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Abstract. We study the distribution of the sizes of the Selmer groups arising

from the three 2-isogenies and their dual 2-isogenies for the elliptic curve En :

y2 = x3 − n2x. We show that three of them are almost always trivial, while the

2-rank of the other three follows a Gaussian distribution. It implies three almost

always trivial Tate-Shafarevich groups and three large Tate-Shararevich groups.

When combined with a result obtained by Heath-Brown, we show that the mean

value of the 2-rank of the large Tate-Shafarevich groups for square-free positive

odd integers n ≤ X is 1
2 log log X + O(1), as X →∞.

1. Introduction

A positive integer n is called a “congruent number” if n equals the area of a

rational right triangle, where “rational” means that the lengths of the three sides of

this triangle are rational numbers. Although Tunnell ([38]) presented an elementary

criterion via the theory of modular forms, strictly speaking the problem of deciding

whether or not a given integer is a congruent number is still open. Clearly one may

restrict attention to positive square-free integer n. It is a well-known fact that n is a

congruent number if and only if the elliptic curve En : y2 = x3−n2x has positive rank

over Q ([25]). Partly because of this relation and among other things, this family of
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elliptic curves En has attracted a lot of attention and its arithmetic properties, such

as the rank, the associated L-functions, the Selmer groups and Tate-Shafarevich

groups related to this curve have been studied extensively (see [1],[4],[5],[8],[11],[13],

[14],[15],[16],[20],[21],[23], [27],[29],[30],[32],[33],[34],[35],[37],[38],[42],[43]).

Let φ : E −→ E ′ be an isogeny between two elliptic curves E and E ′ over Q. For

the cases of interest to us, φ is defined over Q and E[φ], the kernel of φ consists of

Q-rational points. Via Galois cohomology the exact sequence

0 // E[φ] // E
φ

// E ′ // 0

gives us the commutative diagram (For details, please see chapter X in [36])

0 // E′(Q)
φ(E(Q))

//

��

Sel(φ)(E/Q) //

��

X(E/Q)[φ] //

��

0

0 // E′(Q)
φ(E(Q))

//

��

H1(GQ̄/Q, E[φ]) //

��

H1(GQ̄/Q, E)[φ] //

��

0

0 // 0 //
∏

vH
1(Gv, E) //

∏
vH

1(Gv, E) // 0 ,

where Sel(φ)(E/Q) is the φ−Selmer group and X(E/Q) is the Tate-Shafarevich

group.

While the Selmer group is relatively easy to handle, the Tate-Shafarevich group

is more mysterious. It appears naturally in the Birch and Swinnerton-Dyer con-

jecture, and measures the degree of deviation from the Hasse principle. Even the

finiteness of the group is not known in general. Various families of elliptic curves

with large Tate-Shafarevich groups were identified by a number of authors (see

[2],[3],[6],[7],[24],[26],[28],[30]). Moments ([10]), heuristic results ([9]), and upper

bounds ([17],[18]) on the order of Tate-Shafarevitch Groups were also considered.

For the elliptic curve En, Heath-Brown ([20],[21]) employed a method based on

character sums to obtain deep results on the behavior of the size of the Selmer group
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Sel(2)(En/Q) arising from the isogeny [ 2 ] : En −→ En. For h = 1, 3, 5, 7, denote

(1) S(X, h) = {1 ≤ n ≤ X : n ≡ h (mod 8) and n is square-free},

and for n ∈ S(X, h), let

#Sel(2)(En/Q) = 2s(n)+2.

In Theorem 1 of [21] he proved that for any fixed positive integer k

(2)
∑

n∈S(X,h)

2ks(n) = ck#S(X, h) + ok(X)

as X →∞, where ck =
∏k

j=1(1 + 2j) . He further derived the following result. Let

λ =
∞∏
n=1

(1 + 2−n)−1 = 0.4194... ,

and

dr = λ
2r∏

1≤j≤r(2
j − 1)

(r = 0, 1, 2, . . .) .

Then if h = 1 or 3, and r is even, or if h = 5 or 7, and r is odd, one has

#{n ∈ S(X, h) : s(n) = r} ∼ dr#S(X, h) ,

as X → ∞. This is Theorem 2 in [21], and it shows that that the probability that

the 2-rank of the Selmer group Sel(2)(En/Q) equals any given non-negative integer

is always positive.

Heath-Brown also obtained the asymptotic formula (see Corollary 2, [21])

(3)
∑

n∈S(X,h)

s(n) = c′h#S(X, h) + o(X)

as X →∞, where

c′h =

 1.2039... if h = 1, 3

1.3250... if h = 5, 7 .

Notice that since the rank of the elliptic curve satisfies r(En/Q) ≤ s(n), the above

asymptotic formula yields a sharp upper bound on the average rank of the elliptic
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curves in this family (see Corollary 3 and 4, [21]). Heath-Brown’s method was

generalized by G. Yu ([39],[40],[41]) to broader families of elliptic curves with full 2-

torsion points and with a 2-torsion point in Q, and he obtained sharp upper bounds

on the average rank of the elliptic curves in those families.

In this paper we also focus on the family of elliptic curves En. For the three

different 2-isogenies φ1, φ2, φ3 defined by

φ1 : En −→ E1,n : y2 = x3 + 4n2x

(x, y) 7→ (y2/x2,−y(n2 + x2)/x2)
,

φ2 : En −→ E2,n : y2 = x(x2 − 6nx+ n2)

(x, y) 7→ (y2/(x+ n)2, y(2n2 − (x+ n)2)/(x+ n)2)
,

and

φ3 : En −→ E3,n : y2 = x(x2 + 6nx+ n2)

(x, y) 7→ (y2/(x− n)2, y(2n2 − (x− n)2)/(x− n)2)
,

let φ̂1 : E1,n −→ En, φ̂2 : E2,n −→ En and φ̂3 : E3,n −→ En be their dual 2-

isogenies respectively. Hence φ̂i ◦ φi = [ 2 ] for i = 1, 2, 3, and one has the following
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commutative diagrams (see pp 97, [1]):

0

��

0

��

0

��

0 // Ei,n(Q)

φi(En(Q))
//

��

Sel(φi)(En/Q) //

��

X(En/Q)[φi] //

��

0

0 // En(Q)
2En(Q))

//

��

Sel(2)(En/Q) //

��

X(En/Q)[2] //

��

0

0 // En(Q)

φ̂i(Ei,n(Q))
//

��

Sel(φ̂i)(Ei,n/Q) //

��

X(Ei,n/Q)[φ̂i] //

��

0

0 // Ĉ //

��

Ĉ //

��

0

0 0

The first three rows are basic short exact sequences in the arithmetic of elliptic

curves coming from Galois cohomology; the exactness in the first column comes

from the fact that En contains full 2-torsion in Q, and the rest come from the Snake

lemma.

Here one may apply Heath-Brown’s method to obtain asymptotic formulas for the

average of the sizes of the two Selmer groups Sel(φi)(En/Q) and Sel(φ̂i)(Ei,n/Q), and

this may reveal some interesting distribution phenomena. Moreover, by comparing

such results on Sel(φi)(En/Q) and Sel(φ̂i)(Ei,n/Q) and the result on Sel(2)(En/Q)

obtained by Heath-Brown, one may be able to obtain new information on the Tate-

Shafarevich groups in the third column of the commutative diagrams. As we will

see below, this is precisely the case. We will prove the following results. Let S(X, h)

be the set of integers defined in (1).
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Theorem 1. Let h = 1, 3, 5 or 7 and i = 1, 2 or 3. For n ∈ S(X, h), denote

#Sel(φi)(En/Q) = 2s(n,φi) , #Sel(φ̂i)(Ei,n/Q) = 2s(n,φ̂i)+2 .

Then s(n, φi) = 0 for almost all n ∈ S(X, h) as X → ∞, and s(n, φ̂i) follows a

Gaussian distribution. More precisely, for any integer k ≥ 0, one has

lim
X→∞

1

#S(X, h)

∑
n∈S(X,h)

s(n, φi)
k = 0,

and for any γ ∈ R,

lim
X→∞

1

#S(X, h)
#

n ∈ S(X, h) :
s(n, φ̂i)− 1

2
log log n√

1
2
log log n

≤ γ

 = G(γ) ,

where the function G is defined by

G(γ) =
1√
2π

∫ γ

−∞
e
−t2
2 dt .

