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Abstract. We study the distribution of the size of the Selmer groups arising from

a 2-isogeny and its dual 2-isogeny for quadratic twists of elliptic curves with full

2-torsion points in Q. We show that one of these Selmer groups is almost always

bounded, while the 2-rank of the other follows a Gaussian distribution. This

provides us with a small Tate-Shafarevich group and a large Tate-Shararevich

group. When combined with a result obtained by Yu ([32]), this shows that

the mean value of the 2-rank of the large Tate-Shafarevich group for square-free

positive integers n less than X is 1
2 log log X + O(1), as X →∞.

1. Introduction

In [28] the authors have described the asymptotic behavior of the size of the Selmer

groups arising from three 2-isogenies and their dual 2-isogenies for the elliptic curve

En : y2 = x3− n2x, which is closely related with the congruent number problem. In

this paper we would like to see to what extent such results hold true in general for

quadratic twists of elliptic curves with full 2-torsion points in Q. Namely, for any

a, b ∈ Z with ab(a− b) 6= 0, we shall consider the elliptic curve E = E(a, b) defined

by the equation

E : y2 = x(x+ a)(x+ b).
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For a square-free integer n, the quadratic twist En is given by

En : y2 = x(x+ an)(x+ bn).(1)

Corresponding to the 2-torsion point (0, 0) one has the 2-isogeny φ : En −→ E ′n

where

E ′n : Y 2 = X3 − 2(a+ b)nX2 + (a− b)2n2X

and the 2-isogeny φ is given by (see pp 74, [27])

φ(x, y) =

(
y2

x2
,
y(abn2 − x2)

x2

)
.

Let φ̂ : E ′n → En be the dual isogeny of φ. For X > 0 and coprime integers C and

h denote the set

(2) S(X, h, C) = {1 ≤ n ≤ X : n ≡ h (mod C) and n is square-free}.

We will investigate the asymptotic behavior of the size of the Selmer groups Sel(φ)(En/Q)

and Sel(φ̂)(E ′n/Q) for n ∈ S(X, h, C) as X →∞.

Theorem 1. Let a, b ∈ Z with ab(a− b) 6= 0 and ab not a square. Define

C0 =
∏

p | ab(a−b)

p ,

and let h and C be coprime integers such that C0 |C. For X > 0 and n ∈ S(X, h, C)

denote

#Sel(φ)(En/Q) = 2s(n,φ) , #Sel(φ̂)(E ′n/Q) = 2s(n,φ̂) ,

where En is the elliptic curve given by (1). Then s(n, φ) ≤ ω(a−b)+1 for almost all

n ∈ S(X, h, C) as X →∞, where ω is the function counting the number of distinct

prime divisors, and s(n, φ̂) follows a Gaussian distribution. More precisely, for any

γ ∈ R,

lim
X→∞

1

#S(X, h,C)
#

n ∈ S(X, h, C) :
s(n, φ̂)− 1

2
log log n√

1
2
log log n

≤ γ

 = G(γ) ,
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where the function G is defined by

G(γ) =
1√
2π

∫ γ

−∞
e
−t2
2 dt .

A more careful analysis shows that if one further assumes the following four con-

ditions on a, b and h:

• gcd(a, b) = 1,

• a+ b ≥ 0 or ab < 0,

• a− b ≡ 1 (mod 2),

• If p | (a− b), then (−bh
p

) = −1,

then s(n, φ) = 0 for almost all n ∈ S(X, h, C), as X →∞ in Theorem 1.

Combining the above result with a result obtained by Yu (Theorem 2, [32]), one

can obtain information on the corresponding Tate-Shafarevich groups. We first

describe several conditions, say (Ca), (Cb) and (Cc′) as follows (where p denotes an

odd prime):

(Ca) : If p|a and ordp(a) is even, then
(
bh
p

)
= −1.

(Cb) : If p|b and ordp(b) is even, then
(
ah
p

)
= −1.

(Cc′) : If p|(a− b), then
(
−bh
p

)
= −1.

We remark that the above conditions for a, b and h are in Yu’s paper, except for

(Cc′), which is slightly stronger than the original condition (Cc) from his paper.

Theorem 2. For a, b ∈ Z such that a − b ≡ 1 (mod 2), a > 0, b > 0, gcd(a, b) = 1,

and ab is not a square, let D be the conductor of E : y2 = x(x + a)(x + b). Fix an

integer h such that gcd(h,D) = 1 and that a, b, h satisfy the conditions (Ca), (Cb)

and (Cc′). For X > 0 and n ∈ S(X, h,D), let En be the elliptic curve defined by

(1), and denote

#X(En/Q)[φ] = 2t(n,φ), #X(E ′n/Q)[φ̂] = 2t(n,φ̂).
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Then t(n, φ) = 0 for almost all n ∈ S(X, h,D), as X → ∞. Moreover, for any

integer k > 0, one has

∑
n∈S(X,h,D)

t(n, φ̂)k = #S(X, h,D)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
.

In particular by taking k = 1, we see that the mean value of the 2-rank of the large

Tate-Shafarevich groups is 1
2
log logX + O(1). Since X(E ′n/Q)[φ̂] ⊂X(E ′n/Q)[2],

Theorem 2 shows that the 2-part of the Tate-Shafarevich group X(E ′n/Q) can be

arbitrarily large.

There are three main ingredients in the proofs of the above results. First, we em-

ploy Heath-Brown’s method based on character sums to obtain asymptotic formulas

on the size of the Selmer groups. Second, we use a graphical method, which plays

an essential role in isolating the main contribution and reducing the complexity of

the problem. Third, by combining our results with a result obtained by Yu ([32])

we obtain information on the corresponding Tate-Shafarevich groups.

Acknowledgement The authors want to express their gratitude to the referee

for the careful reading and many useful suggestions.

2. Preliminaries

2.1. Selmer groups and Tate-Shafarevich groups. In this section we recall the

formulation of Selmer groups and Tate-Shafarevich groups. Proofs can be found in

Silverman’s book ([27]). Let φ : E −→ E ′ be an isogeny between two elliptic curves

E and E ′ over Q. For the cases of interest to us, φ is defined over Q and E[φ], the

kernel of φ consists of Q-rational points. Via Galois cohomology, the short exact

sequence of Gal(Q/Q)-modules

0 // E[φ] // E(Q)
φ

// E ′(Q) // 0
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yields the commutative diagrams (For details, the reader is referred to chapter X in

[27])

0 // E′(Q)
φ(E(Q))

//

��

H1(GQ̄/Q, E[φ]) //

π1

��

H1(GQ̄/Q, E)[φ] //

π2

��

0

0 // 0 //
∏

vH
1(Gv, E) //

∏
vH

1(Gv, E) // 0,

where the homomorphisms π1, π2 are defined naturally by local consideration. The

kernel of π1 is the φ−Selmer group Sel(φ)(E/Q) and the kernel of π2 (without the

restriction [φ]) is the Tate-Shafarevich group X(E/Q). Here X(E/Q)[φ] is the

φ-kernel of X(E/Q). By the snake lemma one obtains the short exact sequence

0 −→ E ′(Q)

φ(E(Q))
−→ Sel(φ)(E/Q) −→X(E/Q)[φ] −→ 0.

