Initial-Value Problems for ODEs

Euler's Method I: Introduction

Numerical Analysis (9th Edition) R L Burden & J D Faires

Beamer Presentation Slides prepared by John Carroll Dublin City University

© 2011 Brooks/Cole, Cengage Learning

Derivation of Euler's Method

- Derivation of Euler's Method
- **Numerical Algorithm**

Derivation

- Derivation of Euler's Method
- Numerical Algorithm
- Geometric Interpretation

Derivation

- Derivation of Euler's Method
- Numerical Algorithm
- Geometric Interpretation
- Mumerical Example

Example

- Derivation of Euler's Method
- Numerical Algorithm
- Geometric Interpretation
- Mumerical Example

Obtaining Approximations

Obtaining Approximations

 The object of Euler's method is to obtain approximations to the well-posed initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

Obtaining Approximations

 The object of Euler's method is to obtain approximations to the well-posed initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

 A continuous approximation to the solution y(t) will not be obtained;

Obtaining Approximations

 The object of Euler's method is to obtain approximations to the well-posed initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

- A continuous approximation to the solution y(t) will not be obtained:
- Instead, approximations to y will be generated at various values, called mesh points, in the interval [a, b].

Obtaining Approximations

 The object of Euler's method is to obtain approximations to the well-posed initial-value problem

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

- A continuous approximation to the solution y(t) will not be obtained;
- Instead, approximations to y will be generated at various values, called mesh points, in the interval [a, b].
- Once the approximate solution is obtained at the points, the approximate solution at other points in the interval can be found by interpolation.

Set up an equally-distributed mesh

 Derivation
 Algorithm
 Geometric Interpretation
 Example

Euler's Method: Derivation (Cont'd

Set up an equally-distributed mesh

 We first make the stipulation that the mesh points are equally distributed throughout the interval [a, b].

Set up an equally-distributed mesh

- We first make the stipulation that the mesh points are equally distributed throughout the interval [a, b].
- This condition is ensured by choosing a positive integer N and selecting the mesh points

$$t_i = a + ih$$
, for each $i = 0, 1, 2, ..., N$.

Set up an equally-distributed mesh

- We first make the stipulation that the mesh points are equally distributed throughout the interval [a, b].
- This condition is ensured by choosing a positive integer N and selecting the mesh points

$$t_i = a + ih$$
, for each $i = 0, 1, 2, ..., N$.

• The common distance between the points $h = (b - a)/N = t_{i+1} - t_i$ is called the step size.

Use Taylor's Theorem to derive Euler's Method

Use Taylor's Theorem to derive Euler's Method

• Suppose that y(t), the unique solution to

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

has two continuous derivatives on [a, b], so that for each i = 0, 1, 2, ..., N - 1,

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

for some number ξ_i in (t_i, t_{i+1}) .

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

$$y(t_{i+1}) = y(t_i) + (t_{i+1} - t_i)y'(t_i) + \frac{(t_{i+1} - t_i)^2}{2}y''(\xi_i)$$

• Because $h = t_{i+1} - t_i$, we have

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(\xi_i)$$

and, because y(t) satisfies the differential equation y' = f(t, y), we write

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

Euler's Method

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

Euler's Method

Euler's method constructs $w_i \approx y(t_i)$, for each i = 1, 2, ..., N, by deleting the remainder term. Thus Euler's method is

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hf(t_i, w_i)$, for each $i = 0, 1, ..., N-1$

$$y(t_{i+1}) = y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}y''(\xi_i)$$

Euler's Method

Euler's method constructs $w_i \approx y(t_i)$, for each i = 1, 2, ..., N, by deleting the remainder term. Thus Euler's method is

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hf(t_i, w_i)$, for each $i = 0, 1, ..., N-1$

This equation is called the difference equation associated with Euler's method.

Applying Euler's Method

Prior to introducing an algorithm for Euler's Method, we will illustrate the steps in the technique to approximate the solution to

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

at t = 2. using a step size of h = 0.5.

