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In this book we are primarily concerned with the practical utilization of itera
tive methods for solving large, sparse systems of linear algebraic equations. Such·
systems often arise in the numerical solution of partial differential equations by
finite difference methods or by finite element methods. For such problems, the
number of unknowns may vary from a few hundred to a few million.

Systems of linear algebraic equations can be solved either by direct methods or
by iterative methods. For systems of moderate size, the use of direct methods is
often advantageous. Iterative methods are used primarily for solving large and
complex problems for which, because of storage and arithmetic requirements, it
would not be feasible or it would be less efficient to solve by a direct method.
For example, iterative methods are usually used to solve problems involving
three spatial variables, problems involving nonlinear systems of equations,"prob
lems resulting from the discretization of coupled partial differential equations,
and time-dependent problems involving more than one spatial variable.

The formulation and use of iterative methods require specialized knowledge
and experience. Three of the main stumbling blocks to the efficient use of itera
tive methods are the following:

(a) uncertainty as to which iterative method should be used and how to im
plement a given method;

(b) uncertainty about how to select iteration parameters which are required



by certain methods (e.g., the relaxation factor w for the successive overrelax
ation method); and

(c) uncertainty about when the iterative process should be terminated.

x PREFACE 1
Because of the diversity of problems to be solved and because of the large num
ber of iterative procedures available, the complete removal of these uncertainties
is not possible.

The choice of an effective iterative solution method for a particular problem
depends heavily on the details peculiar to the problem and on the particular
architecture of the computer to be used. Thus, no general rules governing the
selection of the best solution method can be given. However, knowledge of the
relative merits of several general iterative procedures can greatly simplify this
task. Our approach to the problem of choice of method is to present the underly
ing computational and theoretical principles of certain general methods which
then can be used as realistic bases upon which to select an effective iterative
solution method.

For each general method that we consider, our aim is to present computational
procedures for automatically determining good estimates of any iteration param
eters required and for automatically deciding when to stop the iterative process.
The computational procedures are presented in algorithmic form, using an infor
mal programming language. In almost every case, the description provided is
sufficiently complete and self-contained so that the reader could write a code
based on the algorithm alone. However, it is strongly recommended that the user
study the relevant part of the text before attempting to use any algorithm. List
ings of FORTRAN language subroutines that implement some of the algorithms
are given in the appendixes. These subroutines are designed for use as software
packages to provide required acceleration parameters and to measure the iteration
error vectors for certain iterative procedures.

Another aim of this book is to relate our experience in the use of iterative
methods in the solution of multidimensional boundary-value problems. Discus
sions are presented of various problem aspects, such as mesh structure, discreti
zation stencil, and matrix partitioning, which affect the cost-effectiveness of iter
ative solution procedures. Also discussed is the use of iterative methods to obtain
numerical solutions to three particular boundary-value problems. These case
studies are given to illustrate the versatility of iterative methods and to examine
some problem aspects which must be considered in their use. The important
concept of inner-outer or multistage iterations is embodied in each of the three
problems studied.

We focus our attention on polynomial acceleration procedures applied to cer
tain basic iterative methods and on the successive overrelaxation (SOR) method.
The polynomial acceleration procedures considered are Chebyshev acceleration
and conjugate gradient acceleration. It is assumed that the basic methods are
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"symmetrizable" in the sense defined in Chapter 2. The basic iterative methods
considered for illustrative purposes are the RF (Richardson's) method, the Ja
cobi method, and the symmetric SOR (SSOR) method.

The organization of the material is presented as follows: The first two chapters
are introductory in nature. Chapter 1 consists of background material on linear
algcbra and related topics. Chapter 2 contains descriptions of basic iterative
methods which are used for illustrative purposes. Chapter 3 provides a general
description of polynomial acceleration of basic iterative methods. Chapters 4-7
are devoted to the development of computational algorithms based on Chebyshev
and conjugate gradient acceleration methods. In Chapter 8 we describe special
Chebyshev and conjugate gradient acceleration procedures which are applicable
when it is feasible to partition the linear system into a "red/black" block form.
Chapter 9 contains a description of adaptive computational algorithms for the
successive overrelaxation (SOR) method. Computational aspects in the utiliza
tion of iterative algorithms for solving multidimensional problems are discussed
in Chapters 1() and 11. The iterative procedures discussed in Chapters 3-10 are
applicable primarily to symmetric and positive definite matrix problems. A brief
discussion of solution methods for nonsymmetric problems is given in Chapter
12. Numerical examples are given at the end of most chapters.

A reader who is interested in one particular method may choose to study only
those parts of the text which are relevant. For Chebyshev acceleration, Chapters
2-6 and a part of Chapter 8 should be read. For conjugate gradient acceleration,
the reader should refer to Chapters 2, 3, 7, and a part of Chapter 8. The reader
interested primarily in the SOR method should study Chapters 2 and 9. Compu
tational and other aspects of these procedures are discussed in Sections 5.6, 6.7,
8.5, 8.6, and 9.9 and in Chapters 10 and 11.