We remark that the sizes of the three Selmer groups Sel(φi)(En/Q), Sel(φ̂i)(Ei,n/Q)

and Sel(2)(En/Q) behave very differently. While the first is almost always trivial and

the 2-rank of the second follows a Gaussian distribution, the probability that the

2-rank of the third equals any non-negative integer is always positive. It also implies

that the map φi : En(Q) → Ei,n(Q) is almost always surjective for n ∈ S(X, h) as

X →∞.

Theorem 2. Let h = 1, 3, 5 or 7 and i = 1, 2 or 3. For n ∈ S(X, h), denote

#X(En/Q)[φi] = 2t(n,φi), #X(Ei,n/Q)[φ̂i] = 2t(n,φ̂i).

Then t(n, φi) = 0 for almost all n ∈ S(X, h) as X →∞. Moreover, for any positive

integer k, one has

1

#S(X, h)

∑
n∈S(X,h)

t(n, φi)
k = Ok

(
(logX)−1/5

)
,
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and

1

#S(X, h)

∑
n∈S(X,h)

t(n, φ̂i)
k =

(
log logX

2

)k
+Ok

(
(log logX)k−1

)
.

In particular when k = 1, it shows that the mean value of the 2-rank of the

large Tate-Shafarevich groups is 1
2
log logX + O(1). Notice that X(Ei,n/Q)[φ̂i] ⊂

X(Ei,n/Q)[2], Theorem 2 implies that the 2-part of the Tate-Shafarevich group

X(Ei,n/Q) can be arbitrarily large for any i = 1, 2 or 3.

There are three main ingredients in the proofs of the above results. First, we

use a graph method to determine the sizes of the Selmer groups Sel(φi)(En/Q) and

Sel(φ̂i)(Ei,n/Q) separately. This will reveal a simple relation, which is essential in

reducing the complexity of the problem. Second, we employ Heath-Brown’s method

based on character sums in order to obtain asymptotic formulas for the average

of the size of the Selmer group. This will yield the distribution results. Third,

by combining our results, the full strength of the results obtain by Heath-Brown

and the above commutative diagrams, we derive information on the corresponding

Tate-Shafarevich groups.

Acknowledgement. The authors are very grateful to the referee for many useful

comments and suggestions.

2. Preliminaries

2.1. 2-descent and Selmer groups. The 2-descent method is explained in the

last chapter of Silverman’s book ([36]) in general. For our particular case of En, this

was specified in [13], [14] and [15] as follows.

For a square-free positive integer n, let n = p1 · · · pt, where p1, . . . , pt are the

distinct odd prime factors of n. Define a set S of prime divisors of the rational

number field Q by

S = {∞, 2, p1, . . . , pt}
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and a subgroupM of the multiplicative group Q∗/(Q∗)2 generated by−1, 2, p1, . . . , pt .

For i = 1, 2, 3, for each d ∈M we have homogeneous spaces Ci,d and C ′i,d correspond-

ing to the isogenies φi and φ̂i respectively. They are defined as

C1,d : dw2 = t4 + (2n/d)2 z4,

C ′1,d : dw2 = t4 − (n/d)2 z4,

C2,d : dw2 = t4 − 6(n/d)t2z2 + (n/d)2 z4,

C ′2,d : dw2 = t4 + 3(n/d)t2z2 + 2 (n/d)2 z4,

C3,d : dw2 = t4 + 6(n/d)t2z2 + (n/d)2 z4,

C ′3,d : dw2 = t4 − 3(n/d)t2z2 + 2 (n/d)2 z4 .

The Selmer group Sel(φi)(En/Q) (Sel(φ̂i)(Ei,n/Q)) measures the possibility of Ci,d

(Ci,d) having non-trivial solutions in the local field Qv for all v ∈ S. Namely,

Sel(φi)(En/Q) ∼= {d ∈M : Ci,d(Qv) 6= φ for all v ∈ S} ,

Sel(φ̂i)(Ei,n/Q) ∼= {d ∈M : C ′i,d(Qv) 6= φ for all v ∈ S} ,

where Ci,d(Qv) 6= φ (C ′i,d(Qv) 6= φ) means that the homogeneous space Ci,d (C ′i,d) has

non-trivial solutions (w, t, z) 6= (0, 0, 0) in Qv. Sel(φi)(En/Q) and Sel(φ̂i)(Ei,n/Q)

can be considered as subgroups of M . Notice that {±1,±n} ⊆ Sel(φ̂1)(E1,n/Q),

{1, 2,−n,−2n} ⊆ Sel(φ̂2)(E2,n/Q) and {1, 2, n, 2n} ⊆ Sel(φ̂3)(E3,n/Q), since the

corresponding homogeneous spaces have global non-trivial solutions in Q.

2.2. A graph method. We use standard terminology in graph theory ([19]). Let

G = (V,A) be a simple directed graph where V = V (G) = {v1, · · · , vm} is the set of

vertices of G, and A = A(G) is the set of arcs in G. We denote an arc (vi, vj) ∈ A

by −−→vivj. The adjacency matrix of G is defined by

M(G) = (aij)16i,j6m ,
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where

aij =

 1, if −−→vivj ∈ A (1 6 i 6= j 6 m)

0, otherwise .

For the vertex vi, 1 ≤ i ≤ m, let di =
∑m

j=1 aij . The Laplace matrix of the graph G

is defined by

L(G) = diag(d1, · · · , dm)−M(G) .

The term “odd graph” has been used by K. Feng, Y. Xue and one of the authors

in their study of new families of non-congruent numbers ([13],[14],[15]).

Definition 1. Let G = (V,A) be a directed graph. A partition of vertices V1

⋃
V2 =

V is called odd if either there exists a vertex v1 ∈ V1 such that #{v1 → V2}, the

total number of arcs from v1 to vertices in V2 is odd, or there exists v2 ∈ V2 such

that #{v2 → V1} is odd. Otherwise the partition V1

⋃
V2 = V is called even. The

graph G is called odd if all non-trivial partitions {V1, V2} 6= {V, φ} of V are odd.

We need the following counting lemma, which can be derived by the same idea

used in the proof of Lemma 2.2 in [13].

Lemma 1. Let G = (V,A) be a directed graph, V = {v1, . . . , vs+t} (s, t ≥ 0) . Then

the number of even partition {V1, V2} of V such that {vs+1, . . . , vs+t} ⊂ V2 is equal to

the number of vectors (x1, . . . , xs) ∈ Fs2 such that L(G) · (x1, . . . , xs, 0, . . . , 0)T = 0.

3. Explicit formulas for the Selmer groups

The problem of finding the sizes of the Selmer groups Sel(φi)(En/Q) (Sel(φ̂i)(Ei,n/Q))

it is equivalent to the problem of determining how many homogeneous spaces Ci,d

(respectively C ′i,d) have non-trivial solutions over certain local fields. While the

solvability conditions can be found by using Hensel’s lemma, one still needs a clever

combinatoric method to piece them together. We will interpret these solvability

conditions as certain “even partitions” of a graph, and use Lemma 1 to find the

number of such partitions.
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3.1. The sizes of Sel(φ1)(En/Q) and Sel(φ̂1)(E1,n/Q). We collect the solvability

conditions for C1,d and C ′1,d over local fields as follows.

Lemma 2. (Lemma 3.1, [14]) Suppose that n = p1 · · · pt (t ≥ 1) is a square-free odd

integer, d ∈ M =< −1, 2, p1, · · · , pt >⊆ Q∗/(Q∗)2, v ∈ S = {∞, 2, p1, · · · , pt}. Let

p denote an odd prime number. One has

(1) C1,d(Q∞) = φ ⇐⇒ d < 0.

(2) For p|d, C1,d(Qp) 6= φ ⇐⇒
(
−1

p

)
= 1 and

(
n/d

p

)
= 1 .

(3) For p|n
d
, C1,d(Qp) = φ ⇐⇒

(
d

p

)
= −1.

(4) If n ≡ ±3(mod8) and 2|d, then C1,d(Q2) = φ.

(5) d ≡ 1(mod4) =⇒ C1,d(Q2) 6= φ.

(6) If n ≡ ±1(mod8), d = 2d′|2n and d′ ≡ 1(mod4), then C1,d(Q2) 6= φ.

Lemma 3. (Lemma 3.2, [14]) Under the same assumptions one has

(1) 2|d =⇒ C ′1,d(Q2) = φ.

(2) If 2 6 |d, then C ′1,d(Q2) = φ ⇐⇒ d ≡ ±3(mod8) and
n

d
≡ ±3(mod8).

(3) If p|d, then C ′1,d(Qp) = φ ⇐⇒
(
−1

p

)
= 1 and

(
n/d

p

)
= −1.

(4) If p|n
d
, then C ′1,d(Qp) = φ ⇐⇒

(
−1

p

)
= 1 and

(
d

p

)
= −1.

