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@ The object of Euler's method is to obtain approximations to the
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Obtaining Approximations

@ The object of Euler's method is to obtain approximations to the
well-posed initial-value problem

?t' f(t,y), a<t<b, y(@)=a

@ A continuous approximation to the solution y(t) will not be
obtained;

@ Instead, approximations to y will be generated at various values,
called mesh points, in the interval [a, b].

@ Once the approximate solution is obtained at the points, the
approximate solution at other points in the interval can be found
by interpolation.

o
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Set up an equally-distributed mesh

@ We first make the stipulation that the mesh points are equally
distributed throughout the interval [a, b].
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Euler's Method: Derivation (Cont'd

@ We first make the stipulation that the mesh points are equally
distributed throughout the interval [a, b].

@ This condition is ensured by choosing a positive integer N and
selecting the mesh points

tt=a+ih, foreachi=0,1,2,...,N.
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Euler's Method: Derivation (Cont'd

Set up an equally-distributed mesh

@ We first make the stipulation that the mesh points are equally
distributed throughout the interval [a, b].

@ This condition is ensured by choosing a positive integer N and
selecting the mesh points

tt=a+ih, foreachi=0,1,2,...,N.

@ The common distance between the points
h=(b—a)/N =t —tis called the step size.
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Derivation

Euler's Method: Derivation (Cont'd

Use Taylor’'s Theorem to derive Euler's Method

@ Suppose that y(t), the unique solution to

((jj)t/ f(t,y), a<t<b, y(a)=«

has two continuous derivatives on [a, b], so that for each
i=0,1,2,...,N—1,

Y(aa) = Y0+ (s - 0)y'(0) + e

for some number & in (tj,t.1).
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(i) =y (6) + (2 - 0y’ (6) + By J
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y(tiia) = y(U) + (e — )y (6) + ——5——y"(&)
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Euler's Method: Derivation (Cont'd

/ (ti+1_ i)2 "
y(tiia) = y(U) + (e — )y (6) + ——5——y"(&)

@ Because h =tj;; — tj, we have

2
y(ta) = Y(6) + hy'(t) + 5 y"(6)

and, because y(t) satisfies the differential equationy’ = f(t,y),

we write )

Y(tia) = Y(6) + (.Y (6) + 2" (&)
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h2
y(tive) =y () +hf(t,y(t)) + 7)’"(&) J

Euler's Method

Euler's method constructs w; =~ y(t;), foreachi =1,2,... N, by
deleting the remainder term. Thus Euler's method is

Wo = «
Wi = w;+hf(t,w;), foreachi=0,1,...,N—-1
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Euler's Method: Derivation (Cont'd

h2
y(tive) =y () +hf(t,y(t)) + 7)’"(&) J

Euler's Method

Euler's method constructs w; =~ y(t;), foreachi =1,2,... N, by
deleting the remainder term. Thus Euler's method is

Wo = «
Wi = w;+hf(t,w;), foreachi=0,1,...,N—-1

This equation is called the difference equation associated with Euler’s
method.
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Euler's Method: Illustration

Applying Euler's Method

Prior to introducing an algorithm for Euler's Method, we will illustrate
the steps in the technique to approximate the solution to

y=y-t?+1, 0<t<2, y(0)=05

att = 2. using a step size of h = 0.5.
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Derivation

Euler's Method: Illustration

Solution
For this problem f(t,y) =y —t2 + 1, so

wog = Yy(0)=05
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Solution

For this problem f(t,y) =y —t2 + 1, so
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For this problem f(t,y) =y —t2 + 1, so

wog = Yy(0)=05
Wi = Wp+05 (wo — (0.0)2 + 1) —0.5+05(1.5) =125

W, = wp+05 (w1 —(0.5)2 + 1) — 1.25 + 0.5(2.0) = 2.25
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Euler's Method: Illustration

For this problem f(t,y) =y —t2 + 1, so
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W, = wp+05 (w1 —(0.5)2 + 1) — 1.25 + 0.5(2.0) = 2.25
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Derivation

Euler's Method: Illustration

For this problem f(t,y) =y —t2 + 1, so

wog = Yy(0)=05
Wi = Wp+05 (wo — (0.0)2 + 1) —0.5+05(1.5) =125

W, = wp+05 (w1 —(0.5)2 + 1) — 1.25 + 0.5(2.0) = 2.25
Ws = Wp+05 (wz — (1.0)2 + 1) = 2.25 + 0.5(2.25) = 3.375

and

y(2) ~ Wy = w3 +0.5 (w3 (152 + 1) — 3.375+0.5(2.125) = 4.4375

o
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Algorithm

Euler's Method: Algorithm (1/2)