Many of the iterative procedures and algorithms described in this book have
been used successfully in production-type computer programs involving a large
number of unknowns, often exceeding 105• In addition, programs based on some
of the algorithms have been developed and are included in the iteration solution
package ITPACK (Grimes, Kincaid, MacGregor, and Young [1978]), a re
search-oriented software package for solving large sparse linear systems itera
tively. A principal application of the ITPACK programs is found in connection
with the ELLPACK system (Rice [1977]). ELLPACK is a modular system
which is designed to serve as a research tool for the development and evaluation
of software for the solution of elliptic partial differential equations.

In order to make the book useful to as many readers as possible, a minimal
amount of mathematical background has been assumed. The main text presup
poses that the reader has some knowledge of computer programmingand linear
algebra, and some experience with the use of iterative methods. Some of this
background material is reviewed and collected in Chapters 1 and 2.

References are given by author and year, e.g., Axelsson [1972]. The list of
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references is by no means complete. For the most part, we have included only
those references that we feel will provide the reader with supplementary informa
tion on particular topics.

A decimal notation is used for numbering sections and chapters. For example,
the third section of Chapter 2 is referred to as Section 2.3. The eleventh num
bered equation in Section 2.3 is (2-3.11). A similar system is used for theorems,
tables, figures, etc. For the convenience of the reader, a list of frequently used
symbols is given separately.
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1. MATRICES

Meaning

Set of all N x N matrices
Matrix of order N with elements (aiJ)

Submatrix of the partitioned matrix A
Transpose of A
Identity matrix
Determinant of A
Inverse of A
Symmetric and positive definite matrix
Square root of the SPD matrix A
Smallest (algebraically) real eigenvalue of A
Largest (algebraically) real eigenvalue of A
Spectral radius of A

Norms of the matrix A

Spectral condition number of the matrix A
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Symbol

EN
V '" (Vi)
V T

VA

(lV, V)

(V. Av)
(V, V)

{v(i)} i~l

{V(i)}
r(nJ

8(n)

A(n)
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Symbol

Au = b

u
G

n
ern)

Rn(G)
R",(G)

W
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Q
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Meaning

Set of all N x I column vectors
A vector whose ith component is Vi

Transpose of V

Conjugate transpose of V

Inner product of lV with V

Rayleigh quotient

Set of L vectors
Sequence (possibly infinite) of vectors
Residual vector
Pseudoresidual vector
Difference vector

Norms of the vector v

3. BASIC ITERATIVE METHODS

Meaning

Matrix equation representing system of N equations in
N unknowns

Exact solution to Au = b
Iteration matrix of the general basic iterative method

u (n+ll = Gu(n) + k
Iteration step number
Error vector ern) = u(n)-u

Average rate of convergence
Asymptotic rate of convergence
Symmetrization matrix for the basic method
Set of N eigenvalues of G

. Eigenvector of G associated with the eigenvalue of !Li
Extrapolation factor
Iteration matrix associated with extrapolated method
Splitting matrix
Iteration matrices corresponding, respectively, to the

Jacobi, SOR, and symmetric SOR methods
Relaxation factor
Optimum relaxation factor

First Used in Section

1.2
1.2
1.2
1.2
1.2

1.3

I.2
1.4
3.3
5.2

8.3, 9.4

1.4, 5.4

First Used in Section

2.1
2.2

2.1
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4. POLYNOMIAL ACCELERAnON

Symbol Meaning First Used in Section

Qn(G) General matrix polynomial of degree n 1.3

11'12"" \ Parameters used in three-term form of polynomial

PI'P.,··· acceleration 3.2
S(Qn(G)) Virtual spectral radius of Qn( G) 3.2
Rn(Qn(G)) Virtual average rate of convergence 3.2
R~(Qn(G)) Virtual asymptotic rate of convergence 3.2
Tn(x) Chebyshev polynomial of degree n 4.2
Pn(x) Normalized Chebyshev polynomial 4.2
mE Estimate for meG) 4.3
ME Estimate for M( G) 4.3
Pn.E(x) Normalized Chebyshev polynomial based on the

estimates mE' ME 4.3

5. MISCELLANEOUS

Symbol Meaning

N

~

•
Number of equations in the system Au = b
Iterative stopping criterion number
End of proof
Identity mark used to define a symbol or a function
Used to denote approximate equality, i.e., x ~ y if Ix - y I / Ix I is small
Used to denote approximate inequality, i.e., x ~ y if Ix - y I / Ix I is

either negative or small
Used to denote asymptotic behavior, i.e., X(I) ~y(l) as I -'> a if

lim t ~ a {[y(l) - x(I)]/x(l)} = 0
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CHAPTER