For a square-free positive odd integer n, let

n = p1 · · · ptq1 · · · qs

be its prime factorization, where pi ≡ 1 (mod 4) 1 ≤ i ≤ t ,

qj ≡ 3 (mod 4) 1 ≤ j ≤ s .

If n ≡ ±3 (mod 8), we construct a graph Ĝ1(n) = (V,A) by assigning

V = {p1, . . . , pt, q1, . . . , qs} ,
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A =
{−→pq :

(
q
p

)
= −1, p|n, q|n

}
.

By (1)(2) and (3) of Lemma 2 one has Sel(φ1)(En/Q) ⊂< p1, · · · , pt >. For any

d = p1 · · · pr ∈< p1, · · · , pt >, it is easy to see from Lemma 2 that d ∈ Sel(φ1)(En/Q)

if and only if the partition

{p1, . . . , pr}
⋃
{pr+1, . . . , ps, q1, . . . , qs} = V

is an even partition. Let L(Ĝ1(n) be the Laplace matrix of the graph Ĝ1(n). Then

by Lemma 1, the number of such even partitions, as well as the size of the Selmer

group Sel(φ1)(En/Q) is

2t−rankF2
L(Ĝ1(n)) .

For the Selmer group Sel(φ̂1)(E1,n/Q) and n ≡ ±3 (mod 8), we construct another

graph G1(n) = (V,A) by assigning

V = {p1, . . . , pt, q1, . . . , qs} ,

A =
{
pipj :

(
pj
pi

)
= −1, 1 ≤ i 6= j ≤ t

}
⋃{−−→piqr :

(
qr
pi

)
= −1, 1 ≤ i ≤ t, 1 ≤ r ≤ s

}
.

We know from Lemma 3 that for any d = p1 · · · prq1 · · · ql ∈< p1, . . . , pt, q1, . . . , qs >,

d ∈ Sel(φ̂1)(E1,n/Q) if and only if the partition

{p1, . . . , pr, q1, . . . , ql}
⋃
{pr+1, . . . , ps, ql+1, . . . , qs} = V

is an even partition. By Lemma 1, the size of the Selmer group, which is twice the

number of such even partitions is

2t+s+1−rankF2
L(G1(n)) .

Here L(G1(n)) denotes the Laplace matrix of the graph G1(n). One sees that

rankF2L(Ĝ1(n)) = rankF2L(G1(n) .
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Therefore

#Sel(φ̂1)(E1,n/Q) = #Sel(φ1)(En/Q) · 2s+1 .

In the case when n ≡ ±1 (mod 8) the computation is similar and we omit the

details. We have in conclusion the following result.

Theorem 3. For any square-free positive odd integer n, let

n = p1 · · · ptq1 · · · qs

be its prime factorization, where pi ≡ 1 (mod 4) 1 ≤ i ≤ t ,

qj ≡ 3 (mod 4) 1 ≤ j ≤ s .

Let s(n, φ1) and s(n, φ̂1) be the 2-rank of the Selmer groups Sel(φ1)(En/Q) and

Sel(φ̂1)(E1,n/Q) respectively, i.e.,

#Sel(φ1)(En/Q) = 2s(n,φ1) , #Sel(φ̂1)(E1,n/Q) = 2s(n,φ̂1)+2 .

If n ≡ ±3 (mod 8), we construct a graph G1(n) = (V,A) by

V = {p1, . . . , pt, q1, . . . , qs} ,

A =
{
pipj :

(
pj
pi

)
= −1, 1 ≤ i 6= j ≤ t

}
⋃{−−→piqr :

(
qr
pi

)
= −1, 1 ≤ i ≤ t, 1 ≤ r ≤ s

}
.

Let M1(n) be the Laplace matrix of the graph G1(n). Then

s(n, φ1) = t− rankF2M1(n), s(n, φ̂1) = s− 1 + t− rankF2M1(n) .

If n ≡ ±1 (mod 8), we construct a graph G′1(n) = (V,A) by

V = {p1, . . . , pt, q1, . . . , qs,−1} ,
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A =
{
pipj :

(
pj
pi

)
= −1, 1 ≤ i 6= j ≤ t

}
⋃{−−→piqr :

(
qr
pi

)
= −1, 1 ≤ i ≤ t, 1 ≤ r ≤ s

}
⋃{−−−→

(−1)p : p ≡ ±3 (mod 8), p ∈ V
}
.

Let M ′
1(n) be the Laplace matrix of the graph G′1(n). Then

s(n, φ1) = t+ 1− rankF2M
′
1(n), s(n, φ̂1) = s− 1 + t− rankF2M

′
1(n) .

These explicit formulas reveal a simple relation between these two Selmer groups,

which are crucial in determining the distribution of the 2-rank of one of them. They

are essentially the same as the ones obtained by N. Aoki (Theorem 2.1, [1]).

3.2. The sizes of Sel(φ2)(En/Q) and Sel(φ̂2)(E2,n/Q). The solvability conditions

of homogeneous spaces C2,d and C ′2,d over local fields can be derived from Hensel’s

lemma, and the proofs are very similar to those leading to Lemmas 2 and 3 above.

Thus we omit the proofs and collect the results below.

Lemma 4. Suppose that n = p1 · · · pt (t ≥ 1) is a square-free odd integer, d ∈

M =< −1, 2, p1, · · · , pt >⊆ Q∗/(Q∗)2, v ∈ S = {∞, 2, p1, · · · , pt}. Let p denote an

odd prime number. One has

(1) 2|d =⇒ C2,d(Q2) = φ.

(2) For p|d, C2,d(Qp) 6= φ ⇐⇒
(

2

p

)
= 1 and

(
n/d

p

)
= 1 .

(3) For p|n
d
, C2,d(Qp) = φ ⇐⇒

(
d

p

)
= −1.

(4) C2,d(Q∞) 6= φ⇐⇒ d > 0.

(5) C2,d(Q2) 6= φ⇐⇒ n ≡ 3 (mod 4), d ≡ ±1 (mod 8)

or n ≡ 1 (mod 4), d ≡ 1 (mod 8).
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Lemma 5. Under the same assumptions one has

(1) C ′2,d(Q∞) 6= φ.

(2) 2 6 |d, C ′3,d(Q2) 6= φ⇐⇒ d ≡ 1 (mod 4) or
n

d
≡ 3 (mod 4).

(3) If p|d, C ′2,d(Qp) = φ⇐⇒
(

2

p

)
= 1 and

(
−n/d
p

)
= −1.

(4) If p|n
d
, C ′2,d(Qp) = φ⇐⇒

(
2

p

)
= 1 and

(
d

p

)
= −1.

By the same graph method one can compute explicitly the sizes of the Selmer

groups Sel(φ2)(En/Q) and Sel(φ̂2)(E2,n/Q).

Theorem 4. For any square-free positive odd integer n, let

n = P1 · · ·Ptp1 · · · pt′Q1 · · ·Qsq1 · · · qs′

be its prime factorization, where Pi ≡ 1 (mod 8), pj ≡ 7 (mod 8),Qr ≡ 3 (mod 8), qm ≡

5 (mod 8), t, t′, s, s′ ≥ 0. Let s(n, φ2) and s(n, φ̂2) be the 2-rank of the Selmer groups

Sel(φ2)(En/Q) and Sel(φ̂2)(E2,n/Q) respectively, i.e.,

#Sel(φ2)(En/Q) = 2s(n,φ2) , #Sel(φ̂2)(E2,n/Q) = 2s(n,φ̂2)+2 .

If n ≡ 1 (mod 4), construct a graph G2(n) = (V,A) by

V = {p : p|n}
⋃
{−1} ,

A =
{−→pq :

(
q
p

)
= −1 and

(
2
p

)
= 1, p|n, q|n

}
⋃{−−−→

p(−1) :
(
−1
p

)
= −1 and

(
2
p

)
= 1, p|n

}
.

Let M2(n) be the Laplace matrix of the graph G2(n). Then

s(n, φ2) = t+ t′ − rankF2M2(n), s(n, φ̂2) = s+ s′ + t+ t′ − rankF2M2(n) .

If n ≡ 3 (mod 4), construct a graph G′2(n) = (V,A) by

V = {p : p|n}
⋃
{−1, ε} ,
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A =
{−→pq :

(
q
p

)
= −1 and

(
2
p

)
= 1, p|n, q|n

}
⋃{−−−→

p(−1) :
(
−1
p

)
= −1 and

(
2
p

)
= 1, p|n

}
⋃{−→ε p :

(
−1
p

)
= −1, p|n

}
.

