^q q^{-\epsilon d + Cq}.$$

The main contribution in L comes from the case that $r_x = l$ for all $x \in B$, that is

(4.3)
$$\frac{1}{l^{\#B}} \sum_{A' \subset A} (-1)^{\#A'} \frac{1}{\#\mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \chi_{A'}^l \chi_B^l(F).$$

From the condition (b), we find that

$$\frac{1}{\#\mathcal{X}_d} \sum_{F \in \mathcal{X}_d} \chi_{A'}^l \chi_B^l(F) = \gamma_q^{\#A' + \#B} + O\left(q^{-\epsilon d + Cq}\right).$$

Therefore

$$L = \frac{1}{l^{\#B}} \sum_{A' \subset A} (-1)^{\#A'} \gamma_q^{\#A' + \#B} + O\left(2^q q^{-\epsilon d + Cq}\right)$$
$$= \frac{1}{l^{\#B}} \gamma_q^{\#B} \left(1 - \gamma_q\right)^{\#A} + O\left(2^q q^{-\epsilon d + Cq}\right),$$

as we collect the error terms together. We conclude that

$$\operatorname{Prob}_{\mathcal{X}_d} \left(\chi_x = s_x, \forall x \in \mathbb{F}_q \right) = \left(\frac{\gamma_q}{l} \right)^{\#B} \left(1 - \gamma_q \right)^{\#A} + O\left(2^q q^{-\epsilon d + Cq} \right) ,$$

where

$$A = \{x \in \mathbb{F}_q : s_x = 0\}, \quad B = \mathbb{F}_q/A.$$

On the other hand, let $\{X_x\}_{x\in\mathbb{F}_q}$ be q i.i.d random variables such that for any $x\in\mathbb{F}_q$, X_x takes value 0 with probability $1-\gamma_q$ and each value ζ_l^j , $1\leq j\leq l$ with equal probability $\frac{\gamma_q}{l}$. It is easy to see that

$$\operatorname{Prob}\left(X_{x} = s_{x}, \forall x \in \mathbb{F}_{q}\right) = \prod_{x \in \mathbb{F}_{q}} \operatorname{Prob}\left(X_{x} = s_{x}\right) = \left(\frac{\gamma_{q}}{l}\right)^{\#B} \left(1 - \gamma_{q}\right)^{\#A}.$$

Therefore for any $(s_x)_{x \in \mathbb{F}_q} \in T_l^q$,

$$\operatorname{Prob}_{\mathcal{X}_d} (\chi_x = s_x, \forall x \in \mathbb{F}_q) = \operatorname{Prob} (X_x = s_x, \forall x \in \mathbb{F}_q) + O\left(2^q q^{-\epsilon d + Cq}\right).$$

Noting that as $d, q \to \infty$,

 $\operatorname{Prob}_{\mathcal{X}_d}(\chi_x = s_x, \forall x \in \mathbb{F}_q) = 0$ if and only if $\operatorname{Prob}(X_x = s_x, \forall x \in \mathbb{F}_q) = 0$, this completes the proof of Theorem 4.1.

Now we can prove Theorem 1.2 and Theorem 1.4.

Proofs of Theorem 1.2 and Theorem 1.4. As we know, $\mathcal{F}_{d,l}$'s satisfy the conditions (a) and (b) with

$$\epsilon = 1 - \frac{1}{l}, \ C = 1 - \frac{1}{l}, \ \gamma_q = \frac{1 - q^{-1}}{1 - q^{-l}}.$$

Hence from Theorem 4.1,

$$\operatorname{Prob}_{\mathcal{X}_d}\left(\chi_x = s_x, \forall x \in \mathbb{F}_q\right) = \operatorname{Prob}\left(X_x = s_x, \forall x \in \mathbb{F}_q\right) \left(1 + O\left(2^q q^{-\epsilon d + Cq}\right)\right),$$

where $\{X_x\}_{x\in\mathbb{F}_q}$ are q i.i.d. random variables such that for any x, X_x takes value 0 with probability $1-\gamma_q$ and each value ζ_l^j , $1\leq j\leq l$ with equal probability $\frac{\gamma_q}{l}$.