1
Background'on Linear Algebra

and Related Topics

1.1 INTRODUCTION

In this chapter we give some background material from linear algebra
which will be helpful for our discussion of iterative methods. In Sections
1.2-1.5, we present a brief summary of basic matrix properties and principles
which will be used in subsequentchapters. No proofs are given. His assumed
that the reader is already familiar with the general theory of matrices such as
presented, for instance, in Noble and Daniel [1977] or in Faddeev and
Faddeeva [1963, Chap. 1]. In Sections 1.6 and 1.7, we discuss the matrix
problem which is obtained from a simple discretization of the generalized
Dirichlet problem. The purpose of this example is to illustrate some of
the matrix concepts presented in this chapter and to illustrate the
formulations of matrix problems arising from the discretization of boundary
value problems.
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2 BACKGROUND ON LINEAR ALGEBRA

1.2 VECTORS AND MATRICES

We let EN denote the set of all N x 1 column matrices, or vectors, whose
components may be real or complex. A typical element v of EN is given by

(1-2.1)

To indicate that Vi' i = 1, 2, ... , N, are the components of v, we write V =
(v;). A collection of vectors v(1), v(2), ... , v(s) is said to be linearly dependent
if there exist real or complex numbers C1, C2, ••• , c., not all zero, such that

c1v(1) + c2v(2) + ... + csv(s) = O.

If this equality holds only when all the constants c1, .;., Cs are zero, then the
vectors v(1), ... , v(s) are said to be linearly independent. A basis for EN is a set
of N linearly independent vectors of EN. Given such a basis, say, v(1),
v(2), ... , v(N), then any vector w in EN can be expressed uniquely as a linear
combination of basis vectors; i.e., there exists a unique set of numbers
c1, C2, ••• , CN such that

Similarly, EN,N denotes the set of all N x N square matrices whose ele
ments may be real or complex. A typical element of EN,N is given by

The transpose of the vector v is denoted by vT and the conjugate transpose
by VH. Given two vectors wand v of EN, the inner product (w, v) of the vector w
with v is defined by .

(1-2.2)

(1-2.3)

N

W = LCiV(i).
i=l

a1,l a1,2 a1,N

A= a2,l a2,2 a2,N (1-2.4)

aN,l aN,2 aN.N

or, equivalently, in abbreviated form by A = (ai,) forl :;;; i,j :;;; N. We denote
the transpose of the matrix A by A T and the conjugate transpose of A by AH. If
the elements of A are real, then AH = AT. Normally, we shall deal only with
real matrices. The matrix A is symmetric if A = AT.
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The special N x N matrix A = (ai), where ai,i = I and ai,j = 0 if i -:f. j,
is called the identity matrix and is denoted by I. A matrix A in EN

•
N is non

singular if there exists a matrix H such that AH = HA = I. If such an H
exists, it is unique. The matrix H is called the inverse of A and is denoted by
A-i.

A real matrix A in EN
•
N is symmetric and positive definite (SPD) if A is

symmetric and if (v, Av) > 0 for any nonzero vector v. If A is SPD, then A is
nonsingular. The matrix LLT is SPD for any real nonsingular matrix L.
Also, if A is SPD, there exists a unique SPD matrix J such that J2 = A. The
matrix J is called the square root of the SPD matrix A and is denoted by A i/2.

1.3 EIGENVALUES AND EIGENVECTORS

An eigenvalue of the N x N matrix A is a real or complex number Awhich,
for some nonzero vector y, satisfies the matrix equation

(A - AI)y = O. (1-3.1)

Any nonzero vector y which satisfies (1-3.1) is called an eigenvector of the
matrix A corresponding to the eigenvalue A.

In order for (1-3.1) to have a nontrivial solution vector y, the determinant
of A - AI (denoted by det(A - AI) must be zero. Hence, any eigenvalue A
must satisfy

det(A - AI) = O. (1-3.2)

Equation (1-3.2), which is called the characteristic equation of A, is a poly
nomial of degree N in A. The eigenvalues of A are the N zeros of the poly
nomial (1-3.2).

A matrix A in EN
•
N has precisely N eigenvalues, {Ai}f= i, some of which may

be complex. The existence of at least one eigenvector corresponding to each
eigenvalue Ai is assured since (1-3.1) with A = Ai has a nontrivial solution.
Eigenvectors corresponding to unequal eigenvalues are linearly independent.
Thus, when all the eigenvalues of A are distinct, the set of eigenvectors for A
includes a basis for the vector space EN. However, this is not always the case
when some eigenvalues ofA are repeated. In this book, we shall be concerned,
for the most part, with those matrices whose eigenvalues are real and whose
set of eigenvectors includes a basis for EN. Such eigenproperties are satisfied,
for example, by the eigenvalues and eigenvectors of symmetric matrices.