The group E′(Q)
φ(E(Q))

is directly related with the rank of the elliptic curve over Q,

which is difficult to compute in general. The Tate-Shafarevich group X(E/Q)

is also very mysterious. It appears naturally in the Birch and Swinnerton-Dyer

conjecture, and measures the degree of deviation from the Hasse principle. Even

the finiteness of the group is not known in general. Various families of elliptic

curves with large Tate-Shafarevich groups were identified by a number of authors

(see Aoki [2], Atake [3], Bölling [4], Cassels [5], Kloosterman [22], Kramer [23],

Lemmermeyer [24],[25]). Moments and heuristic results were considered by Delaunay

([7],[6]). Effective bounds on the size of the Tate-Shafarevitch groups were obtained

by Goldfeld and Szpiro ([15]), Goldfeld and Lieman ([14]). By contrast, the Selmer

group Sel(φ)(E/Q) is a local object and is relatively easy to handle in principle. By

computing the Selmer group, one can obtain information on the rank of the elliptic

curve and the Tate-Shafarevich group.
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2.2. 2-descent and Selmer groups. The 2-descent method is explained in the

last chapter of Silverman’s book ([27]) in general. For our particular case of En in

(1), this can be specified as follows (see also [3]).

For a square-free positive integer n, define a finite set S of prime divisors of the

rational number field Q by

S = {∞}
⋃
{p : p|ab(a− b)n}.

Let M be the multiplicative subgroup of Q∗/(Q∗)2 generated by −1 and the prime

divisors of (a−b)n, and letM ′ be the multiplicative subgroup of Q∗/(Q∗)2 generated

by−1 and the prime divisors of abn. For each d ∈M (d′ ∈M ′) we have homogeneous

spaces Cd (respectively C ′d′) defined by

Cd : dw2 = t4 − 2(a+ b)
n

d
t2z2 + (a− b)2n

2

d2
z4 ,

C ′d′ : dw
2 = t4 + 4(a+ b)

n

d
t2z2 + 16ab

n2

d2
z4 .

The Selmer group Sel(φ)(En/Q) (respectively Sel(φ̂)(E ′n/Q)) measures the possibility

of Cd (C ′d′) having non-trivial solutions in the local field Qv for all v ∈ S. Namely,

Sel(φ)(En/Q) ∼= {d ∈M : Cd(Qv) 6= ∅ for all v ∈ S} ,

Sel(φ̂)(E ′n/Q) ∼= {d′ ∈M ′ : C ′d′(Qv) 6= ∅ for all v ∈ S} ,

where Cd(Qv) 6= ∅ (C ′d′(Qv) 6= ∅) means that the homogeneous space Cd (C ′d′) has

non-trivial solutions (w, t, z) 6= (0, 0, 0) in Qv.

For the rank of the elliptic curve En we obtain the formula (see pp 286, [3])

rank(En(Q)) = dimF2Sel
(φ)(En/Q)− dimF2X(En/Q)[φ]

+ dimF2Sel
(φ̂)(E ′n/Q)− dimF2X(E ′n/Q)[φ̂]− 2.

Thus we can calculate the rank from the dimensions of the Selmer groups and the

Tate-Shafarevich groups.
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2.3. A graphical method. We use standard terminology in graph theory ([18]).

Let G = (V,A) be a simple directed graph where V = V (G) = {v1, · · · , vm} is

the set of vertices of G, and A = A(G) is the set of arcs in G. We denote an arc

(vi, vj) ∈ A by −−→vivj. The adjacency matrix of G is defined by

M(G) = (aij)16i,j6m ,

where

aij =

 1, if −−→vivj ∈ A (1 6 i 6= j 6 m)

0, otherwise .

For the vertex vi, 1 ≤ i ≤ m, let di =
∑m

j=1 aij . The Laplace matrix of the graph G

is defined by

L(G) = diag(d1, · · · , dm)−M(G) .

The term “odd graph” has been used by Feng, Xue and one of the authors in their

study of new families of non-congruent numbers ([11],[12],[13]). It is also used by

Faulkner and James to compute the size of the Selmer groups ([10]).

Definition 1. Let G = (V,A) be a directed graph. A partition of vertices V1

⋃
V2 =

V is called odd if either there exists a vertex v1 ∈ V1 such that #{v1 → V2}, the

total number of arcs from v1 to vertices in V2 is odd, or there exists v2 ∈ V2 such

that #{v2 → V1} is odd. Otherwise the partition V1

⋃
V2 = V is called even. The

graph G is called odd if all non-trivial partitions {V1, V2} 6= {V, ∅} of V are odd.

We need the following counting lemma, which can be derived by the same idea

used in the proof of Lemma 2.2 in [11].

Lemma 1. Let G = (V,A) be a directed graph, V = {v1, . . . , vs+t} (s, t ≥ 0) . Then

the number of even partition {V1, V2} of V such that {vs+1, . . . , vs+t} ⊂ V2 is equal to

the number of vectors (x1, . . . , xs) ∈ Fs2 such that L(G) · (x1, . . . , xs, 0, . . . , 0)T = 0.
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2.4. Generalized Erdös-Kac Theorem. For a positive integer n, let ω(n) be the

number of distinct prime divisors of n. The remarkable theorem of Erdős and Kac

([9]) is that, for any γ ∈ R,

lim
X→∞

1

X
#

{
n : 1 ≤ n ≤ X,

ω(n)− log log n√
log log n

≤ γ

}
= G(γ) :=

1√
2π

∫ γ

−∞
e−

t2

2 dt .

There is very rich literature on various aspects of the Erdős-Kac theorem. Interested

readers can refer to Granville and Soundararajan’s paper [16] for the most recent

account and Elliot’s monograph [8] for a comprehensive treatment of the subject.

We will use the following generalization of Erdös-Kac Theorem obtained by Liu

([26]). For completeness we reproduce the statement here. Let S be an infinite

subset of N. For X ∈ R, X > 1, define

S(X) = {n ≤ X : n ∈ S}.

We assume that S satisfies the cardinality condition

(3)
∣∣S(X1/2)

∣∣ = o (|S(X)|) ,

where |S(X)| is the cardinality of S(X). Let f : S −→ N be a map. For each prime

l, write

1

|S(X)|
# {n ∈ S(X) : f(n) is divisible by l} = λl(X) + el(X),

and for any u-tuples of distinct primes (l1, l2, . . . , lu), write

1

|S(X)|
# {n ∈ S(X) : f(n) is divisible by l1l2 · · · lu} =

u∏
i=1

λli(X) + el1l2···lu(X).

We will use abbreviated notations λl, el and el1l2···lu below.

Suppose there exist absolute constants β and c with 0 < β ≤ 1 and c > 0, and a

function Y = Y (X) < Xβ such that the following conditions hold:

(i) For each n ∈ S(X), the number of distinct prime divisors l of f(n) with l > Xβ

is bounded uniformly.
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(ii)
∑

Y <l≤Xβ λl = o((log logX)1/2), where the sum is over primes l.

(iii)
∑

Y <l≤Xβ |el| = o((log logX)1/2).

(iv)
∑

l≤Y λl = c log logX + o((log logX)1/2).

(v)
∑

l≤Y λ
2
l = o((log logX)1/2).

(vi) For r ∈ N, let u = 1, 2, . . . , r. We have∑
′′|el1···lu | = o((log logX)−r/2),

where
∑′′ extends over all u-tuples of distinct primes (l1, l2, . . . , lu) with li ≤ Y .

(Notice that the condition (4) in Liu’s paper [26] is actually c = 1. However there

is no essential difference by introducing the constant c > 0 here.)