Since

$$\#C_F^0(\mathbb{F}_q) = q + \sum_{j=1}^{l-1} \sum_{x \in \mathbb{F}_q} \chi_x^j(F),$$

for any $s \in \mathbb{Z}$, we find that

$$\operatorname{Prob}_{\mathcal{X}_d} \left(\# C^0(\mathbb{F}_q) - q = s \right) = \sum_{\substack{\sum_{j=1}^{l-1} \sum_x s_x^j = s \\ s_x \in T_l \ \forall x}} \operatorname{Prob}_{\mathcal{X}_d} \left(\chi_x = s_x, \forall x \in \mathbb{F}_q \right) .$$

By Theorem 4.1, we have

$$\operatorname{Prob}_{\mathcal{X}_d} \left(\# C^0(\mathbb{F}_q) - q = s \right) = \sum_{\substack{\sum_{j=1}^{l-1} \sum_x s_x^j = s \\ s_x \in T_l, \forall x}} \operatorname{Prob} \left(X_x = s_x, \forall x \in \mathbb{F}_q \right) \left(1 + O\left(2^q q^{-\epsilon d + Cq}\right) \right)$$
$$= \operatorname{Prob} \left(\sum_{j=1}^{l-1} \sum_{x \in \mathbb{F}_q} X_x^j = s \right) \left(1 + O\left(2^q q^{-\epsilon d + Cq}\right) \right).$$

Denoting

$$Y_x = \sum_{i=1}^{l-1} X_x^j, \quad x \in \mathbb{F}_q,$$

this completes the proof of Theorem 1.2.

Theorem 1.4 can be proved similarly, noting that \mathcal{P}_d 's satisfy the conditions (a) and (b) with

$$\epsilon = \frac{1}{2}, C = 1, \gamma_q = 1.$$

References

- [1] J. Bergström, Equivariant counts of points of the moduli spaces of pointed hyperelliptic curves, preprint, http://arxiv.org/abs/math/0611813v1, 2006.
- [2] P. BILLINGSLEY, Probability and Measure, third ed., Wiley Ser. Probab. Math. Stat., John Wiley & Sons Inc., Ney Youk, 1995, A Wiley-Interscience Publication.
- [3] P. BILLINGSLEY, Probability and Measure, third ed., Wiley Ser. Probab. Math. Stat., John Wiley & Sons Inc., Ney Youk, 1995, A Wiley-Interscience Publication.
- [4] A. Bucur, C. David, B. Feigon, M. Lalín, Statistics for traces of cyclic trigonal curves over finite fields, International Mathematics Research Notices (2010), 932–967.
- [5] A. Bucur, C. David, B. Feigon, M. Lalín, Biased statistics for traces of cyclic p-fold covers over finite fields, to appear in Proceedings of Women in Numbers, Fields Institute Communications.
- [6] P. DIACONIS, M. SHAHSHAHANI, On the eigenvalues of random matrices, in: Studies in Applied Probability, J. Appl. Probab. 31A (1994), 49–62.
- [7] P. Kurlberg, Z. Rudnick, The fluctuations in the number of points on a hyperelliptic curve over a finite field, J. Number Theory Vol. 129 3 (2009), 580-587.
- [8] N. M. Katz, P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy, Amer. Math. Soc. Colloq. Publ., vol. 45, American Mathematical Society, Providence, RI, 1999
- [9] N. M. KATZ, P. SARNAK, Zeroes of zeta functions and symmetry, Bull. Am. Math. Soc. 36 (1999), 1–26.
- [10] L. A. KNIZHNERMAN, V. Z. SOKOLINSKII, Some estimates for rational trigonometric sums and sums of Legendre symbols, Uspekhi Mat. Nauk 34 (3 (207))(1979), 199–200.
- [11] L. A. KNIZHNERMAN, V. Z. SOKOLINSKII, Trigonometric sums and sums of Legendre symbols with large and small absolute values, in: Investigations in Number Theory, Saratov. Gos. Univ., Saratov, 1987, 76–89.
- [12] M. Larsen, The normal distribution as a limit of generalized sato-tate measures, preprint.
- [13] M. ROSEN, Number theory in function fields, Graduate Texts in Mathematics, 210, Springer-Verlag, New York, 2002.
- [14] A. Weil, Sur les Courbes Algébriques et les Variétés qui s'en Déduisent, Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948. iv+85 pp.

Maosheng Xiong

Department of Mathematics

Hong Kong University of Science and Technology

Clear Water Bay, Kowloon

P. R. China

 $E ext{-}mail: {\tt mamsxiong@ust.hk}$