Before discussing symmetric matrices and related matrices, we introduce
some notations that will be used repeatedly in this and subsequent chapters.
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The spectral raditlsS(A) of the N x N matrix A is defined as the maximum
of the moduli of the eigenvalues of A; i.e., if {Ai}f= I is the set of eigenvalues of
A, then

SeA) = max lAd.
I siSN

(1-3.3)

If the eigenvalues of A are real, we let meA) and M(A) denote, respectively,
the algebraically smallest and largest eigenvalues of A, i.e.,

meA) = min Ai>
I sisN

M(A) = max Ai'
I SiSN

(1-3.4)

Eigenproperties of Symmetric and Related Matrices

Important eigenproperties of real symmetric matrices are summarized in
the following theorem.

Theorem 1-3.1. lfthe N x N matrix A is real and symmetric, then
(l) the eigenvalues Ai> i = 1, ... , N, of A are real, and
(2) there exists N real eigenvectors {y(i)}f= I for A such that

(a) Ay(i) = Ai}'Ci), i = 1, ... , N,
(b) {y(i)}f= I is a basis for EN, and
(c) (y(i), y(j)) = 0 if i =F j and (y(i), y(j)) = 1 if i = j.

When A is SPD, in addition to the eigenproperties given in Theorem 1-3.1,
the eigenvalues of A are also positive. Since the matrix A is nonsingular if and
only if no eigenvalue of A equals zero, it follows that a SPD matrix is also
nonsingular.

Two matrices A and B are similar if B = W AW- l for some nonsingular
matrix W. Similar matrices have identical eigenvalues.

Except for (2c), the conclusions of Theorem 1-3.1 also are valid for any real
matrix A which is similar to a real symmetric matrix C.

For any real matrix A in EN,N and for any nonzero vector v in EN (real or
complex), the Rayleigh quotient of v with respect to A is defined as the quotient
of inner products (v, Av)/(v, v). IfA is symmetric, then for any nonzero vector
v in EN

meA) ~ (v, Av)/(v, v) ~ M(A). (1-3.5)

Here meA) and M(A) are defined by (1-3.4). Moreover, there exist nonzero
vectors wand z such that

and

(w, Aw)/(w, w) = meA),

Aw = m(A)w,

(z, Az)/(z, z) = M(A)

Az = M(A)z.

(1-3.6)

(1-3.7)
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Eigenproperties of Real Nonsymmetric Matrices

The material in this subsection is used primarily in Chapter 9. Since the
discussion is somewhat involved, many readers may wish to skip it on a first
reading.

A real nonsymmetric matrix A may have complex eigenvalues. Since the
coefficients of the characteristic polynomial (1-3.2) are real for this case, any
complex eigenvalues of A must occur in complex conjugate pairs; i.e., if Ai is a
complex eigenvalue of the real matrix A, then Ak = At is also an eigenvalue of
A. Here, At denotes the complex conjugate of Ai' Moreover, if y(i) is an eigen
vector corresponding to A;, then y(k) = y*(i) is an eigenvector of A corre
sponding to Ak = At.

For an N x N nonsymmetric matrix A, it is not always possible to find a
basis for EN from the set ofeigenvectors of A. However, it is always possible to
form a basis from the independent eigenvectors of A supplemented by other
vectors (called principal vectors) which are associated with the eigenvalues
and eigenvectors ofA. Such a basis can best be described in terms ofthe Jordan
canonical form associated with A. The following is a restatement of the results
given in Noble and Daniel [1977].

A square matrix of order ~ I that has the form

A 1 0 0
0 A I 0

J= (1-3.8)

1
0 0 A

is called a Jordan block. Note that the elements of J are zero except for those
on the principal diagonal, which are all eq,ual to A, and those on the first
superdiagonal, which are all equal to unityVAny matrix A can be reduced to a
direct sum of Jordan blocks by a similarity transformation. More precisely,
we have

Theorem 1-3.2. For any N x N matrix A, there exists a nonsingular
matrix Y such that

J 1 0 0

y- 1AY = 0 J 2 0
=/,

0 0 J k

(1-3.9)

where each J;, 1 sis k, is a Jordan block whose constant diagonal element
is an eigenvalue of A. The number of linearly independent eigenvectors of A
is equal to the number k of Jordan blocks in (1-3.9).
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The matrix J in (1-3.9) is called the Jordan canonicalform ofA and is unique
up to a permutation of the diagonal submatrices. Let the column vectors of V
be denoted by {v(i)}f= l; i.e., V = [v(l), v(2), ... , v(N)]. Since Vis nonsingular,
the set of vectors {b(i)}f= 1 is a basis for EN. For use in later chapters, we now
examine the behavior of the matrix-vector products A'v(i), i = 1, ... ,N.