Lemma 2. (Theorem 3, [26]) Let S be an infinite subset of N satisfying condition

(3) and f : S → N. Suppose there exist absolute constants β, c with 0 < β ≤ 1,

c > 0 and Y = y(X) < Xβ such that the conditions (i)–(vi) hold. Then for γ ∈ R,

we have

lim
X→∞

1

|S(X)|
#

{
n ∈ S(X) :

ω(f(n))− c log log n√
c log log n

≤ γ

}
= G(γ) .

2.5. Additional lemmas. The following results proved by Heath-Brown ([19]) and

generalized by Yu will be used several times in our proofs.

Lemma 3. (Lemma 2.2 in [31], Lemma 4.1 in [29]) Suppose ε > 0 is any fixed

number, X,M and N are sufficiently large real numbers, and {am}, {bn} are two

complex sequences, supported on odd integers, satisfying |am|, |bn| ≤ 1. Fix positive

integers h, q satisfying gcd(h, q) = 1 and q ≤ {min(M,N)}ε/3. Let

S :=
∑
m,n

ambn

(m
n

)
,

where the summation is subject to

M ≤ m < 2M,N ≤ n < 2N,mn ≤ X and mn ≡ h (mod q).
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Then we have

S �MN15/16+ε +M15/16+εN ,

where the constant involved in the � symbol depends on ε only.

Lemma 4. (Lemma 4.2, [29]) Suppose s is a fixed rational number. Let N be

sufficiently large. Then for arbitrary positive integers q, r and any nonprincipal

character χ (mod q), we have∑
n≤X,gcd(n,r)=1

µ2(n)sω(n)χ(n)� Xτ(r) exp(−η
√

logX)

with a positive constant η = ηs,N , uniformly for q ≤ logN X. Here τ is the usual

divisor function and µ is the Möbius function.

Lemma 5. (Lemma 2.4, [31]) Let s and C be two positive integers, and A > 0 be

any fixed number. For X > 1, let T ≤ exp(
√

logX) and M,N ≥ T be given. There

exists some constant η > 0 such that, for any positive integer r, any integer h prime

to C, and any distinct characters χ1, χ2 (mod q), where q � (logX)A, we have∑
m,n

µ2(m)µ2(n)s−ω(m)−ω(n)χ1(m)χ2(n)� Xτ(r) exp
(
−η
√

log T
)

logX,

where the sum is over coprime variables satisfying the conditions

M < m ≤ 2M, N < n ≤ 2N, mn ≤ X, mn ≡ h (mod C), gcd(mn, r) = 1,

and the constant involved in the �-symbol depends on s and C only.

3. Solvability conditions of homogeneous spaces

The problem of finding the size of the Selmer groups Sel(φ)(En/Q) (Sel(φ̂)(E ′n/Q))

is equivalent to the problem of determining how many homogeneous spaces Cd (re-

spectively C ′d′) have non-trivial solutions over certain local fields. We collect solv-

ability conditions for Cd and C ′d′ in the following two lemmas.



SELMER GROUPS OF QUADRATIC TWISTS 11

Lemma 6. Let a, b ∈ Z with ab(a− b) 6= 0 and gcd(a, b) = 1. Let n be a square-free

integer with gcd(n, ab(a − b)) = 1, and M ⊆ Q∗/Q∗2, the multiplicative subgroup

generated by −1 and the prime divisors of (a − b)n. Let p denote an odd prime

number. For any d ∈M , one has:

(i) For p|n, p|d :

(
ab

p

)
= 1 and

(
an/d

p

)
= 1 ⇐⇒ Cd(Qp) 6= ∅.

(ii) For p|n, p - d :

(
d

p

)
= 1 ⇐⇒ Cd(Qp) 6= ∅.

(iii) For p|(a− b), p|d :

(
−bn
p

)
= 1 ⇐⇒ Cd(Qp) 6= ∅.

(iv) Suppose a+ b ≥ 0 or ab < 0. If d < 0, then Cd(R) = ∅.

Proof. (i) Let p|n and p|d. Suppose (w, t, z) is a non-trivial solution of Cd :

dw2 = t4 − 2(a + b)n
d
t2z2 + (a − b)2 n2

d2
z4 over Qp. Then (p2w, pt, pz) is also a non-

trivial solution. We may assume that 0 ≤ min{vp(w), vp(t), vp(z)} ≤ 1, and also, if

vp(w) ≥ 2, then min{vp(t), vp(z)} = 0, where vp is the p-adic exponential valuation,

normalized by vp(p) = 1. From the above equation one knows that the minimum of

the four values

1 + 2vp(w), 4vp(t), vp(a+ b) + 2vp(t) + 2vp(z), 4vp(z),

is attained for at least two of them. Therefore vp(t) = vp(z) = 0 < 1 + 2vp(w). One

has

t4 − 2(a+ b)
n

d
t2z2 + (a− b)2n

2

d2
z4 ≡ 0 (mod p).

This implies that (
u2 − (a+ b)

n

d

)2

≡ 4ab
n2

d2
(mod p)(4)

where u = t/z ∈ Z∗p, and one must have(
ab

p

)
= 1.
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Let
√
ab ∈ Z∗p be one of the square roots of ab ∈ Zp. The equation (4) implies that

u2 ≡
(
(a+ b)± 2

√
ab
) n
d

(mod p).

Hence 
(
(a+ b) + 2

√
ab
)
n
d

p

 = 1 or


(
(a+ b)− 2

√
ab
)
n
d

p

 = 1.

Since
(
ab
p

)
= 1, the above condition is equivalent to(

an/d

p

)
= 1.

On the other hand, if (ab
p
) = 1 and (an/d

p
) = 1, from the above argument, the

equation

t4 − 2(a+ b)
n

d
t2 + (a− b)2n

2

d2
= 0

is solvable for t ∈ (Z/pZ)∗. By Hensel’s lemma this leads to a non-trivial solution

(0, t, 1) of Cd over Qp.

(ii) Let p|n, p - d. If
(
d
p

)
= 1, it is easy to see that one has a solution (w, 1, 0) ∈ Z3

p

for Cd. On the other hand, suppose (w, t, z) is a non-trivial solution of Cd over Qp

with 0 ≤ min{vp(w), vp(t), vp(z)} ≤ 1 and vp(w) ≥ 2 =⇒ min{vp(t), vp(z)} = 0.

The minimum of the four values

2vp(w), 4vp(t), 1 + vp(a+ b) + 2vp(t) + 2vp(z), 2 + 4vp(z),

is attainted for at least two of them. Either vp(w) = vp(t) = 0 ≤ vp(z), in which

case one has

dw2 ≡ t4 (mod p),

and this implies that (
d

p

)
= 1,

or vp(w) = 1, vp(z) = 0 and vp(t) ≥ 1, in which case one has dw2

p2
≡ (a − b)2 n2

p2d2
z4

(mod p), and one still gets the condition
(
d
p

)
= 1.
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(iii) Let p|(a − b), p|d. Suppose (w, t, z) is a non-trivial solution of Cd over Qp

with 0 ≤ min{vp(w), vp(t), vp(z)} ≤ 1 and vp(w) ≥ 2 =⇒ min{vp(t), vp(z)} = 0.

The minimum of the four values

1 + 2vp(w), 4vp(t), −1 + 2vp(t) + 2vp(z), 2vp(a− b)− 2 + 4vp(z),

is attained for at least two of them. Since vp(a− b) ≥ 1, one obtains

1 + 2vp(w) = −1 + 2vp(t) + 2vp(z) = min .