Let M ′
2(n) be the Laplace matrix of the graph G′2(n). Then

s(n, φ2) = t+ t′ + 1− rankF2M
′
2(n), s(n, φ̂2) = s+ s′ + t+ t′ − rankF2M

′
2(n) .

3.3. The sizes of Sel(φ3)(En/Q) and Sel(φ̂3)(E3,n/Q).

Lemma 6. (Lemma 4.1, [15]) Suppose that n = p1 · · · pt (t ≥ 1) is a square-free odd

integer, d ∈ M =< −1, 2, p1, · · · , pt >⊆ Q∗/(Q∗)2, v ∈ S = {∞, 2, p1, · · · , pt}. Let

p denote an odd prime number. One has

(1) 2|d =⇒ C3,d(Q2) = φ.

(2) For p|d, C3,d(Qp) 6= φ ⇐⇒
(

2

p

)
= 1 and

(
−n/d
p

)
= 1 .

(3) For p|n
d
, C3,d(Qp) = φ ⇐⇒

(
d

p

)
= −1.

(4) C3,d(Q∞) 6= φ.

(5) C3,d(Q2) 6= φ⇐⇒ n ≡ 3 (mod 4), d ≡ 1 (mod 8)

or n ≡ 1 (mod 4), d ≡ ±1 (mod 8).

Lemma 7. (Lemma 4.1, [15]) Under the same assumptions one has

(1) d < 0 ⇐⇒ C ′3,d(Q∞) = φ.

(2) 2 6 |d, C ′3,d(Q2) 6= φ⇐⇒ d ≡ 1 (mod 4) or
n

d
≡ 1 (mod 4).

(3) If p|d, C ′3,d(Qp) = φ⇐⇒
(

2

p

)
= 1 and

(
n/d

p

)
= −1.

(4) If p|n
d
, C ′3,d(Qp) = φ⇐⇒

(
2

p

)
= 1 and

(
d

p

)
= −1.

We use the same graph method to compute explicitly the sizes of the Selmer

groups Sel(φ3)(En/Q) and Sel(φ̂3)(E3,n/Q).
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Theorem 5. For any square-free positive odd integer n, let

n = P1 · · ·Ptp1 · · · pt′Q1 · · ·Qsq1 · · · qs′

be its prime factorization, where Pi ≡ 1 (mod 8), pj ≡ 7 (mod 8),Qr ≡ 3 (mod 8), qm ≡

5 (mod 8), t, t′, s, s′ ≥ 0. Let s(n, φ3) and s(n, φ̂3) be the 2-rank of the Selmer groups

Sel(φ3)(En/Q) and Sel(φ̂3)(E3,n/Q) respectively, i.e.,

#Sel(φ3)(En/Q) = 2s(n,φ3) , #Sel(φ̂3)(E3,n/Q) = 2s(n,φ̂3)+2 .

If n ≡ 3 (mod 4), construct a graph G3(n) = (V,A) by

V = {p : p|n} ,

A =
{−→pq :

(
q
p

)
= −1 and

(
2
p

)
= 1, p|n, q|n

}
.

Let M3(n) be the Laplace matrix of the graph G3(n). Then

s(n, φ3) = t+ t′ − rankF2M3(n), s(n, φ̂3) = s+ s′ + t+ t′ − 1− rankF2M3(n) .

If n ≡ 1 (mod 4), construct a graph G′3(n) = (V,A) by

V = {p : p|n}
⋃
{−1} ,

A =
{−→pq :

(
q
p

)
= −1 and

(
2
p

)
= 1, p|n, q|n

}
⋃{−−−→

(−1)p :
(
−1
p

)
= −1, p|n

}
.

Let M ′
3(n) be the Laplace matrix of the graph G′3(n). Then

s(n, φ3) = t+ t′ + 1− rankF2M
′
3(n), s(n, φ̂3) = s+ s′ + t+ t′ − 1− rankF2M

′
3(n) .
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4. Averaging the Selmer groups Sel(φi)(En/Q)

First we consider the Selmer group Sel(φ1)(En/Q). From Lemma 2, if n ≡ ±3

(mod 8) one has

2s(n,φ1) =
∑
n=dd′

∏
p|d

1

4

((
−1

p

)
+ 1

)((
d′

p

)
+ 1

)∏
p|d′

1

2

((
d

p

)
+ 1

)
,

and if n ≡ ±1 (mod 8),

2s(n,φ1) =
∑
n=dd′

∏
p|d

1

4

((
−1

p

)
+ 1

)((
d′

p

)
+ 1

)∏
p|d′

1

2

((
d

p

)
+ 1

)

+
∑
n=dd′

∏
p|d

1

4

((
−1

p

)
+ 1

)((
2d′

p

)
+ 1

)∏
p|d′

1

2

((
2d

p

)
+ 1

)
.

4.1. The case n ≡ ±3 (mod 8). We consider this simpler case first. Let h = 3 or

5 and n ∈ S(X, h). Expanding the product in the formula for 2s(n,φ1) one has

2s(n,φ1) =
∑

n=D0D1D2D3D4D5

4−ω(D0D1D2D3)2−ω(D4D5)

(
−1

D1D2

)(
D4

D1

)(
D1

D4

)

×
(
D4

D3

)(
D3

D4

)(
D5

D1

)(
D5

D3

)(
D0

D4

)(
D2

D4

)
=

∑
D

g(D) ,

where D = (D0, D1, D2, D3, D4, D5) is subject to the condition that n = D0D1D2D3D4D5.

Here ω is the additive function counting the number of distinct prime divisors.

The authors would like to remark that the above formula which runs over 6-

dimensional vectors D, is intrinsically much simpler than the corresponding formula

for the cardinality of S(2)(En/Q) of [20], which runs over vectors D which are 16-

dimensional (see Lemma 3 on page 177 of [20]).

Our goal is to estimate ∑
n∈S(X,h)

2s(n,φ1) .
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We sum over the six variables Di, subject to the conditions that each Di is square-

free, that they are coprime in pairs, and that their product n satisfies

n ≤ X, n ≡ h (mod 8) .

We divide the range of each variable Di into intervals [Ai, 2Ai), where Ai runs over

powers of 2. There are O(log6X) many non-empty subsums, which we shall write

in the form S(A), where A = (A0, A1, A2, A3, A4, A5). Here we may assume that

1 ≤
5∏
i=1

Ai � X.

Following Heath-Brown, we shall describe the variables Di and Dj as being

“linked” if exactly one of the Jacobi symbols(
Di

Dj

)
,

(
Dj

Di

)
occurs in the expression for g(D). It is easy to see that (D1, D5), (D3, D5), (D0, D4)

and (D2, D4) are all the pairs of linked variables.

4.1.1. Case one. For the linked variables D1, D5. Suppose A1, A5 ≥ (logX)224. We

may write g(D) in the form

g(D) =

(
D5

D1

)
a(D5)b(D1),

where the function a(D5) depends on all other variables Di except D1, and similarly

for the function b(D1). Moreover we have

|a(D5)|, |b(D1)| ≤ 1.

We can now write

|S(A)| =
∑

D0,D2,D3,D4

∣∣∣∣∣ ∑
D1,D5

(
D5

D1

)
a(D5)b(D1)

∣∣∣∣∣ .
We need the following result.
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Lemma 8. (Lemma 4, [20]) Let am, bn be complex numbers of modulus at most 1.

Let an odd number h be given and let M,N,X � 1. Then∑
m,n

( n
m

)
ambn �MN {min(M,N)}−1/32 ,

uniformly in X, where the sum runs over square-free m,n satisfying M ≤ m <

2M,N ≤ n < 2N,mn ≤ X and mn ≡ h (mod 8).

As a consequence of this lemma one finds that

S(A)� D0D2D3D4D1D5 {min(D1, D5)}−1/32 � X(logX)−7.

Similar results hold for other linked variables. Therefore one has

Lemma 9. We have

S(A)� X(logX)−7

whenever there is a pair of linked variables with Ai, Aj ≥ (logX)224.