From the relation AV = VJ and the form of J, it follows that the vectors
v(i) separate, for each Jordan block J, into equations of the form

Av(i) = AiV(i) + viv(i - 1), (1-3.10)

where Ai is an eigenvalue of A and Vi is either 0 or 1, depending on J.1f Vi = 0,
then v(i) is an eigenvector of A. When v(i) is an eigenvector ofA, we have by
(1-3.10) that

(1-3.11)

[
A2 1J

J 2 = ° A
2

'

(1-3.12)

and

If each Jordan block of J is 1 x 1, then Vi = 0 for all i.t For this case, each
column of Vis an eigenvector of A and satisfies (1-3.11).

The relationship (1-3.11), however, is not valid for all v(i) when some of the
Jordan blocks are of order greater than unity. To illustrate this case, consider
the example

V-lAY = [J l OJ° J 2 '

From (1-3.10), the column vectors of V here separate into equations of the
form

(1-3.13)

Av(l) = Al v(l),
Av(2) = A2 v(2),

Av(3) = A2 v(3) + v(2).

The vectors v(l) and v(2) are eigenvectors of A. The other vector v(3) is
known as a principal vector (or generalized eigenvector) ofgrade 2, correspond
ing to the eigenvalue A2 • From (1-3.13), the eigenvectors v(l) and v(2) satisfy

A'v(l) = (A lYv(l) and· A'v(2) = (A2YV(2), (1-3.14)

while the principal vector of grade 2 satisfies

A'v(3) = A' -
l(A2 v(3) + v(2» = (A2YV(3) + I(A2y- l v(2). (1-3.15)

Note that if A2 is less than unity in absolute value, then both the sequences
{A'v(2)};';! and {A'v(3)};';l converge to the null vector. However, the se
quence involving the principal vector of grade 2 converges at a slower rate.

t This is the case, for example, if A is symmetric or if all eigenvalues of A are distinct.
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Indeed, from (1-3.14) and (1-3.15), {A'V(2)}~ 1 converges to the null vector at a
rate governed by 1A2 1' , while {A'V(3)}~ 1 converges at the slower rate governed
by 11 A21' - 1.

In general, the f column vectors of V associated with a Jordan block of
order f consist of one eigenvector and (f - 1) principal vectors of grade 2
through f. However, we shall not discuss the more general case since for
reasons ofsimplicity we consider in later chapters only Jordan blocks oforder
2 or less. We remark that eigenvectors are often defined as principal vectors of
grade 1. A matrix whose set of eigenvectors does not include a basis is said to
have an eigenvector deficiency.

Matrix Polynomials

If A is an N x N matrix, an expression of the form

(1-3.16)

where (Xl> ••• , (Xn are complex numbers, is called a matrix polynomial. A matrix
polynomial Qn(A) can be obtained by substitution of the matrix A for the
variable x in the associated algebraic polynomial

Qix) == (Xo + (X1X + (X2X2 + ... + (X"x
n

• (1-3.17)

/The eigenvalues of the matrix polynomial Qn(A) can be obtained by substitu
tion of the eigenvalues of A for the variable x in Qn(x). That is, if {Ai}f= 1 is the
set of eigenvalues for the matrix A in EN

•
N

, the~ {Qn(A i ) }f= 1 is the set of eigen
values for the N x N matrix Qn(A).

1.4 VECTOR AND MATRIX' NORMS

We shall consider several different vector and matrix norms. The vector
norms that we consider are the following:

Ilvlla:> == max Ivd,
i=1,2 •... ,N

IlvilL == IILvI12'

(1-4.1)

(1-4.2)

(1-4.3)
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Here L is any nonsingular matrix. We also consider the corresponding
matrix norms

IIAI12 == JS(AAH
),

IIAlloo == ._ max {.t la i )},
1-1,2, ... ,N )-1

IIAIIL == IILAL -1112·

For IX = 2, 00, and L, itcan be shown that

IIAvll a ~ IIAIIallviia

and

IIAlla = sup(IIAvIIJllvll a)·
vT'O

An important property of matrix norms is that

SeA) ~ IIAll p j

for 13 = 2, 00, and L. If A is symmetric, then

IIAI12 = SeA),

while if LAL - 1 is symmetric, then

IIAIIL = SeA).

(1-4.4)

(1-4.5)

(1-4.6)

(1-4.7)

(1-4.8)

(1-4.9)

(1-4.10)

(1-4.11)

The sequence of vectors vIOl, v(l), ... converges to the vector v if and only if

lim llv(n) - vila = 0
n-+oo

(1-4.12)

for any vector norm IX. Similarly, the sequence of matrices A(O), A(l), .•.

converges to A if and only if

lim IIA(n) - All p = 0

for any matrix norm 13. It can be shown that

lim An = 0
n-+oo

and

n-+ 00

for all vectors v if and only if

SeA) < 1.