Dividing a suitable power of p on both sides and then taking the equation modulo

p, one has
d

p
w2 ≡ −2(a+ b)

np

d
z2 (mod p),

for some w, z ∈ (Z/pZ)∗. Therefore(
−2(a+ b)n

p

)
=

(
−bn
p

)
= 1.

On the other hand if (−bn
p

) = 1, one can see that Cd(Qp) 6= ∅ by using Hensel’s

lemma.

(iv) The proof is clear. This completes the proof of Lemma 6.

Lemma 7. Let a, b ∈ Z with ab(a− b) 6= 0 and gcd(a, b) = 1. Let n be a square-free

integer with gcd(n, ab(a − b)) = 1, and N ⊆ Q∗/Q∗2 the multiplicative subgroup

generated by the prime divisors of n. Let p denote an odd prime number. For any

d ∈ N , one has:

(i) For p|n, p|d :

(
ab

p

)
= 1 and

(
−an/d
p

)
= −1 ⇐⇒ C ′d(Qp) = ∅.

(ii) For p|n, p - d :

(
ab

p

)
= 1 and

(
d

p

)
= −1 ⇐⇒ C ′d(Qp) = ∅.

(iii) For p|(a− b), p - d :

(
−bn
p

)
= 1 and

(
d

p

)
= −1⇐⇒ C ′d(Qp) = ∅.

(iv) For p|ab, p - d : C ′d(Qp) 6= ∅.

(v) C ′d(R) 6= ∅. Moreover d ≡ 1 (mod 8), then C ′d(Q2) 6= ∅.
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Proof. The proof of Lemma 7 is similar to that of Lemma 6 and will be left to the

reader.

4. Averaging the size of Selmer groups Sel(φ)(En/Q)

The main purpose of this section is to prove the following lemma.

Lemma 8. Let a, b ∈ Z with ab(a−b) 6= 0, gcd(a, b) = 1 and ab not a square. Define

C0 =
∏

p|ab(a−b)

p,

and let h and C be coprime integers such that C0|C. For X > 0, let S(X, h, C) be

the set defined in (2) and for n ∈ S(X, h, C), consider the elliptic curve En given by

(1). Let N ⊆ Q∗/Q∗2 be the multiplicative subgroup generated by the prime divisors

of n and denote

#
(
Sel(φ)(En/Q)

⋂
N
)

= 2ŝ(n,φ).

Then

ŝ(n, φ) = 0

for almost all n ∈ S(X, h, C) as X →∞.

Once Lemma 8 is proved, from the definition of the Selmer group Sel(φ)(En/Q)

we will have

0 ≤ s(n, φ) ≤ ŝ(n, φ) + ω(a− b) + 1,

which implies that

s(n, φ) ≤ ω(a− b) + 1(5)

for almost all n ∈ S(X, h, C), as X →∞.

If c = gcd(a, b) > 1, one may consider the elliptic curve

En : y2 = x(x+ a′n′)(x+ b′n′),
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where a = a′c, b = b′c, n′ = nc, and one can see that the inequality (5) still holds

true for almost all n ∈ S(X, h,C), as X →∞. This completes the proof of the first

part of Theorem 1.

A more careful analysis of Lemma 6 shows that, if one assumes further the fol-

lowing three conditions on a and b in Lemma 8:

• a+ b ≥ 0 or ab < 0,

• a− b ≡ 1 (mod 2),

• If p | (a− b), then (−bh
p

) = −1,

then s(n, φ) = ŝ(n, φ), in which case s(n, φ) = 0 for almost all n ∈ S(X, h, C) as

X →∞.

The proof of Lemma 8 is similar to that in [28], where the key idea which is based

on character sums was initiated by Heath-Brown ([19], [20]) to study the size of the

2-Selmer groups of elliptic curves related with the congruent number problem. His

method has been generalized by Yu ([29],[30],[31],[32]) to study the size of Selmer

groups for other families of elliptic curves. Since we will treat several similar sums

later in this paper, for the sake of completeness we present a proof of Lemma 8

below.

Proof of Lemma 8. By Lemma 6, one has

2ŝ(n,φ) ≤
∑
n=dd′

∏
p|d

1

4

((
ab

p

)
+ 1

)((
ad′

p

)
+ 1

)∏
p|d′

1

2

((
d

p

)
+ 1

)
.

Expanding the product on the right hand side one has

2ŝ(n,φ) ≤
∑

n=D0D1D2D3D4D5

4−ω(D0D1D2D3)2−ω(D4D5)

(
b

D1D2

)(
a

D2D3

)

×
(
D4

D1

)(
D1

D4

)(
D4

D3

)(
D3

D4

)(
D5

D1

)(
D5

D3

)(
D0

D4

)(
D2

D4

)
=

∑
D

g(D) ,
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where D = (D0, D1, D2, D3, D4, D5) is subject to the condition that n = D0D1D2D3D4D5.

Since n is square-free, all the Di’s are square-free and pairwise coprime. Our goal is

to estimate ∑
n∈S(X,h)

∑
D

g(D) .

We sum over the six variables Di, subject to the conditions that each Di is square-

free, that they are pairwise coprime, and that their product n satisfies

n ≤ X, n ≡ h (mod C) .

We divide the range of each variable Di into dyadic intervals [Ai, 2Ai), where Ai runs

over powers of 2. There are O(log6X) many non-empty subsums, which we shall

write in the form S(A), where A = (A0, A1, A2, A3, A4, A5). Here we may assume

that

1 ≤
5∏
i=1

Ai � X.

Following Heath-Brown ([19], [20]), we shall describe the variables Di and Dj as

being “linked” if exactly one of the Jacobi symbols(
Di

Dj

)
,

(
Dj

Di

)
occurs in the expression for g(D). One sees that (D1, D5), (D3, D5), (D0, D4) and

(D2, D4) are the pairs of linked variables.

4.1. Case one. Consider the linked variables D1, D5. Suppose A1, A5 ≥ (logX)224.

We may write g(D) in the form

g(D) =

(
D5

D1

)
a(D5)b(D1),

where the function a(D5) depends on all other variables Di except D1, and b(D1)

depends on all other variables Di except D5. Moreover we have

|a(D5)|, |b(D1)| ≤ 1.
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We can now write

|S(A)| =
∑

D0,D2,D3,D4

∣∣∣∣∣ ∑
D1,D5

(
D5

D1

)
a(D5)b(D1)

∣∣∣∣∣ .
As a consequence of Lemma 3 one finds that

S(A)� A0A2A3A4A1A5 {min(A1, A5)}−1/32 � X(logX)−7.

Similar results hold for other linked variables. Therefore

Lemma 9. We have

S(A)� X(logX)−7

whenever there is a pair of linked variables with Ai, Aj ≥ (logX)224.

4.2. Case two. We now examine the case when A1 ≥ (logX)224 while A5 <

(logX)224. Using quadratic reciprocity we put g(D) in the form

g(D) = 4−ω(D1)

(
D1

D5

)
χ(D1)c ,

where χ is a character with modulus dividing 8b. χ may depend on the variables Di

other than D1, and the factor c is independent of D1 and satisfies |c| ≤ 1. It follows

that

(6) |S(A)| ≤
∑

D0,D2,D3,D4,D5

∣∣∣∣∣∑
D1

4−ω(D1)

(
D1

D5

)
χ(D1)

∣∣∣∣∣ ,
where the inner sum is restricted by the conditions that D1 must be square-free and

coprime to all the other variables D0, D2, D3, D4, D5.