Solution

$$w_0 = y(0) = 0.5$$

Solution

$$w_0 = y(0) = 0.5$$

$$w_1 = w_0 + 0.5 (w_0 - (0.0)^2 + 1) = 0.5 + 0.5(1.5) = 1.25$$

Solution

$$w_0 = y(0) = 0.5$$

$$w_1 = w_0 + 0.5 (w_0 - (0.0)^2 + 1) = 0.5 + 0.5(1.5) = 1.25$$

$$w_2 = w_1 + 0.5 (w_1 - (0.5)^2 + 1) = 1.25 + 0.5(2.0) = 2.25$$

Solution

$$w_0 = y(0) = 0.5$$

$$w_1 = w_0 + 0.5 (w_0 - (0.0)^2 + 1) = 0.5 + 0.5(1.5) = 1.25$$

$$w_2 = w_1 + 0.5 (w_1 - (0.5)^2 + 1) = 1.25 + 0.5(2.0) = 2.25$$

$$w_3 = w_2 + 0.5 (w_2 - (1.0)^2 + 1) = 2.25 + 0.5(2.25) = 3.375$$

Solution

For this problem $f(t, y) = y - t^2 + 1$, so

$$w_0 = y(0) = 0.5$$

$$w_1 = w_0 + 0.5 (w_0 - (0.0)^2 + 1) = 0.5 + 0.5(1.5) = 1.25$$

$$w_2 = w_1 + 0.5 (w_1 - (0.5)^2 + 1) = 1.25 + 0.5(2.0) = 2.25$$

$$w_3 = w_2 + 0.5 (w_2 - (1.0)^2 + 1) = 2.25 + 0.5(2.25) = 3.375$$

and

$$y(2) \approx w_4 = w_3 + 0.5 (w_3 - (1.5)^2 + 1) = 3.375 + 0.5(2.125) = 4.4375$$

- Derivation of Euler's Method
- Numerical Algorithm
- Geometric Interpretation
- Mumerical Example

Euler's Method: Algorithm (1/2)

To approximate the solution of the initial-value problem

$$y' = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

at (N + 1) equally spaced numbers in the interval [a, b]:

Euler's Method: Algorithm (2/2)

```
INPUT
           endpoints a, b; integer N; initial condition \alpha.
           approximation w to y at the (N+1) values of t.
OUTPUT
Step 1
           Set h = (b - a)/N
              t=a
              \mathbf{W} = \alpha
              OUTPUT (t, w)
           For i = 1, 2, ..., N do Steps 3 & 4
Step 2
              Step 3 Set w = w + hf(t, w); (Compute w_i)
                t = a + ih. (Compute t_i)
              Step 4 OUTPUT (t, w)
Step 5
           STOP
```

13 / 23

- Geometric Interpretation

Euler's Method: Geometric Interpretation

To interpret Euler's method geometrically, note that when w_i is a close approximation to $y(t_i)$, the assumption that the problem is well-posed implies that

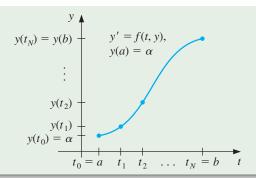
$$f(t_i, w_i) \approx y'(t_i) = f(t_i, y(t_i))$$

Euler's Method: Geometric Interpretation

To interpret Euler's method geometrically, note that when w_i is a close approximation to $y(t_i)$, the assumption that the problem is well-posed implies that

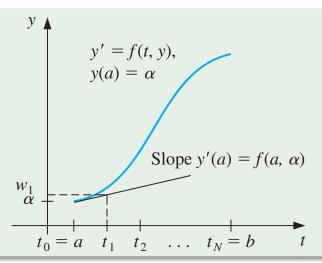
$$f(t_i, w_i) \approx y'(t_i) = f(t_i, y(t_i))$$

The graph of the function highlighting $y(t_i)$ is shown below.