(1-4.13)

(1-4.14)

(1-4.15)

(1-4.16)
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For any nonsingular matrices A and L, we define the L-condition number
KL(A) of the matrix A by

(1-4.17)

The spectral condition number K(A) is obtained for the special case L = I, i.e.,

(1-4.18)

If A is SPD, then by (1-4.10), the spectral condition number of A is given by

K(A) = M(A)/m(A).

1.5 PARTITIONED MATRICES

(1-4.19)

In writing the matrix equation Au = b, an ordering of the unknowns (and
equations) is implied. For the iterative methods that we consider, this implied
ordering usually determines the sequence in which the unknowns are
improved in the iterative process. For block iterative methods, blocks or
groups of unknowns are improved simultaneously. The blocks of unknowns
to b-: improved simultaneously are determined by an imposed partitioning of
the coefficient matrix A. Such a partitioning is defined by the integers
n10 nz, ... , nq, where ni 2 1 for all i and where

n1 + nz + ... + nq = N. (1-5.1)

Given the set {ni}[= 10 which satisfies (1-5.1), the q x q partitioned form of the
N x N matrix A is then given by

A 1,1 A 1 Z A 1,q,

A=
AZ,1 Azz Az,q

(1-5.2),

'.

Aq,1 Aq,z Aq.q

where Ai,j is an ni x nj submatrix.
Ifq = N, i.e., if ni = 1 for all i, then we say (1-5.2) is a point partitioning of A.
When q = 2, we obtain the special case

A = [A 1,1 Al,z] (1-5.3)
A Z,1 Az,z'

which is called a red/black partitioning. A 2 x 2 partitioning of the coefficient
matrix A is required for some of the iterative methods discussed later in
Chapters 8 and 9. Examples of red/black partitionings are given in Sections
1.7 and 9.2, and in Chapters 10 and 11.
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IfAi,j = 0 whenever i i= j, then A is called a block diagonal matrix; i,e., A has
the form
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(1-5.4)o
o

A=

Aq,q

where the Ai,i submatrices are square. In abbreviated form (1-5.4) is written
asA = diag(Al,l,"" A qq).

We always assume that the unknown vector u and the known vector b in the
matrix equation Au = b are partitioned in a form consistent with A. Thus if A
is given by (1-5.2), then u is assumed to be partitioned as

VI
Vz (1-5.5)u= ,

Vq

where Vi is an ni x 1 matrix (column vector). Conversely, a partitioning for
A is implied by a given partitioning (1-5.5) for u. Thus a partitioning for the
matrix problem Au = bcan be given by specifying a partitioning either for A
or for u.

As we shall see in Chapter 2, in order to carry out one iteration of a given
block iterative process corresponding to the partitioning (1-5.2), it will be
necessary to solve subsystems ofthe form Ai,i Vi = Y;, where Yi is some known
vector. In general, the larger the sizes of the diagonal blocks Ai,;' the more
difficult it will be to solve these subsystems. On the other hand, the larger the
blocks, the faster the convergence of a given method. (This is usually, though
not always, true.) Any convergence improvement obtained through the use of
larger blocks needs to be balanced against the additional work per iteration.
In this book, we shall be concerned primarily with those partitionings that
result in diagonal submatrices Au whose sizes are considerably larger than
unity and whose sparseness structures are such that the subsystems Ai,; Vi = Yi
are considerably easier to solve than the complete system Au = b. In sub
sequent chapters, submatrices Ai,i that satisfy these conditions will be called
"easily invertible." Examples ofsuch partitionings for some practical problems
are given in Chapters 10 and 11.

1.6 THE GENERALIZED DIRICHLET PROBLEM

In this and the next section, we discuss the matrix problem that is obtained
from a discretization of the generalized Dirichlet problem. The purpose of this
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(1-6.1)

simple example is to illustrate some of the matrix concepts presented in this
chapter and to familiarize the reader with the formulation ofmatrix equations
arising from the discretization of boundary value problems. The examples
given of redjblack partitionings are referred to in later chapters and will be
more meaningful then. Thus on the first reading ofthis chapter, these examples
may be skimmed.

Consider the problem of numerically solving the generalized Dirichlet
problem

~ (B' 00/1) +~ (c 00/1) + FO/I = Gox ox oy oy ,
in a square region R with boundary S. We assume that Band C are positive
functions that are twice continuously differentiable with respect to x and y in
R. Moreover, it is assumed that F ~ 0 and that F and G are continuous in R.
Given a function g(x, y) that is defined and continuous on S, we seek a solution
O/I(x, y) which satisfies (1-6.1) in R and such that

O/I(x, y) = g(x, y) (1-6.2)

for (x, y) on S.
To solve this problem numerically, we impose a uniform square mesh of

sizeh = L/(M + 1) on R (see Fig. 1-6.1). Here L is the side length ofR, and we
exclude the trivial case M = O. With i andj integers, the set of mesh points Qh

is defined by (see Fig. 1-6.1) Qh = {(Xb y): Xi = ih, Yj = jh for 0 ~ i,j ~
(M + I)}. Moreover, we let R h = R n Qh be the set of interior mesh points
and Sh = S n Qh be the set of boundary points.