To approximate the solution of the initial-value problem
y'=f(ty), a<t<b, y(a)=«

at (N + 1) equally spaced numbers in the interval [a, b]:
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Algorithm

Euler's Method: Algorithm (2/2)

INPUT endpoints a, b; integer N; initial condition .
OUTPUT approximation w to y at the (N + 1) values of t.
Stepl Seth=(b—a)/N

t=a

W=«

OUTPUT (t,w)
Step 2 Fori=1,2,...,N do Steps 3 &4

Step 3 Setw =w + hf(t,w); (Compute w;)

t=a+ih. (Compute t;)

Step 4 OUTPUT (t,w)

Step 5 STOP
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Geometric Interpretation

Euler's Method: Geometric Interpretation

To interpret Euler's method geometrically, note that when w; is a close

approximation to y (t;), the assumption that the problem is well-posed
implies that

f(t,wi) =y'(t) =f(t,y(t))
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Geometric Interpretation

Euler's Method: Geometric Interpretation

To interpret Euler's method geometrically, note that when w; is a close

approximation to y (t;), the assumption that the problem is well-posed
implies that

fti, wi) = y'(t) =f(t,y(t))
The graph of the function highlighting y (t;) is shown below.

Y A

Yty =yb) + Y =f1y),
@) = «a
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Geometric Interpretation

Euler's Method: Geometric Interpretation
One step in Euler's method:

Y A

y' = f(ty),
ya) = «a

Slope y'(a) = f(a, @)
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Geometric Interpretation

Euler's Method: Geometric Interpretation

A series of steps in Euler's method:

YA
y' =1y,
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Example

Euler's Method: Numerical Example (1/4)

Application of Euler's Method

Use the algorithm for Euler's method with N = 10 to determine
approximations to the solution to the initial-value problem

y=y—t2+1, 0<t<2, y(0)=05
and compare these with the exact values given by

y(t) = (t +1)® — 0.5¢!
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Euler's Method: Numerical Example (1/4)

Application of Euler's Method

Use the algorithm for Euler's method with N = 10 to determine
approximations to the solution to the initial-value problem

y=y—t2+1, 0<t<2, y(0)=05
and compare these with the exact values given by

y(t) = (t +1)® — 0.5¢!

Euler's method constructs w; ~ y(t;), foreachi =1,2,... N:

Wop = «
w1 = w;+hf(t,w;), foreachi=0,1,... N—-1
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Euler's Method: Numerical Example (2/4)
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Example

Euler's Method: Numerical Example (2/4)

With N = 10, we have h = 0.2, t; = 0.2i, wg = 0.5, so that:

Wiy1 = Wi+h(Wi—ti2+1)
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Euler's Method: Numerical Example (2/4)

With N = 10, we have h = 0.2, t; = 0.2i, wg = 0.5, so that:

Wiy1 = W+ h(W, = tiz + 1)
= w; +0.2[w; — 0.04i% + 1]
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fori =0,1,...,9.
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Example

Euler's Method: Numerical Example (2/4)

With N = 10, we have h = 0.2, t; = 0.2i, wg = 0.5, so that:

Wiy1 = W+ h(W, = tiz + 1)
= w; +0.2[w; — 0.04i% + 1]
= 1.2w; — 0.008i% + 0.2
fori =0,1,...,9. So

w; = 1.2(0.5)—0.008(0)*>+0.2=0.8
w, = 1.2(0.8)—0.008(1)>+0.2 =1.152

and so on.

The following table shows the comparison between the approximate
values at t; and the actual values.
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Euler's Method: Numerical Example (3/4)

Resultsfory’ =y —t2 4+ 1,

0<t<2,

y(0) =05

{;

Wi

Yi =y(t)

lyi — wj|

0.0
0.2
0.4
0.6
0.8
1.0
1.2
14
1.6
1.8
2.0

0.5000000
0.8000000
1.1520000
1.5504000
1.9884800
2.4581760
2.9498112
3.4517734
3.9501281
4.4281538
4.8657845

0.5000000
0.8292986
1.2140877
1.6489406
2.1272295
2.6408591
3.1799415
3.7324000
4.2834838
4.8151763
5.3054720

0.0000000
0.0292986
0.0620877
0.0985406
0.1387495
0.1826831
0.2301303
0.2806266
0.3333557
0.3870225
0.4396874
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Euler's Method: Numerical Example (4/4)

@ Note that the error grows slightly as the value of t increases.
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Example

Euler's Method: Numerical Example (4/4)

@ Note that the error grows slightly as the value of t increases.

@ This controlled error growth is a consequence of the stability of
Euler's method, which implies that the error is expected to grow in
no worse than a linear manner.
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