4.1.2. Case two. We now examine the case when A1 ≥ (logX)224 while A5 <

(logX)224. Using quadratic reciprocity we put g(D) in the form

g(D) = 4−ω(D1)

(
D1

D5

)
χ(D1)c ,

where χ is a character modulo 8, which may depend on the variables Di other than

D1, and the factor c is independent of D1 and satisfies |c| ≤ 1. It follows that

(4) |S(A)| ≤
∑

D0,D2,D3,D4,D5

∣∣∣∣∣∑
D1

4−ω(D1)

(
D1

D5

)
χ(D1)

∣∣∣∣∣ ,
where the inner sum is restricted by the conditions that D1 must be square-free and

coprime to all the other variables D0, D2, D3, D4, D5. Next, we employ the following

result, which slightly generalizes Lemma 4 in [20].
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Lemma 10. (Lemma 4.2, [39]) Suppose s is a fixed rational number. Let N be

sufficiently large. Then for arbitrary positive integers q, r and any nonprincipal

character χ (mod q), we have∑
n≤X,gcd(n,r)=1

µ2(n)sω(n)χ(n)� Xτ(r) exp(−η
√

logX)

with a positive constant η = ηs,N , uniformly for q ≤ logN X. Here τ is the usual

divisor function and µ is the Möbius function.

To use this result we remove the condition D1 ≡ h′ (mod 8) from the inner sum

on the right side of (4) and insert instead a factor

1

4

∑
ψ (mod 8)

ψ(D1)ψ(h′).

One has

S(A) � A1 exp(−η
√

logA1)
∑

D0,D2,D3,D4,D5

τ(D0D2D3D4D5)

� A1 exp(−η
√

logA1)
∏
Di,i 6=1

∑
Di

τ(Di)

� A1 exp(−η
√

logA1)
∏
Di,i 6=1

Ai logX

� X(logX)5 exp(−η
√

logA1) ,

provided that D5 6= 1 and 8D5 � logN A1 for some N > 0. We summarize the

above results as follows.

Lemma 11. For any constant κ with 0 < κ < 1 one has

S(A)� X(logX)−7

whenever there are linked variables Di, Dj for which

Ai ≥ exp{(logX)κ}
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and Dj > 1.

4.1.3. Case Three. For any 0 < κ < 1 denote

(5) C = exp {(logX)κ} .

Let
∑′ indicate the condition that A0, A1, A2, A3 ≤ C, A4 ≤ C or A5 ≤ C. Then

∑′

A

|S(A)| ≤ 2
∑

Di≤2C,0≤i≤4

4−ω(D0) · · · 4−ω(D3)2−ω(D4)
∑

D5≤ X
D0···D4

2−ω(D5).

We now use the bounds ∑
n≤X

γω(n) � X(logX)γ−1,

and ∑
n≤X

γω(n)

n
≤
∏
p≤X

(
1 +

γ

p

)
� (logX)γ,

which are valid for any fixed γ > 0. Since

X

D0 · · ·D4

� XC−5 � X1/2,

one has log(XC−5)� logX. Therefore

∑′

A

|S(A)| �
∑

Di≤2C,0≤i≤4

4−ω(D0) · · · 4−ω(D3)2−ω(D4) X

D0 · · ·D4

(logX)−1/2

� X(logX)−1/2

(∑
n≤2C

4−ω(n)

n

)4(∑
n≤2C

2−ω(n)

n

)
� X(logX)−1/2(log 2C)

1
4
·4(log 2C)

1
2 � X(logX)−

1
2

+κ 3
2 .
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Let
∑′′ indicate the condition that A4, A5 ≤ C and at least one of A0, A1, A2, A3 is

less than C. Then

∑′′

A

|S(A)| ≤
∑

D0D1D2D3D4D5≤X

4−ω(D0) · · · 4−ω(D3)2−ω(D4)2−ω(D5)

=
∑
mn≤X

4−ω(m)2−ω(n)

( ∑
D0D1D2D3=m

1

)( ∑
D4D5=n

1

)

≤
∑

n≤(2C)2

1
∑

m≤X/n

4−ω(m)
∑

D0D1D2D3=m

1 .

Write

m1 =
∏

Di<2C

Di, m2 =
∏

Di≥2C

Di,

so that m1 ≤ (2C)4. One has

∑′′

A

|S(A)| �
∑

n≤(2C)2

1
∑

m1≤(2C)4

∑
m2≤ X

m1n

(
3

4

)ω(m2)

�
∑

n≤(2C)2

1
∑

m1≤(2C)4

X

m1n
(logX)−1/4

� X(logX)−1/4(log 2C)2 � X(logX)−
1
4

+2κ .

We summarize our results as follows.

Lemma 12. Choosing κ = 1
40
, we have

∑
A

|S(A)| � X(logX)−1/5 ,

where the sum over A is for all sets in which either A0, A1, A2, A3 ≤ C and at least

one of A4, A5 ≤ C, or A4, A5 ≤ C and at least one of A0, A1, A2, A3 ≤ C, or there

are linked variables Di and Dj with Di ≥ C and Dj > 1.
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4.1.4. The remaining cases. The cases where the sums S(A) are not handled by

Lemma 12 are as follows.

(1) A4, A5 ≥ C =⇒ D0 = D1 = D2 = D3 = 1.

(2) A4 ≥ C,A5 < C =⇒ D0 = D2 = D5 = 1, A1 or A3 ≥ C.

(3) A4 < C,A5 > C =⇒ D1 = D3 = D4 = 1, A0 or A2 ≥ C.

(4) A4, A5 ≤ C =⇒ A0, A1, A2, A3 ≥ C and D4 = D5 = 1.

Case (1). With D0 = D1 = D2 = D3 = 1 the function g(D) reduces to

2−ω(D4)2−ω(D5). The sum is ∑
D4,D5

2−ω(D4)2−ω(D5),

where D4, D5 are subject to the conditions

D4, D5 > C, n = D4D5 ≡ h (mod 8), n square-free, n ≤ X.

We can remove the condition D4, D5 > C with an error

≤ 2
∑
D4≤C

2−ω(D4)
∑

D5≤ X
D4

2−ω(D5) � X(logX)−1/2
∑
D4≤C

2−ω(D4)

D4

� X(logX)−
1
2

+ 1
2
κ � X(logX)−1/5 .

Since n = D4D5 is square-free it factors as D4D5 in exactly 2ω(n) different ways.

We therefore obtain∑
n∈S(X,h)

1 +O(X(logX)−1/5) = #S(X, h) +O(X(logX)−1/5).

Case (2). With D0 = D2 = D5 = 1 the function g(D) reduces to

f(D) = 4−ω(D1D3)2−ω(D4)

(
−1

D1

)(
D4

D1

)(
D1

D4

)(
D4

D3

)(
D3

D4

)
,

and the conditions for A are A4 ≥ C and at least one of A1, A3 ≥ C. We separate

it into two cases.
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(i). If A1 ≤ C, we have

S(A) ≤
∑

D1,D3,D4

4−ω(D1)4−ω(D3)2−ω(D4) ≤
∑

D1<2C

4−ω(D1)
∑
D3,D4

4−ω(D3)2−ω(D4)

=
∑

D1<2C

4−ω(D1)
∑
n≤ X

D1

ω(n)∑
r=0

 ω(n)

r

(1

4

)r (
1

2

)ω(n)−r

=
∑

D1<2C

4−ω(D1)
∑
n≤ X

D1

(
3

4

)ω(n)

� X(logX)−1/4
∑

D1<2C

4−ω(D1)

D1

� X(logX)−1/5 .

A similar estimate holds true if A3 ≤ C.

(ii). Suppose A1, A3, A4 ≥ C. We write the sums as

S(A) =
∑
D

f(D),

where the variables D = (D1, D3, D4) are subject to the conditions

Di ∈ [Ai, 2Ai) (i = 1, 3, 4), n = D1D3D4 ≤ X, n ≡ h (mod 8), n square-free.

Now we write

S(A) =
∑
D

1

4

∑
ψ (mod 8)

ψ(D1D3D4)ψ(h)f(D)

=
1

4

∑
ψ (mod 8)

ψ(h)
∑
D

ψ(D1D3D4)f(D) =
1

4

∑
ψ (mod 8)

ψ(h)S(A, ψ),

and we have

S(A, ψ) =
∑
D

ψ(D1D3D4)f(D)

≤
∑
D4

∣∣∣∣∣ ∑
D1,D3

4−ω(D1)4−ω(D3)

(
−1

D1

)
ψ(D1)χ(D1)ψ(D3)χ(D3)

∣∣∣∣∣ .
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Here the character χ depends on D4 and is defined as

χ(n) =

(
D4

n

)(
n

D4

)
for any n ∈ Z. We may proceed by applying the following lemma.

Lemma 13. (Lemma 10, [20]) Let X > 0 and M,N ≥ C > 0 be given. Then for

an arbitrary positive integer r, any odd integer h, and any distinct characters

χ1, χ2 (mod 8), we have∑
m,n

µ2(m)µ2(n)4−ω(m)−ω(n)χ1(m)χ2(n)� Xτ(r) exp
(
−c
√

logC
)

logX,

for some positive absolute constant c, where the sum runs over coprime m,n

satisfying the conditions

M < m ≤ 2M, N < n ≤ 2N, mn ≤ X, mn ≡ h (mod 8), gcd(mn, r) = 1.