Yj+ I

Yj

Yo

,
(Xj'YJ) h

X

t
h1- --

(x\,Y\)

-I
Xo X·I

Fig. 1-6.1. Uniform mesh subdivision for a square region.
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To discretize the problem defined by (1-6.1)-(1-6.2), we replace (see, e.g.,
Varga [1962J) the differential equation (1-6.1) at a mesh point (x;, y) in R h by
the finite difference equation

h- 2 {B(Xi + th, Y)[Ui+l,j - Ui) - B(xj -th, Y)[Ui,j - Ui-l,jJ

+ C(x;, Yj + th)[Ui,j+ 1 - Ui,J - C(Xj, Yj -th)[Uj,j - Uj,j-1J}

+ F(x;, Yj)Uj,j

= G(x;, y). (1-6.3)-

Here Uj,j is the approximation to Olt(xt. y). An equation of the form (1-6.3)
holds for each of the M2 mesh points in R h •

Equation (1-6.3), \vhich we refer to as the five-point formula, can also be
expressed in the form

-h- 2 {-E j,jUj+l,j -l¥;,jUi-l,j - Nj,jUj,j+l - Sj,jUi,j-l + Pi,jUi)
= G(Xi' Yj), (1-6.4)

where

and

Ei,j = B(xj + th, Y),

Ni,j = C(x;, Yj + !h),

l¥;,j = B(x j - !h, y),

Si,j = C(x;, Yj -th),

p . . = E· . + ltV: . + N· . + S· . - h2F(x. y.).'I,) I,) I,).' I,) I,) I' J

For (x;, Yj) on Sh' we require that the Ui,j satisfy

Ui,j = g(x;, yJ (1-6.5)

Ifwe now multiply both sides of (1-6.4) by - h2 and transfer to the right-hand
side those terms involving the known boundary values Uj,j on Sh' we obtain a
linear system of the form

Au = b. (1-6.6)

Here A is an N x N matrix, b a known N x 1 vector, Uthe N x 1 vector of
unknowns, and N = M2 the number of points of R h •

When a system of linear equations such as (1-6.4) is expressed in matrix
form Au = b, it is implied that a correspondence between equations and
unknowns exists and that an ordering of the unknowns has been chosen. In
writing (1-6.6), if the kth unknown in the vector U is Ui,j, we assume that the
kth row of A is obtained from the difference equation (1-6.4), corresponding
to the mesh point (x;, Yj)' Independent of the ordering of the unknowns Uj,j
for u, this correspondence between equations and unknowns determines the
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diagonal elements ofA.t To illustrate this, suppose the first element ofu is the
unknown Ul,l' With A = (al,m), this correspondence implies that aI, 1 = P l ,ll

where P1,1 is defined in (1-6.4). However, if Ul,l were the second elemept of u,
then this correspondence would imply that a2,2 = Pl,l' For both cases, Pl,l

is a diagonal element of A.
Moreover, with this correspondence between equations and unknowns, it

is easy to see that A is symmetric. This follows since the coefficient Ei,j of
Ui+l,j in the equation corresponding to the unknown Ui,j is B(Xi + !h, Yj),

while the coefficient l¥;+ l,j of Ui,j in the equation corresponding to Ui+ l,j is
B(Xi+ 1 - !h, Y), which is equal to B(Xi + !h, y} Similar arguments are valid
for any other pair of adjacent points (Xi> y). It can be shown without much
difficulty that A also is positive definite and, hence, nonsingular (see, e.g.,
Varga [1962]).

The above properties of A are independent of the partitioning and the
ordering of unknowns for u. However, the behavior of the iterative methods
discussed in Chapter 2 and in later chapters often depends on the ordering of
unknowns and on the partitioning imposed. We now define several orderings
of U for both point and block partitionings, which we use for illustrative
purposes later.

We consider two orderings for the point partitioning. The first is the
natural ordering defined by

{Ui*,j* follows Ui,j if j* > j or if j* = j and i* > i}. (1-6.7)

Relative to this ordering for u, the elements of A can now be determined
uniquely. An example is given in the next section (see (1-7.3».

Another ordering for the point partitioning is the so-called point red/black
ordering, which is defined as follows: Let the red unknowns be the set of all Ui,j

such that (i + j) is even and let the black unknowns be the set ofall Ui,j such that
(i + j) is odd. The red/black ordering is then any ordering such that every
black unknown follows all the red unknowns. In the next section, we show that
this ordering of unknowns leads to a red/black partitioning of A (see (1-5.3»
such that the submatrices Al,l and A 2 ,2 are diagonal.