We remove the condition D1 ≡ h′ (mod C) from the inner sum on the right side

of (6) and insert instead a factor

1

φ(C)

∑
ψ (mod C)

ψ(D1)ψ(h′).
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Employing Lemma 4 one has

S(A) � A1 exp(−η
√

logA1)
∑

D0,D2,D3,D4,D5

τ(D0D2D3D4D5)

� A1 exp(−η
√

logA1)
∏
Di,i 6=1

∑
Di

τ(Di)

� X(logX)5 exp(−η
√

logA1) ,

provided that D5 6= 1 and D5 times the modulus of χ is� logN A1 for some N > 0.

We summarize the above results as follows.

Lemma 10. For any constant κ with 0 < κ < 1 one has

S(A)� X(logX)−7

whenever there are linked variables Di, Dj for which

Ai ≥ exp {(logX)κ}

and Dj > 1.

4.3. Case Three. For any 0 < κ < 1 denote

(7) C = exp {(logX)κ} .

Let
∑′ indicate the condition that A0, A1, A2, A3 ≤ C, A4 ≤ C or A5 ≤ C. Then∑′

A

|S(A)| ≤ 2
∑

Di≤2C,0≤i≤4

4−ω(D0) · · · 4−ω(D3)2−ω(D4)
∑

D5≤ X
D0···D4

2−ω(D5).

We now use the bounds ([17])∑
n≤X

γω(n) � X(logX)γ−1,

and ∑
n≤X

γω(n)

n
≤
∏
p≤X

(
1 +

γ

p

)
� (logX)γ,
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which are valid for any fixed γ > 0. Since

X

D0 · · ·D4

� XC−5 � X1/2,

one has log(XC−5)� logX. Therefore∑′

A

|S(A)| �
∑

Di≤2C,0≤i≤4

4−ω(D0) · · · 4−ω(D3)2−ω(D4) X

D0 · · ·D4

(logX)−1/2

� X(logX)−1/2

(∑
n≤2C

4−ω(n)

n

)4(∑
n≤2C

2−ω(n)

n

)
� X(logX)−1/2(log 2C)

1
4
·4(log 2C)

1
2 � X(logX)−

1
2

+κ 3
2 .

Let
∑′′ indicate the condition that A4, A5 ≤ C and at least one of A0, A1, A2, A3 is

less than C. Then∑′′

A

|S(A)| ≤
∑

D0D1D2D3D4D5≤X

4−ω(D0) · · · 4−ω(D3)2−ω(D4)2−ω(D5)

=
∑
mn≤X

4−ω(m)2−ω(n)

( ∑
D0D1D2D3=m

1

)( ∑
D4D5=n

1

)

≤
∑

n≤(2C)2

1
∑

m≤X/n

4−ω(m)
∑

D0D1D2D3=m

1 .

Write

m1 =
∏

Di<2C

Di, m2 =
∏

Di≥2C

Di,

so that m1 ≤ (2C)4. One has∑′′

A

|S(A)| �
∑

n≤(2C)2

1
∑

m1≤(2C)4

∑
m2≤ X

m1n

(
3

4

)ω(m2)

�
∑

n≤(2C)2

1
∑

m1≤(2C)4

X

m1n
(logX)−1/4

� X(logX)−1/4(log 2C)2 � X(logX)−
1
4

+2κ .

We summarize our results as follows.
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Lemma 11. Choosing κ = 1
40
, we have∑

A

|S(A)| � X(logX)−1/5 ,

where the sum over A runs over all sets in which either A0, A1, A2, A3 ≤ C and at

least one of A4, A5 is ≤ C, or A4, A5 ≤ C and at least one of A0, A1, A2, A3 is ≤ C,

or there are linked variables Di and Dj with Di ≥ C and Dj > 1.

4.4. The remaining cases. The cases where the sums S(A) are not handled by

Lemma 11 are as follows.

(1) A4, A5 ≥ C =⇒ D0 = D1 = D2 = D3 = 1.

(2) A4 ≥ C,A5 < C =⇒ D0 = D2 = D5 = 1, A1 or A3 ≥ C.

(3) A4 < C,A5 > C =⇒ D1 = D3 = D4 = 1, A0 or A2 ≥ C.

(4) A4, A5 ≤ C =⇒ A0, A1, A2, A3 ≥ C and D4 = D5 = 1.

Case (1). With D0 = D1 = D2 = D3 = 1 the function g(D) reduces to

2−ω(D4)2−ω(D5). The sum is ∑
D4,D5

2−ω(D4)2−ω(D5),

where D4, D5 are subject to the conditions

D4, D5 > C, n = D4D5 ≡ h (mod C), n square-free, n ≤ X.

We can remove the condition D4, D5 > C with an error

≤ 2
∑
D4≤C

2−ω(D4)
∑

D5≤ X
D4

2−ω(D5) � X(logX)−1/2
∑
D4≤C

2−ω(D4)

D4

� X(logX)−
1
2

+ 1
2
κ � X(logX)−1/5.

Since n = D4D5 is square-free it factors as D4D5 in exactly 2ω(n) different ways.

We therefore obtain∑
n∈S(X,h,C)

1 +O
(
X(logX)−1/5

)
= #S(X, h,C) +O

(
X(logX)−1/5

)
.
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Case (2). With D0 = D2 = D5 = 1 the function g(D) reduces to

f(D) = 4−ω(D1D3)2−ω(D4)

(
b

D1

)(
a

D3

)(
D4

D1

)(
D1

D4

)(
D4

D3

)(
D3

D4

)
,

and the conditions for A are A4 ≥ C and at least one of A1, A3 ≥ C. If A1 ≤ C or

A3 ≤ C, using an argument similar to that in Case Three one sees that

S(A) � X(logX)−1/5 .

If A1, A3, A4 ≥ C, one can apply Lemma 5 to obtain that the total contribution of

these sums is O(X(logX)−1). Case (3) and (4) can be treated in a similar way and

the total contribution is O(X(logX)−1/5). Therefore we conclude that∑
n∈S(X,h,C)

2ŝ(n,φ) ≤ #S(X, h,C) +O
(
X(logX)−1/5

)
as X →∞.

4.5. Analyzing the result. For any integer r ≥ 0, let

ar = #{n ∈ S(X, h,C) : ŝ(n, φ) = r}.

The above inequality is∑
r≥0

2rar ≤ #S(X, h, C) +O
(
X(logX)−1/5

)
,

hence ∑
r≥1

2r−1ar ≤
∑
r≥1

(2r − 1)ar = O
(
X(logX)−1/5

)
.

One has

ar = O
(
X(logX)−1/52−r

)
, r ≥ 1 ,

and ∑
r≥1

ar = O
(
X(logX)−1/5

)
.
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Therefore

ŝ(n, φ) = 0

for almost all n ∈ S(X, h, C) as X →∞. The completes the proof of Lemma 8.

5. Averaging the size of Selmer groups Sel(φ̂)(E ′n/Q)

Let h,C, S(X, h, C), s(n, φ̂) be defined as in Theorem 1. For simplicity we first

assume gcd(a, b) = 1. For any n ∈ S(X, h, C) consider the elliptic curve En defined

in (1). Let N ⊆ Q∗/Q∗2 be the multiplicative subgroup generated by prime

divisors of n, and denote

#
(
Sel(φ̂)(E ′n/Q)

⋂
N
)

= 2ŝ(n,φ̂).