It follows that the sums S(A, ψ) and also S(A) in question are all O (X(logX)−7),

since the constant κ in Lemma 11 may be taken sufficiently large. The total

contribution of these sums is therefore O(X(logX)−1).

Case (3). With D1 = D3 = D4 = 1 the function g(D) reduces to

4−ω(D0D2)2−ω(D5)

(
−1

D2

)
,

and the conditions for A are A5 ≥ C and at least one of A0, A2 ≥ C. If one of

A0, A2 ≤ C, following the argument in (i) of Case (2) one finds that the total

contribution is O(X(logX)−1/5), while if A0, A2, A4 ≥ C, similar to (ii) of Case

(2), the total contribution is O(X(logX)−1).

Case (4). With D4 = D5 = 1 the function g(D) reduces to

4−ω(D0)−ω(D1)−ω(D2)−ω(D3)

(
−1

D1D2

)
,
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and the conditions for A are A0, A1, A2, A3 ≥ C. One has in this case

S(A) =
∑

D0,D1,D2,D3

4−ω(D0)−ω(D1)−ω(D2)−ω(D3)

(
−1

D1D2

)

=
∑
m,n

2−ω(m)−ω(n)

(
−1

m

)
.

By the same argument as in (ii) of Case (2) one finds that the total contribution is

O(X(logX)−1).

We conclude that for h = 3 or 5, one has

∑
n∈S(X,h)

2s(n,φ1) = #S(X, h) +O
(
X(logX)−1/5

)
as X →∞.

4.2. The case n ≡ ±1 (mod 8). Let h = 1 or 7 and n ∈ S(X, h). Expanding the

product in the formula for 2s(n,φ1) one obtains that

2s(n,φ1) =
∑
D

g(D) +
∑
D

h(D) ,

where g(D) is the same function appearing in the case n ≡ ±3 (mod 8) and

h(D) = 4−ω(D0D1D2D3)2−ω(D4D5)

×
(
−1

D1D2

)(
2

D1D3D4

)(
D4

D1

)(
D1

D4

)
×
(
D4

D3

)(
D3

D4

)(
D5

D1

)(
D5

D3

)(
D0

D4

)(
D2

D4

)
.

Here D = (D0, D1, D2, D3, D4, D5) is subject to the condition that

n = D0D1D2D3D4D5. Our goal is to estimate

∑
n∈S(X,h)

2s(n,φ1) =
∑

n∈S(X,h)

∑
D

g(D) +
∑

n∈S(X,h)

∑
D

h(D) .
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While the first term from the previous computation is

∑
n∈S(X,h)

∑
D

g(D) = #S(X, h) +O
(
X(logX)−1/5

)
,

we need to estimate the second term by the same idea. We sum over the six

variables Di, subject to the conditions that each Di is square-free, that they are

coprime in pairs, and that their product n satisfies

n ≤ X, n ≡ h (mod 8) .

We divide the range of each variable Di into intervals [Ai, 2Ai), where Ai runs over

powers of 2. There are O(log6X) many non-empty subsums, which we write as

S ′(A), where A = (A0, A1, A2, A3, A4, A5). We assume the condition

1 ≤
5∏
i=1

Ai � X.

We see that (D1, D5), (D3, D5), (D0, D4) and (D2, D4) are all the pairs of linked

variables in the function h(D). Following the proof for the case n ≡ ±3 (mod 8),

one sees that Lemma 12 holds true for the sum S ′(A). The remaining cases are

(1) A4, A5 ≥ C =⇒ D0 = D1 = D2 = D3 = 1.

(2) A4 ≥ C,A5 < C =⇒ D0 = D2 = D5 = 1, A1 or A3 ≥ C.

(3) A4 < C,A5 > C =⇒ D1 = D3 = D4 = 1, A0 or A2 ≥ C.

(4) A4, A5 ≤ C =⇒ A0, A1, A2, A3 ≥ C and D4 = D5 = 1.

In Case (1), the function g(D) reduces to 2−ω(D4)2−ω(D5)
(

2
D4

)
; in case (2), the

function g(D) reduces to 4−ω(D1D3)2−ω(D4)
(
−1
D1

)(
2

D1D3D4

)(
D4

D1

)(
D1

D4

)(
D4

D3

)(
D3

D4

)
;

in case (3), g(D) reduces to 4−ω(D0D2)2−ω(D5)
(
−1
D2

)
; and lastly in case (4), g(D)

reduces to 4−ω(D0)−ω(D1)−ω(D2)−ω(D3)
(
−1

D1D2

)(
2

D1D3

)
. All these four cases are

similar to the Case (2) for n ≡ ±3 (mod 8) and we can apply Lemma 13 to obtain
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enough cancellation. So we have∑
n∈S(X,h)

∑
D

h(D) = O
(
X(logX)−1/5

)
.

In conclusion one has for h = 1, 3, 5 or 7,∑
n∈S(X,h)

2s(n,φ1) = #S(X, h) +O
(
X(logX)−1/5

)
as X →∞.

4.3. The Selmer groups Sel(φi)(En/Q) for i = 2, 3. Let h = 1, 3, 5 or 7. For any

n ∈ S(X, h), when i = 2, one has from Lemma 4

2s(n,φ2) ≤
∑
n=dd′

∏
p|d

1

4

((
2

p

)
+ 1

)((
d′

p

)
+ 1

)∏
p|d′

1

2

((
d

p

)
+ 1

)
,

where one has equality “=” when n ≡ 3 (mod 4) and inequality “≤” when n ≡ 1

(mod 4). Denoting the right hand side by S2(n) and expanding the product one

has

S2(n) =
∑

n=D0D1D2D3D4D5

4−ω(D0D1D2D3)2−ω(D4D5)

(
2

D1D2

)(
D4

D1

)(
D1

D4

)

×
(
D4

D3

)(
D3

D4

)(
D5

D1

)(
D5

D3

)(
D0

D4

)(
D2

D4

)
.

When i = 3, from Lemma 6 we have

2s(n,φ3) ≤
∑
n=dd′

∏
p|d

1

4

((
2

p

)
+ 1

)((
−d′

p

)
+ 1

)∏
p|d′

1

2

((
d

p

)
+ 1

)
,

where one has equality “=” when n ≡ 1 (mod 4) and inequality “≤” when n ≡ 3

(mod 4). Denoting the right hand side by S3(n) and expanding the corresponding

product one has

S3(n) =
∑

n=D0D1D2D3D4D5

4−ω(D0D1D2D3)2−ω(D4D5)

(
−1

D1D3

)(
2

D1D2

)(
D4

D1

)(
D1

D4

)

×
(
D4

D3

)(
D3

D4

)(
D5

D1

)(
D5

D3

)(
D0

D4

)(
D2

D4

)
.
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Notice that both sums ∑
n∈S(X,h)

S2(n) and
∑

n∈S(X,h)

S3(n)

are very similar to the sums treated before for the case n ≡ ±3 (mod 8) for the

Selmer group Sel(φ1)(En/Q). When we sum over the six variables Di, subject to

the same conditions, Lemma 12 holds true for both sums S2(n) and S3(n), and

similarly we also have the same four remaining cases (1),(2),(3) and (4). A little

thought gives that only the first case contributes to the main term, which is

#S(X, h), and altogether the errors are of size O
(
X(logX)−1/5

)
. Since

s(n, φ2), s(n, φ3) ≥ 0, we obtain the same asymptotic formula for the Selmer groups

Sel(φi)(En/Q) for i = 2, 3. We conclude this section with the following result.

Theorem 6. Let h = 1, 3, 5 or 7. For i ∈ {1, 2, 3}, one has∑
n∈S(X,h)

2s(n,φi) = #S(X, h) +O
(
X(logX)−1/5

)
as X →∞.

5. Proof of Theorem 1

5.1. For Sel(φi)(En/Q). Fix i ∈ {1, 2, 3}. For any integer r ≥ 0, let

ar = #{n ∈ S(X, h) : s(n, φi) = r}.

Then ∑
r≥0

ar = #S(X, h).

Theorem 6 yields ∑
r≥0

2rar = #S(X, h) +O
(
X(logX)−1/5

)
,
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hence ∑
r≥1

2r−1ar ≤
∑
r≥1

(2r − 1)ar = O
(
X(logX)−1/5

)
,

and

ar = O
(
X(logX)−1/52−r

)
, r ≥ 1 .