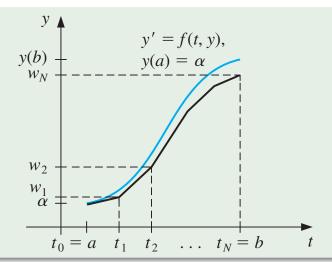


Euler's Method: Geometric Interpretation

One step in Euler's method:



A series of steps in Euler's method:



Outline

Derivation

- Derivation of Euler's Method
- Numerical Algorithm
- Geometric Interpretation
- Mumerical Example

Example

Application of Euler's Method

Use the algorithm for Euler's method with N=10 to determine approximations to the solution to the initial-value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

and compare these with the exact values given by

$$y(t) = (t+1)^2 - 0.5e^t$$

Application of Euler's Method

Use the algorithm for Euler's method with N=10 to determine approximations to the solution to the initial-value problem

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$

and compare these with the exact values given by

$$y(t) = (t+1)^2 - 0.5e^t$$

Euler's method constructs $w_i \approx y(t_i)$, for each i = 1, 2, ..., N:

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hf(t_i, w_i)$, for each $i = 0, 1, ..., N-1$

Solution

Solution

With N = 10, we have h = 0.2, $t_i = 0.2i$, $w_0 = 0.5$, so that:

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

Solution

With N = 10, we have h = 0.2, $t_i = 0.2i$, $w_0 = 0.5$, so that:

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

= $w_i + 0.2[w_i - 0.04i^2 + 1]$

Solution

With N = 10, we have h = 0.2, $t_i = 0.2i$, $w_0 = 0.5$, so that:

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

$$= w_i + 0.2[w_i - 0.04i^2 + 1]$$

$$= 1.2w_i - 0.008i^2 + 0.2$$

for i = 0, 1, ..., 9.

Solution

With N = 10, we have h = 0.2, $t_i = 0.2i$, $w_0 = 0.5$, so that:

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

$$= w_i + 0.2[w_i - 0.04i^2 + 1]$$

$$= 1.2w_i - 0.008i^2 + 0.2$$

for i = 0, 1, ..., 9. So

$$w_1 = 1.2(0.5) - 0.008(0)^2 + 0.2 = 0.8$$

Solution

With N = 10, we have h = 0.2, $t_i = 0.2i$, $w_0 = 0.5$, so that:

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

$$= w_i + 0.2[w_i - 0.04i^2 + 1]$$

$$= 1.2w_i - 0.008i^2 + 0.2$$

for i = 0, 1, ..., 9. So

$$w_1 = 1.2(0.5) - 0.008(0)^2 + 0.2 = 0.8$$

 $w_2 = 1.2(0.8) - 0.008(1)^2 + 0.2 = 1.152$

and so on.

Solution

With N = 10, we have h = 0.2, $t_i = 0.2i$, $w_0 = 0.5$, so that:

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

$$= w_i + 0.2[w_i - 0.04i^2 + 1]$$

$$= 1.2w_i - 0.008i^2 + 0.2$$

for i = 0, 1, ..., 9. So

$$w_1 = 1.2(0.5) - 0.008(0)^2 + 0.2 = 0.8$$

 $w_2 = 1.2(0.8) - 0.008(1)^2 + 0.2 = 1.152$

and so on.

The following table shows the comparison between the approximate values at t_i and the actual values.

Results for $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5

t_i	W_i	$y_i = y(t_i)$	$ y_i - w_i $
0.0	0.5000000	0.5000000	0.0000000
0.2	0.8000000	0.8292986	0.0292986
0.4	1.1520000	1.2140877	0.0620877
0.6	1.5504000	1.6489406	0.0985406
8.0	1.9884800	2.1272295	0.1387495
1.0	2.4581760	2.6408591	0.1826831
1.2	2.9498112	3.1799415	0.2301303
1.4	3.4517734	3.7324000	0.2806266
1.6	3.9501281	4.2834838	0.3333557
1.8	4.4281538	4.8151763	0.3870225
2.0	4.8657845	5.3054720	0.4396874

```
Comments
```


Example

Derivation Algorithm Geometric Interpretation Example

Euler's Method: Numerical Example (4/4)

Comments

Note that the error grows slightly as the value of t increases.

Derivation Algorithm Geometric Interpretation Example

Euler's Method: Numerical Example (4/4)

Comments

- Note that the error grows slightly as the value of *t* increases.
- This controlled error growth is a consequence of the stability of Euler's method, which implies that the error is expected to grow in no worse than a linear manner.

Questions?