From the definition of the Selmer group Sel(φ̂)(E ′n/Q) one has

ŝ(n, φ̂) ≤ s(n, φ̂) ≤ ŝ(n, φ̂) + ω(ab) + 1.(8)

It is enough to study the asymptotic behavior of ŝ(n, φ̂) for n ∈ S(X, h, C), as

X →∞. For any d ∈ N , by Lemma 7, C ′d(Qp) 6= φ for any p|ab. Denote the

cardinality of the set of d ∈ N such that C ′d(Qp) 6= φ for any p|n by 2s1(n), and the

cardinality of the set of d ∈ N such that d ≡ 1 (mod 8) and C ′d(Qp) 6= φ for any

p|(a− b)n by 2s2(n). One can consider s1(n) as the 2-rank of the set of d ∈ N with

respect to restrictions (i) and (ii) of Lemma 7, and s2(n) as the 2-rank of the set of

d ∈ N with respect to restrictions (i), (ii), (iii) and (v) of Lemma 7. One sees that

s2(n) ≤ ŝ(n, φ̂) ≤ s1(n).(9)

We will treat s1(n) first.
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5.1. Analysis of s1(n). We will take a graphical approach to study the

asymptotic behavior of s1(n). For n ∈ S(X, h,C), let

n = p1 · · · ptq1 · · · qs

be its prime factorization, where the prime numbers pi, qj satisfy the conditions(
ab

pi

)
= 1,

(
ab

qj

)
= −1.

We construct a graph G1(n) = (V,A) with

V = {p1, . . . , pt, q1, . . . , qs, a} ,

A =
{−−→pipr :

(
pr
pi

)
= −1, 1 ≤ i 6= r ≤ t

}
⋃{−−→piqj :

(
qj
pi

)
= −1, 1 ≤ i ≤ t, 1 ≤ j ≤ s

}
⋃{−→pia :

(
−a
pi

)
= −1, 1 ≤ i ≤ t

}
.

One can see from (i) and (ii) of Lemma 7 that, for any d ∈ N , C ′d(Qp) 6= ∅ for any

p|n if and only if the partition

{p : p|d}
⋃({

p : p
∣∣∣n
d

}⋃
{a}
)

is an even partition. Hence the number 2s1(n) is the number of even partitions

V = V1

⋃
V2

of the graph G1(n) with the condition that a ∈ V2. Putting the vertices in order as

p1, . . . , pt, q1, . . . , qs, a and letting M1(n) be the Laplace matrix of the graph G1(n),

by Lemma 1, one obtains that 2s1(n) equals the number of vectors

(x1, . . . , xt, y1, . . . , ys) ∈ Ft+s2 such that

M1(n)(x1, . . . , xt, y1, . . . , ys, 0)T = 0.
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We may write the matrix M1(n) explicitly as

M1(n) =



∗

A B
...

∗

0 0 0
...

...
...

0 0 0

0 · · · 0 0 · · · 0 0


,

where A is a t× t matrix and B is a t× s matrix. One has

s1(n) = t+ s− rankF2 [AB].

Denoting

ŝ1(n) = t− rankF2 [AB],

we will prove the following.

Lemma 12. ŝ1(n) = 0 for almost all n ∈ S(X, h, C), as X →∞.

Proof of Lemma 12. First one sees immediately ŝ1(n) ≥ 0. Next, when n ≡ 1

(mod 4), one constructs a graph (V,A) with

V = {p1, . . . , pt, q1, . . . , qs, a} ,

A =
{−−→pipr :

(
pi
pr

)
= −1, 1 ≤ i 6= r ≤ t

}
⋃{−−→piqj :

(
pi
qj

)
= −1, 1 ≤ i ≤ t, 1 ≤ j ≤ s

}
⋃{−→pia :

(
a
pi

)
= −1, 1 ≤ i ≤ t

}
.

When n ≡ 3 (mod 4), one constructs another graph (V,A) with

V = {p1, . . . , pt, q1, . . . , qs, a} ,
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A =
{−−→pipr :

(
pi
pr

)
= −1, 1 ≤ i 6= r ≤ t

}
⋃{−−→piqj :

(
pi
qj

)
= −1, 1 ≤ i ≤ t, 1 ≤ j ≤ s

}
⋃{−→pia :

(
−a
pi

)
= −1, 1 ≤ i ≤ t

}
.

Let M ′
1(n) be the Laplace matrix in either of these two cases. Putting the vertices

in order as p1, . . . , pt, q1, . . . , qs, a, we may write the Laplace matrix M ′
1(n) in the

form

M ′
1(n) =



∗

AT C
...

∗

0 0

BT ...
...

0 0

0 · · · 0 0 · · · 0 0


.

Denote by ε(n) the set of even partitions V = V1

⋃
V2 of the graph such that

{q1, . . . , qs, a} ⊂ V2. Then #ε(n) is equal to the number of vectors (x1, . . . , xt) such

that

M ′
1(n)(x1, . . . , xt, 0, . . . , 0, 0)T = 0.

Therefore

#ε(n) = 2
t−rankF2

(
AT

BT

)
= 2ŝ1(n).

One can see that the set ε(n) corresponds to the set of d ∈ N subject to the

following conditions: if n ≡ 1 (mod 4), then:

(i) For p|n, p|d :

(
ab

p

)
= 1 and

(
a

p

)(
p

n/d

)
= 1 .

(ii) For p|n, p - d :
(p
d

)
= 1 .



26 XIONG AND ZAHARESCU

If n ≡ 3 (mod 4), then

(i) For p|n, p|d :

(
ab

p

)
= 1 and

(
−a
p

)(
p

n/d

)
= 1 .

(ii) For p|n, p - d :
(p
d

)
= 1 .

From the above description one sees that if n ≡ 1 (mod 4), then

2ŝ1(n) =
∑
n=dd′

∏
p|d

1

4

((
ab

p

)
+ 1

)((
a

p

)( p
d′

)
+ 1

)∏
p|d′

1

2

((p
d

)
+ 1
)
,

and if n ≡ 3 (mod 4), then

2ŝ1(n) =
∑
n=dd′

∏
p|d

1

4

((
ab

p

)
+ 1

)((
−a
p

)( p
d′

)
+ 1

)∏
p|d′

1

2

((p
d

)
+ 1
)
.

In both of these two cases one can apply Heath-Brown’s method as in Section 4 to

obtain the asymptotic formula∑
n∈S(X,h,C)

2ŝ1(n) = #S(X, h,C) +O
(
X(logX)−1/5

)
,

as X →∞, and this implies that

ŝ1(n) = 0

for almost all n ∈ S(X, h,C), as X →∞. This completes the proof of Lemma 12.

Since s1(n) = s+ ŝ1(n), by Lemma 12, s1(n) = s for almost all n ∈ S(X, h,C), as

X →∞.

5.2. Analysis of s2(n). For n ∈ S(X, h, C), let

n = p1 · · · ptq1 · · · qs

be its prime factorization, where the prime numbers pi, qj satisfy the conditions(
ab

pi

)
= 1,

(
ab

qj

)
= −1.
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We construct a graph G2(n) = (V,A) with

V = {p1, . . . , pt, q1, . . . , qs, a, e1, e2}
⋃
{p : p|(a− b)} ,

A =
{−−→piqj :

(
qj
pi

)
= −1, 1 ≤ i ≤ t, 1 ≤ j ≤ s

}
⋃{−→pia :

(
−a
pi

)
= −1, 1 ≤ i ≤ t

}
⋃
{−→e1p : p ≡ 3 (mod 4), p|n}⋃
{−→e2p : p ≡ ±3 (mod 8), p|n}⋃{−→pq :

(
q
p

)
= −1, p|(a− b), q|n

}
.