Therefore for any positive integer k,∑
n∈S(X,h)

s(n, φi)
k =

∑
r≥1

rk · ar = Ok

(
X(logX)−1/5

)
.(6)

Notice #S(X, h)� X, this shows that s(n, φi) = 0 for almost all n ∈ S(X, h), and

for any positive integer k,

lim
X→∞

1

#S(X, h)

∑
n∈S(X,h)

s(n, φi)
k = 0 .

This completes the first part of the proof of Theorem 1.

5.2. For Sel(φ̂i)(Ei,n/Q). For coprime integers a, q, we define the additive function

ωa,q as

ωa,q(n) =
∑
p|n

p≡a (mod q)

1 ,

for any n ∈ N. By Theorem 3, if n ≡ ±3 (mod 8), then

s(n, φ̂1) = s(n, φ1)− 1 + s,

and if n ≡ ±1 (mod 8),

s(n, φ̂1) = s(n, φ1)− 2 + s,

where s = ω3,8(n) + ω7,8(n). Similar results hold for φ2 and φ3 by Theorems 4 and

5. Therefore for any square-free integer n one has

s(n, φ̂i) = s(n, φi) + hi(n) + ci,n, i ∈ {1, 2, 3},(7)
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with the functions h1 = ω3,8 + ω7,8, h2 = h3 = ω3,8 + ω5,8, and the constants

c1,n = −1 if n ≡ ±3 (mod 8) and −2 if n ≡ ±1 (mod 8), c2,n = 0 if n ≡ 1 (mod 4)

and −1 if n ≡ 3 (mod 4), and finally c3,n = −2 if n ≡ 1 (mod 4) and −1 if n ≡ 3

(mod 4). Since s(n, φi) = 0 for almost all n ∈ S(X, h), one has

s(n, φ̂i) = hi(n) + ci,n,

for almost all n ∈ S(X, h). It is enough to show Gaussian distribution for the

functions hi(n) with the conditions n ∈ S(X, h) for h = 1, 3, 5 or 7 and X →∞.

We contend ourselves to applying the following generalization of Erdös-Kac

Theorem obtained by Ru-Yu Liu([31]). For completeness we reproduce the

statement here. Let S be an infinite subset of N. For X ∈ R, X > 1, define

S(X) = {n ≤ X : n ∈ S}.

We assume that S satisfies the cardinality condition

(8)
∣∣S(X1/2)

∣∣ = o (|S(X)|) ,

where |S(X)| is the cardinality of S(X). Let f : S −→ N be a map. For each

prime l, write

1

|S(X)|
# {n ∈ S(X) : f(n) is divisible by l} = λl(X) + el(X),

and for any u-tuples of distinct primes (l1, l2, . . . , lu), write

1

|S(X)|
# {n ∈ S(X) : f(n) is divisible by l1l2 · · · lu} =

u∏
i=1

λli(X) + el1l2···lu(X).

We will use abbreviated notations λl, el and el1l2···lu below.

Suppose there exist absolute constants β and c with 0 < β ≤ 1 and c > 0, and a

function Y = Y (X) < Xβ such that the following conditions hold:

(i) For each n ∈ S(X), the number of distinct prime divisors l of f(n) with l > Xβ

is bounded uniformly.
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(ii)
∑

Y <l≤Xβ λl = o((log logX)1/2), where the sum is over primes l.

(iii)
∑

Y <l≤Xβ |el| = o((log logX)1/2).

(iv)
∑

l≤Y λl = c log logX + o((log logX)1/2).

(v)
∑

l≤Y λ
2
l = o((log logX)1/2).

(vi) For r ∈ N, let u = 1, 2, . . . , r. We have∑
′′|el1···lu | = o((log logX)−r/2),

where
∑′′ extends over all u-tuples of distinct primes (l1, l2, . . . , lu) with li ≤ Y .

(Notice that the condition (4) in Liu’s paper [31] is actually c = 1. However there

is no essential difference by introducing the constant c > 0 here.)

Theorem 7. (Theorem 3, [31]) Let S be an infinite subset of N satisfying

condition (8) and f : S → N. Suppose there exist absolute constants β, c with

0 < β ≤ 1, c > 0 and Y = y(X) < Xβ such that the conditions (i)–(vi) hold. Then

for γ ∈ R, we have

lim
X→∞

1

|S(X)|
#

{
n ∈ S(X) :

ω(f(n))− c log log n√
c log log n

≤ γ

}
= G(γ) .

Let

S = {n ∈ N : n square-free and n ≡ h (mod 8)}.

Define the map f : S → N as

f(n) =
∏
p|n

p≡3 mod 4

p ,

for any n ∈ N. Then

h1(n) = ω(f(n)), n ∈ N .

It is easy to verify by Merten’s estimate and the estimates proved in Appendix

below that S and f satisfy all the conditions listed in Theorem 7 with constant

c = 1
2
. Therefore for n ∈ S(X, h), h = 1, 3, 5, 7 and X →∞, h1(n), as well as
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s(n, φ̂1) satisfies the Gaussian distribution, with mean and variance 1
2
log log n.

This result also holds true for the values h2(n) and h3(n). This proves the second

part of Theorem 1. Now Theorem 1 is completely proved.

6. On X(En/Q)[φi] and X(Ei,n/Q)[φ̂i]

For h = 1, 3, 5 or 7 and i = 1, 2 or 3, n ∈ S(X, h), denote

#X(En/Q)[φi] = 2t(n,φi), #X(Ei,n/Q)[φ̂i] = 2t(n,φ̂i), #X(En/Q)[2] = 2t(n),

and as in previous sections

#Sel(φi)(En/Q) = 2s(n,φi), #Sel(φ̂i)(Ei,n/Q) = 2s(n,φ̂i), #Sel(2)(En/Q) = 2s(n).

From the commutative diagrams in the introduction one has the formula

t(n, φ̂i) = s(n, φi) + s(n, φ̂i)− s(n) + t(n)− t(n, φi)

and the inequalities

0 ≤ t(n, φi) ≤ s(n, φi), 0 ≤ t(n, φ̂i) ≤ s(n, φ̂i), 0 ≤ t(n) ≤ s(n).

Since s(n, φi) = 0 for almost all n ∈ S(X, h), one has that t(n, φi) = 0 for almost

all n ∈ S(X, h). Moreover by the asymptotic formula (6) one has∑
n∈S(X,h)

t(n, φi)
k = Ok

(
X(logX)−1/5

)
,

for any fixed positive integer k. This proves the first part of Theorem 2.

Next, for any fixed positive integer k, we will prove in the Appendix that

(9)
∑

n∈S(X,h)

s(n, φ̂i)
k = #S(X, h)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
as X →∞. Noticing that

s(n, φ̂i)− s(n) ≤ t(n, φ̂i) ≤ s(n, φ̂i),
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one has ∑
n∈S(X,h)

(
s(n, φ̂i)− s(n)

)k
≤

∑
n∈S(X,h)

t(n, φ̂i)
k ≤

∑
n∈S(X,h)

s(n, φ̂i)
k .

The magnitude of the right hand side is known from (9), and the left hand side is

∑
n∈S(X,h)

s(n, φ̂i)
k +Ok

 max
0≤r≤k−1

 ∑
n∈S(X,h)

s(n, φ̂i)
rs(n)k−r


 .

For any r with 0 ≤ r ≤ k − 1, one obtains that

∑
n∈S(X,h)

s(n, φ̂i)
rs(n)k−r ≤

 ∑
n∈S(X,h)

s(n, φ̂i)
2r

1/2 ∑
n∈S(X,h)

s(n)2(k−r)

1/2

≤

 ∑
n∈S(X,h)

s(n, φ̂i)
2r

1/2 ∑
n∈S(X,h)

22(k−r)s(n)

1/2

�k

(
X(log logX)2r

)1/2
(X)1/2 ≤ X(log logX)k−1 ,

by using (9) again and the formula (2) obtained by Heath-Brown. Therefore

∑
n∈S(X,h)

t(n, φ̂i)
k = #S(X, h)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
,

which completes the proof of Theorem 2.

Appendix
To establish formula (9), we first prove the case k = 1, which is essentially the

following lemma.

Lemma 14. For any h ∈ {1, 3, 5, 7} and two coprime integers a, q > 0, one has∑
n∈S(X,h)

ωa,q(n) = #S(X, h)

(
log logX

φ(q)

)
+O(X)

as X →∞, where φ is the Euler-φ function.
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Proof. First we write∑
n∈S(X,h)

ωa,q(n) =
∑
n≤X

n≡h (mod 8)

µ2(n)ωa,q(n).

