<x <1, 0<t <oo
fulx, hover 0 <x =<1
-easing) function of .

int X(1), so that (1) =
X(f) is differentiable.)
1e solution looks like (u
sriate software available,

x <1, 0<t<oo}with

D<x<1.
and0<x< L
Ix is a strictly decreasing

naximum principle is not
-iable coefficient.

Find the location of its
r<2,0<r= 1}
1aximum principle break

n equation: If u and v are
andforx=1/thenu < v

= g fgg,anduﬁv
for0<x<[0<t<00
< oo, and if v(0,1) =0,
{a) to show that v(x, 1) =

he Robin boundary condi-
w(l, ) =0.Iay >0 and
1e endpoints contribute to

reted to mean that part of
i the boundary conditions

NE

D <t<o00) | (1)
@
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As with the wave equation, the problem on the infinite line has a certain
“purity”, which makes it easier to solve than the finite-interval problem. (The
effects of boundaries will be discussed in the next several chapters.) Also as
with the wave equation, we will end up with an explicit formula, But it will
be derived by a method very different from the methods used before. (The
characteristics for the diffusion equation are just the lines ¢ = constant and
play no major role in the analysis.) Because the solution of (1) is not easy to_

derive, we first set the stage by making some general comments. !

Our method is to solve it for a particular ¢(x) and then'build the general
solution from this particular one. We'll use five basic invariance properties
of the diffusion equation (1).

(a) The translate u{x — y, 1) of any solution u(x, ¢) is another solution,
for any fixed y.

(b)Y Any derivative (i, Or #, OF Uy, etc.) of a solution is again a solution.

(€} A linear combination of solutions of (1) is again a solution of (1}.
(This is just linearity.)

{d) Aninregral of solutions is again a solution. Thus if S(x, ) is a solution
of (1), then so is S{x — y, r} and so is

v(x, 1) =[ Sx —y,)g(y)dy

for any function g(y), as long as this improper integral converges
appropriately. (We’ll worry about convergence later.) In fact, (d) is
Jjust a limiting form of {c).

{e) If w(x,r) is a solution of (1), so is the dilated function
u(/ax,at), for any @ > 0. Prove this by the chain rule:
Let v(x, ) = u{/ax, at). Then v, = [3(ar)/8tJu; = au,; and v, =
[a(ﬁx)/ax}ux = ‘\/aux and vy = \/E \/Euxx = A Uy

Our goal is to find a particular solution of (1) and then to construct all the
other solutions using property (d). The particular solution we will look for is
the one, denoted Q(x, £); which satisfies the special initial condition

Gx,0)=1 forx>0 Qx,0) =0 forx <0 )]

The reason for this choice is that this initial condition does not change under
dilation. We’ll find  in three steps.

Step 1  'We'll look for Q(x, ) of the special form

QOfx,t) = g(p) where p = \/% 4)

A

g b

<L

< thoott
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418 CHAPTER 2 WAVES AND DIFFUSIONS

and g is a function of only one variable (to be determined). (The /4% factor
is included only to simplify a later formula.)

Why doswe expect. 0 1o have this special form? Because property (e) says
that equation (1) doesn’t “see” the dilation x — /ax, 1 — at. Clearly, (3)
doesn’t change at all under the dilation. So Q(x, 1), which is defined by condi-
tions (1) and (3), ought not see the dilation either. How could that happen? In
only one way: if O depends on x and # solely through the combination x /+/7.

For the dilation takes x/+/7 into /ax /+/at = x //t. Thus let p = x //4%t
and look for Q which satisfies (1) and (3) and has the form (4).

Step 2 Using (4), we convert {1) into an ODE for g by use of the chain rule:

__dgadp 1 x
dg op /
_‘deapu_ r ,
o= =t W

1 1, 1,
0=Q:Wkam; *5[33(!?)—28 (p)|.

g +2pg’ =0.

This ODE is easily solved using the integrating factor exp [2p dp = exp(p?).
We get g'(p) = ¢ exp(—p?) and

‘ Q(x, 1) = g(p) = ¢ e“’zdp -+ €7,

Step 3 We find a completely explicit formula for Q. We've Jjust shown that

X [/ &kt y
{ Qx, 1) =c¢y e 7dp + co.
0

This formula is valid only for ¢+ > 0. Now use (3), expressed as a limit as
follows.

+00

Hx>0, 1=imQ = e”Pzdp+c2=C]m‘/_7?+C2_
™0 0 2

pate

Hx <0, O=limQ=c | e Pdpte=-—c; %"+
™0 i 2
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rexp [2p dp = exp(p®).

+ 3.

). We've just shown that
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See Exercise 6. Here 1{13 means limit from the right, This determines the
¥

coefficients ¢; = 1//% and ¢; = 1. Therefore, ( is the function

11 R
0.0 =5+ fo P dp )

for t > 0. Notice that it does indeed satisfy (1), (3), and (4).

Step 4 Having found Q, we now define § = 8Q/8x. (The explicit formula
for § will be written below.) By property (b), § is also a solution of (1). Given

any function ¢, we also define ) ;:/Vn “'cf“ L g y/M vok

w(x, 1) = f SGr — y, 06 dy fort > 0. 6

By property (d), u is another solution of (1). We claim that u is the unique
solution of (1), (2). To verify the validity of (2), we write

®© 3
u(x, t) mf };%(x =y, Do dy

— 00

Rl
. f 3y 1Q6 =y, 0180 dy

[0

¥=+00

— f 0 — 3, DF ) dy — O — y, D)

y=—00

upon integrating by parts. We assume these limits vanish. In particular, let’s
temporarily assume that ¢(y) itself equals zero for |y| large. Therefore,

u(x, 0) = f 00x — y,0¢'() dy

X

= ¢(x)

—o0

=/ w $)dy = o

because of the initial condition for Q and the assumption that ¢(—o0) = 0.
This is the initial condition (2). We conclude that (6) is our solution formula,
where

g 1
s— "5% = == fort > 0. 9
That is,
1 = ==y ke
uix, t) = Tt e T e (y) dy. (8)
—c
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