One can see from (i), (ii), (iii) and (v) of Lemma 7 that for any d ∈ N , if the

partition

{p : p|d}
⋃({

p : p
∣∣∣n
d

}⋃
{a, e1, e2}

⋃
{p : p|(a− b)}

)

is an even partition, then C ′d(Qp) 6= ∅ for any p|(a− b)n. Hence 2s2(n) is at least

the number of even partitions

V = V1

⋃
V2

of the graph G2(n) with the condition that {a, e1, e2}
⋃
{p : p|(a− b)} ⊂ V2.

Putting the vertices in order as p1, . . . , pt, q1, . . . , qs, a, e1, e2 and p for p|(a− b), and

letting M2(n) be the Laplace matrix of the graph G2(n), by Lemma 1 one obtains

that 2s2(n) is at least the number of vectors (x1, . . . , xt, y1, . . . , ys) ∈ Ft+s2 such that

M2(n)(x1, . . . , xt, y1, . . . , ys, 0, 0, 0,0)T = 0.
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We may write the matrix M2(n) explicitly as

M2(n) =



∗ 0 0 0

A B
...

...
...

...

∗ 0 0 0

0 0 0 0 0 0
...

...
...

...
...

...

0 0 0 0 0 0

0 · · · 0 0 · · · 0 0 0 0 0

∗ · · · ∗ ∗ · · · ∗ 0 ∗ 0 0

∗ · · · ∗ ∗ · · · ∗ 0 0 ∗ 0

∗ · · · ∗ ∗ · · · ∗ 0 0 0 ∗



,

where M2(n) is a (t+ s+ 3 + ω(a− b))2 matrix, A is a t× t matrix and B is a t× s

matrix. One has

s2(n) ≥ t+ s− rankF2


A B

∗ ∗

∗ ∗

∗ ∗

 ≥ s− 2− ω(a− b) + t− rankF2 [AB].

One sees from Lemma 12 that ŝ1(n) = t− rankF2 [AB] = 0 for almost all

n ∈ S(X, h, C), as X →∞; hence s2(n) ≥ s− 2− ω(a− b) for almost all

n ∈ S(X, h, C), as X →∞. From the inequalities (9) and (8), one concludes that

Lemma 13.

s(n, φ̂) =
∑
p|n ,

(ab
p

)=−1

1 +O(1)

for almost all n ∈ S(X, h, C), as X →∞.

It is easy to see that Lemma 13 also holds true if gcd(a, b) > 1.
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For n ∈ S(X, h, C), denote

h(n) =
∑
p|n ,

(ab
p

)=−1

1,

where ab is not a square. Let

S = {n ∈ N : n is square-free and n ≡ h (mod C)}.

Define the map f : S → N as

f(n) =
∏
p|n

(ab
p

)=−1

p

for any n ∈ S. Then

h(n) = ω(f(n)).

One can verify that the set S and the function f satisfy all the conditions listed in

Lemma 2 with constant c = 1
2
. Therefore for n ∈ S(X, h,C) and X →∞, h(n), as

well as s(n, φ̂) satisfies the desired Gaussian distribution, with mean and variance
1
2
log log n. This proves the second part of Theorem 1. The proof of Theorem 1 is

now complete.



30 XIONG AND ZAHARESCU

6. Proof of Theorem 2

Recall that φ : En → E ′n is a 2-isogeny and φ̂ : E ′n −→ En is the dual 2-isogeny.

Hence φ̂ ◦ φ = [ 2 ], one has the following commutative diagrams (see pp 97, [1]):

0

��

0

��

0

��

0 // E′n(Q)
φ(En(Q))

//

��

Sel(φ)(En/Q) //

��

X(En/Q)[φ] //

��

0

0 // En(Q)
2En(Q))

//

��

Sel(2)(En/Q) //

��

X(En/Q)[2] //

��

0

0 // En(Q)

φ̂(E′n(Q))
//

��

Sel(φ̂)(E ′n/Q) //

��

X(E ′n/Q)[φ̂] //

��

0

0 // Ĉ //

��

Ĉ //

��

0

0 0

For n ∈ S(X, h,D), denote as in the theorem

#X(En/Q)[φ] = 2t(n,φ), #X(E ′n/Q)[φ̂] = 2t(n,φ̂), #X(En/Q)[2] = 2t(n),

and

#Sel(φ)(En/Q) = 2s(n,φ), #Sel(φ̂)(E ′n/Q) = 2s(n,φ̂), #Sel(2)(En/Q) = 2s(n).

From the above commutative diagrams one has the inequality

0 ≤ t(n, φ) ≤ s(n, φ),

which immediately implies that t(n, φ) = 0 for almost all n ∈ S(X, h,D) as

X →∞ by Theorem 1, under the stronger assumptions of Theorem 2. One also



SELMER GROUPS OF QUADRATIC TWISTS 31

has the relation

s(n, φ̂)− s(n) ≤ t(n, φ̂) ≤ s(n, φ̂),

hence

∑
n∈S(X,h,D)

(
s(n, φ̂)− s(n)

)k
≤

∑
n∈S(X,h,D)

t(n, φ̂)k ≤
∑

n∈S(X,h,D)

s(n, φ̂)k .(10)

By Lemma 13, s(n, φ̂) = h(n) +O(1), where

h(n) =
∑
p|n ,

(ab
p

)=−1

1.

We will prove in the next section that for any k ∈ N

∑
n∈S(X,h,D)

h(n)k = #S(X, h,D)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
.(11)

6.1. k-th moment of the h-function. To establish the asymptotic formula (11),

we first prove the case when k = 1, which is essentially the following lemma.

Lemma 14. For X > 0 and non-zero integers c, h, C such that c is not a square,(∏
p|c p
)
|C and gcd(h,C) = 1, let the set S(X, h, C) be defined in (2). For any

n ∈ S(X, h, C), define the function

h(n) =
∑
p|n ,

( c
p

)=−1

1 .

Then ∑
n∈S(X,h,C)

h(n) = #S(X, h, C)

(
log logX

2

)
+O(X)

as X →∞.
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Proof. First we write ∑
n∈S(X,h,C)

h(n) =
∑
n≤X

n≡h (mod C)

µ2(n)h(n).

Removing the condition n ≡ h (mod C) by inserting the factor

1

φ(C)

∑
ψ (mod C)

ψ(n)ψ(h),

where φ is the Euler-φ function, and interchanging the summation one has∑
n∈S(X,h,C)

h(n) =
1

φ(C)

∑
ψ (mod C)

ψ(h)
∑
n≤X

µ2(n)h(n)ψ(n).

For the character ψ (mod C), denote

S(ψ,X) =
∑
n≤X

µ2(n)h(n)ψ(n).

If ψ 6= 1, one has

S(ψ,X) =
∑
n≤X

µ2(n)ψ(n)
∑
p|n

( c
p

)=−1

1 =
∑
p≤X

( c
p

)=−1

ψ(p)
∑

m≤X/p
gcd(m,p)=1

µ2(m)ψ(m).

By Lemma 4, ∑
m≤X/p

gcd(m,p)=1

µ2(m)ψ(m)� X

p
exp

(
−η
√

log(X/p)
)
.

Since ∑
p≤
√
X

1

p exp
(
η
√

log(X/p)
) ≤ exp

(
−η
√

(logX)/2
) ∑
p≤
√
X

p−1

� exp
(
−η
√

logX
)

log logX � 1,

and ∑
√
X<p≤X

1

p exp
(
η
√

log(X/p)
) ≤

∑
√
X<p≤X

p−1 � 1,
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one has

S(ψ,X)� X.