Removing the condition n ≡ h (mod 8) by inserting the factor

1

4

∑
ψ (mod 8)

ψ(n)ψ(h),

and interchanging the summation one has∑
n∈S(X,h)

ωa,q(n) =
1

4

∑
ψ (mod 8)

ψ(h)
∑
n≤X

µ2(n)ωa,q(n)ψ(n).

For the character ψ (mod 8), denote

S(ψ,X) =
∑
n≤X

µ2(n)ωa,q(n)ψ(n).

If ψ 6= 1, one has

S(ψ,X) =
∑
n≤X

µ2(n)ψ(n)
∑
p|n

p≡a (mod q)

1 =
∑
p≤X

p≡a (mod q)

∑
p|n,n≤X

µ2(n)ψ(n)

=
∑
p≤X

p≡a (mod q)

ψ(p)
∑

m≤X/p
gcd(m,p)=1

µ2(m)ψ(m) .

By Lemma 10, one has∑
m≤X/p

gcd(m,p)=1

µ2(m)ψ(m)� X

p
exp

(
−η
√

log(X/p)
)
.

Since ∑
p≤
√
X

1

p exp
(
η
√

log(X/p)
) ≤ exp

(
−η
√

(logX)/2
) ∑
p≤
√
X

p−1

� exp
(
−η
√

logX
)

log logX � 1,
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and ∑
√
X<p≤X

1

p exp
(
η
√

log(X/p)
) ≤

∑
√
X<p≤X

p−1 � 1,

one has

S(ψ,X)� X.

When ψ = 1, one has

S(1, X) =
∑
n≤X

gcd(n,2)=1

µ2(n)
∑
p|n

p≡a (mod q)

1 =
∑
p≤X

p≡a (mod q)

∑
m≤X/p

gcd(m,2p)=1

µ2(m) .

For any integer r > 0, denote

A(r,X) =
∑
n≤X

gcd(n,r)=1

µ2(n).

We define the multiplicative function g by the convolution g = µ2 ∗ µ. One sees

that µ2 = 1 ∗ g and at any prime p,

g(pm) =


0 : m = 1,

−1 : m = 2,

0 : m ≥ 3 .

Then

A(r,X) =
∑
n≤X

gcd(n,r)=1

∑
d|n

g(d) =
∑
d≤X

gcd(d,r)=1

g(d)
∑

m≤X/d
gcd(m,r)=1

1 =
∑
n≤
√
X

gcd(n,r)=1

µ(n)
∑

m≤X/n2

gcd(m,r)=1

1 .

Since∑
m≤X

gcd(m,r)=1

1 =
∑
d|r

µ(d) ·
[
X

d

]
=
∑
d|r

µ(d) ·
(
X

d
+O(1)

)
=
φ(r)X

r
+O(τ(r)),
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where φ is the Euler-φ functions, we have

A(r,X) =
∑
n≤
√
X

gcd(n,r)=1

µ(n)

(
φ(r)X

rn2
+O(τ(r))

)

=
φ(r)X

r

∑
n≤
√
X

gcd(n,r)=1

µ(n)

n2
+O

(√
Xτ(r)

)
.

It is easy to see that∑
n≤
√
X

gcd(n,r)=1

µ(n)

n2
=

6

π2

∏
p|r

(1− p−2)−1 +O(X−1/2).

Hence

A(r,X) =
φ(r)X

r

 6

π2

∏
p|r

(1− p−2)−1 +O(X−1/2)

+O
(√

Xτ(r)
)

=
6X

π2

∏
p|r

(1 + p−1)−1 +O
(√

Xτ(r)
)
.

Now we have

S(1, X) =
∑
p≤X

p≡a (mod q)

A(2p,X/p)

=
∑
p≤X

p≡a (mod q)

(
6X

π2p
(1 + 2−1)−1(1 + p−1)−1 +O

(√
X

p
τ(2p)

))

=
4X

π2

∑
p≤X

p≡a (mod q)

1

p+ 1
+O

(
X1/2

∑
p≤X

p−1/2

)
.

Since ∑
p≤X

p≡a (mod q)

1

p+ 1
=

∑
p≤X

p≡a (mod q)

1

p
+O(1) =

log logX

φ(q)
+O(1)
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by Merten’s estimate, and

∑
p≤X

p−1/2 ≤

(∑
p≤X

1

)1/2

·

(∑
p≤X

p−1

)1/2

�
(

X

logX

)1/2

(log logX)1/2,

one obtains that

S(1, X) =
4X

π2

(
log logX

φ(q)
+O(1)

)
+O

(
X

(
log logX

logX

)1/2
)

=
4

π2φ(q)
X log logX +O(X) .

Finally, using the estimates for S(1, X) and S(ψ,X) for ψ 6= 1 one concludes that

∑
n∈S(X,h)

ωa,q(n) =
1

4

S(1, X) +
∑

ψ (mod 8)
ψ 6=1

ψ(h)S(ψ,X)


=

X log logX

π2φ(q)
+O(X) .

Since

#S(X, h) =
∑
n≤X

n≡h (mod 8)

µ2(n) =
1

4

∑
ψ (mod 8)

ψ(h)
∑
n≤X

µ2(n)ψ(n)

=
1

4

∑
n≤X

gcd(n,2)=1

µ2(n) +
1

4

∑
ψ (mod 8)

ψ 6=1

ψ(h)
∑
n≤X

µ2(n)ψ(n)

=
1

4

(
6

π2
X

1

1 + 2−1
+O(X1/2)

)
+O

(
X exp

(
−η
√

logX
))

=
X

π2
+O

(
X exp

(
−η
√

logX
))

,

one immediately has∑
n∈S(X,h)

ωa,q(n) = #S(X, h)

(
log logX

φ(q)

)
+O(X) .

This completes the proof of Lemma 14.
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Noticing that φ(8) = 4, one has∑
n∈S(X,h)

ωa,8(n) = #S(X, h)

(
log logX

4

)
+O(X) .

for any a = 1, 3, 5, 7. Since s(n, φ̂i) is a sum of two distinct functions wa,8 plus a

bounded constant, this establishes formula (9) for the case k = 1. We remark that

in verifying the six conditions in the generalized Erdös-Kac Theorem we also need

the above estimates.

Lemma 15. Let the function f : N→ N be defined as

f = hi =

 ω3,8 + ω7,8 : i = 1

ω3,8 + ω5,8 : i = 2, 3 .

Then for any positive integer k and h = 1, 3, 5, 7, one has∑
n∈S(X,h)

f(n)k = #S(X, h)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
as X →∞.

Proof. For k = 1, this is established in Lemma 14. For k ≥ 2, we recall the

following high-power analogues of the Turán-Kubilius inequalities (see [12] or [22]),

1

X

∑
n≤X

|f(n)− A(X)|k � B(X)k +
∑
pm≤X

|f(pm)|k

pm
,

where

A(X) = B2(X) =
∑
pm≤X

f(pm)

pm
=

log logX

2
+O(1),

by the Merten’s estimate. For k ≥ 2 one has∑
n≤X

∣∣∣∣f(n)− log logX

2

∣∣∣∣k �k

∑
n≤X

|f(n)− A(X)|k +
∑
n≤X

∣∣∣∣A(X)− log logX

2

∣∣∣∣k
�k XB(X)k +X �k X(log logX)k/2 .
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Therefore∑
n∈S(X,h)

f(n)k =
∑

n∈S(X,h)

(
f(n)− log logX

2
+

log logX

2

)k

=

(
log logX

2

)k
#S(X, h) + k

(
log logX

2

)k−1 ∑
n∈S(X,h)

(
f(n)− log logX

2

)

+ Ok

 max
0≤r≤k−2

(log logX)r
∑

n∈S(X,h)

∣∣∣∣f(n)− log logX

2

∣∣∣∣k−r

 .

The second term is

Ok

(
X(log logX)k−1

)
by Lemma 14, while for any 0 ≤ r ≤ k − 2, one has

(log logX)r
∑

n∈S(X,h)

∣∣∣∣f(n)− log logX

2

∣∣∣∣k−r �k (log logX)rX (log logX)(k−r)/2

≤ X (log logX)k−1 .

Putting these two error terms together we complete the proof of Lemma 15.

Noticing that ∑
n∈S(X,h)

s(n, φ̂i)
k =

∑
n∈S(X,h)

(f(n) + s(n, φ) + ci,n)
k ,

|ci,n| ≤ 3 and recalling the asympotitic formula (6), one obtains the asymptotic

formula (9), as X →∞.
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