When ψ = 1, one has

S(1, X) =
∑
n≤X

gcd(n,C)=1

µ2(n)
∑
p|n

( c
p

)=−1

1 =
∑
p≤X

( c
p

)=−1

gcd(p,C)=1

∑
m≤X/p

gcd(m,pC)=1

µ2(m) .

For any integer r ≥ 1, denote

A(r,X) =
∑
n≤X

gcd(n,r)=1

µ2(n).

We define the multiplicative function g by convolution g = µ2 ∗ µ. One sees that

µ2 = 1 ∗ g and for any prime p,

g(pm) =


0 : m = 1,

−1 : m = 2,

0 : m ≥ 3 .

Then

A(r,X) =
∑
n≤X

gcd(n,r)=1

∑
d|n

g(d) =
∑
d≤X

gcd(d,r)=1

g(d)
∑

m≤X/d
gcd(m,r)=1

1 =
∑
n≤
√
X

gcd(n,r)=1

µ(n)
∑

m≤X/n2

gcd(m,r)=1

1 .

Since∑
m≤X

gcd(m,r)=1

1 =
∑
d|r

µ(d) ·
[
X

d

]
=
∑
d|r

µ(d) ·
(
X

d
+O(1)

)
=
φ(r)X

r
+O(τ(r)),

and ∑
n≤
√
X

gcd(n,r)=1

µ(n)

n2
=

6

π2

∏
p|r

(1− p−2)−1 +O(X−1/2),
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one obtains that

A(r,X) =
6X

π2

∏
p|r

(1 + p−1)−1 +O
(√

Xτ(r)
)
.

Using this result we have

S(1, X) =
∑
p≤X

( c
p

)=−1

gcd(p,C)=1

A(pC,X/p)

=
∑
p≤X

( c
p

)=−1

gcd(p,C)=1

 6X

π2p
(1 + p−1)−1

∏
q|C

(1 + q−1)−1 +O

(√
X

p
τ(pC)

)

=
6X

π2

∏
q|C

(1 + q−1)−1
∑
p≤X

( c
p

)=−1

gcd(p,C)=1

1

p+ 1
+O

(
X1/2

∑
p≤X

p−1/2

)
.

Since

∑
p≤X

( c
p

)=−1

gcd(p,C)=1

1

p+ 1
=

∑
p≤X

( c
p

)=−1

gcd(p,C)=1

1

p
+O(1) =

1

2

∑
p≤X

gcd(p,C)=1

1− ( c
p
)

p
+O(1)

=
log logX

2
+O(1),

by Merten’s estimate, and

∑
p≤X

p−1/2 ≤

(∑
p≤X

1

)1/2

·

(∑
p≤X

p−1

)1/2

�
(

X

logX

)1/2

(log logX)1/2,

one obtains that

S(1, X) =
3

π2

∏
p|C

(1 + p−1)−1 X log logX +O(X) .
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Finally, one concludes that

∑
n∈S(X,h,C)

h(n) =
1

φ(C)

S(1, X) +
∑

ψ (mod C)
ψ 6=1

ψ(h)S(ψ,X)


=

3X log logX

π2φ(C)
∏

p|C(1 + p−1)
+O(X) .

Since

#S(X, h,C) =
∑
n≤X

n≡h (mod C)

µ2(n) =
1

φ(C)

∑
ψ (mod C)

ψ(h)
∑
n≤X

µ2(n)ψ(n)

=
1

φ(C)

∑
n≤X

gcd(n,C)=1

µ2(n) +
1

φ(C)

∑
ψ (mod C)

ψ 6=1

ψ(h)
∑
n≤X

µ2(n)ψ(n)

=
1

φ(C)

6X

π2

∏
p|C

(1 + p−1)−1 +O(X1/2)

+O
(
X exp

(
−η
√

logX
))

=
6X

π2φ(C)
∏

p|C(1 + p−1)
+O

(
X exp

(
−η
√

logX
))

,

one immediately sees that∑
n∈S(X,h,C)

h(n) = #S(X, h, C)

(
log logX

2

)
+O(X) .

This completes the proof of Lemma 14. Now we can prove

Lemma 15. Assume the conditions of Lemma 14. Then for any integer k ≥ 1,∑
n∈S(X,h,C)

h(n)k = #S(X, h,C)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
as X →∞.

Proof. For k = 1, this is established in Lemma 14. For k ≥ 2, we recall the

following high-power analogues of the Turán-Kubilius inequalities (see [8] or [21])
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for the additive function h,

1

X

∑
n≤X

|h(n)− A(X)|k � B(X)k +
∑
pm≤X

|h(pm)|k

pm
,

where

A(X) = B2(X) =
∑
pm≤X

h(pm)

pm
=

log logX

2
+O(1),

by the argument in Lemma 14. For k ≥ 2 one has∑
n≤X

∣∣∣∣h(n)− log logX

2

∣∣∣∣k �k

∑
n≤X

|h(n)− A(X)|k +
∑
n≤X

∣∣∣∣A(X)− log logX

2

∣∣∣∣k
�k XB(X)k +X �k X(log logX)k/2 .

Therefore∑
n∈S(X,h,C)

h(n)k =
∑

n∈S(X,h,C)

(
h(n)− log logX

2
+

log logX

2

)k

=

(
log logX

2

)k
#S(X, h, C) + k

(
log logX

2

)k−1 ∑
n∈S(X,h,C)

(
h(n)− log logX

2

)

+ Ok

 max
0≤r≤k−2

(log logX)r
∑

n∈S(X,h,C)

∣∣∣∣h(n)− log logX

2

∣∣∣∣k−r

 .

The second term is

Ok

(
X(log logX)k−1

)
by Lemma 14, while for any 0 ≤ r ≤ k − 2, one has

(log logX)r
∑

n∈S(X,h,C)

∣∣∣∣h(n)− log logX

2

∣∣∣∣k−r �k (log logX)rX (log logX)(k−r)/2

≤ X (log logX)k−1 .

Putting these two error terms together we complete the proof of Lemma 15. This

completes the proof of the asymptotic formula (11).
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Using (11) one obtains

∑
n∈S(X,h,D)

s(n, φ̂)k = #S(X, h,D)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
.

Recal the following result obtained by Yu (Theorem 2, [32])

∑
n∈S(X,h,D

2s(n) = (3 + o(1))#S(X, h,D),

which implies that ∑
n∈S(X,h,D)

s(n)k = Ok(X).

The magnitude of the left hand side of (10) is

∑
n∈S(X,h,D)

s(n, φ̂)k +Ok

 max
0≤r≤k−1

 ∑
n∈S(X,h,D)

s(n, φ̂)rs(n)k−r


 ,

and for any r with 0 ≤ r ≤ k − 1, one obtains that

∑
n∈S(X,h,D)

s(n, φ̂)rs(n)k−r ≤

 ∑
n∈S(X,h,D)

s(n, φ̂)2r

1/2 ∑
n∈S(X,h,D)

s(n)2(k−r)

1/2

�k

 ∑
n∈S(X,h,D)

s(n, φ̂)2r

1/2

X1/2

�k

(
X(log logX)2r

)1/2
(X)1/2 ≤ X(log logX)k−1 .

Therefore

∑
n∈S(X,h,D)

t(n, φ̂i)
k = #S(X, h,D)

(
log logX

2

)k
+Ok

(
X (log logX)k−1

)
,

which completes the proof of Theorem 2.
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