We now consider natural and red/black orderings when the unknowns are
partitioned by lines. Let U j denote the vector of unknowns on the line Y = Yi

(see Fig. 1-6.1). The natural ordering for this line partitioning of the unknown
vector U is defined by

{Uj* follows Uj ifj* > j}.

An example is given in the next section (see (1-7.7».

(1-6.8)

t This correspondence usually also ensures that the largest element in any row lies on the
diagonal.



, 1

L.-.....i
,I

14 BACKGROUND ON LINEAR ALGEBRA

To define the red/black line ordering, we let Ui be a red line of unknowns if
j is odd and let Ui be a black line of unknowns if j is even. The red/black line
ordering is then any ordering such that every black line of unknowns follows
all the red lines. In the next section, we shall use this red/black line ordering
of the unknowns to obtain another red/black partitioning for A.

1.7 THE MODEL PROBLEM

(1-7.1)0< x, y < 1,

For our later discussion and for illustrative purposes, it is convenient to
present in some detail the following ~odel elliptic differential equation.
Consider the discrete approximation of the Poisson equation

a20l/ a20l/
ox2 + oy2 = G(x, y),

with boundary conditions (1-6.2) on S, the boundary of the unit square R.
With the mesh subdivision given by Fig. 1-6.1, the finite difference approxi
mation (1-6.4) to Poisson's equation at a mesh point (Xi> y) in R h may be
written as

4Ui,i - Ui+ 1, i - Ui-1,j - Ui,i+ 1 - Ui,j-l = - h2
G(Xi' yJ (1-7.2)

We now give several point and line partitionings for the corresponding
coefficient matrix A when M + 1 = 4 (see Fig. 1-6.1). For this special case,
there are nine unknowns and h = 1. In what follows, we indicate the ordering
for the unknown vector U by first numbering the mesh points of the problem
solution region. We then let the kth component Uk of the vector U be the
unknown corresponding to the mesh point marked k.

21 22 23 24 25

l-j-l-ri
19 x--x--x--x--x 20

I 1

4

1

9

1

5

I
17 x--x--x--x--x 18

15 L!_71_3 _1_8 !1'6

1-1-'r-Ll

21 22 23 24 25

j-j-j-l-l
19 x--x--x--x--x 20

17 1_1__7

__1_8 1__9 --1 18

I 1

4

1

5

1

6

I
15 x--x--x--x--x 16

III 1
2

1
3

I
x--x--x--x--x

10 II 12 13 14

(0)

10 \I 12 13

( b)

14

Fig. /-7./. Mesh point ordering for point partitionings. (a) Natural ordering, (b) red/black
ordering.
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-1 -1 -1
-1 0-1

o -1 -1
o 0-1

Point Partitionings

For point partitionings the natural ordering of unknowns for U is defined
by the mesh point numbering given in Fig. I-7.Ia. With the unknown at mesh
point k denoted by Uk and with all boundary terms moved to the right-hand
side, the system of difference equations for this case can be written as

4-10-1 Ul gl1+glS-hzGl

-1 4....,..1 0 -1 0 Uz glZ- - hZGz
o -1 4 0 0 -1 U 3 gl3 + gl6 - hZG3

-1 0 0 4 -1 0 -1 U4 gl7 - hZG4
--: 1 0 -1 4 -1 0 -1 Us - - hZGs

-1 0 -1 4 0 0 -1 U6 glS - hZG6
-1 0 0 4 -1 0 U7 g19 + gzz - hZG7

o -1 0 -1 4 -1 Us gZ3 - hZGs
-1 0 -1 4 U9 gzo + gZ4 - hZG9

(1-7.3)

A redjblack ordering for the point partitioning is defined by the mesh
point numbering in Fig. 1-7.1b. For this ordering for the unknowns, the
difference equations (1-7.2) can be expressed in the matrix form

4 -1 -1 0 0 Ul gll + glS - hZG1

4 0 -1 0 -1 0 Uz gl3 + gl6 - hZGz
4 -1 -1 -1 -1 U3 - hZG3

4 0 -1 0 -1 U4 gl9 + gzz - hZG4
4 0 0 -1 -1 Us gzo + gZ4 - hZGs

o 0 4 0 U6 glZ - hZG6
-1 0 4 U7 gl7 - hZG7

o -1 0 4 Us glS - hZGs
-1 -1 4 U9 gZ3 - hZG9

(1-7.4)

The red unknowns are Ul' Uz, ... , Us and the black unknowns are U6' ... ,
U9' Note that if Uis now partitioned by red unknowns and black unknowns,
we obtain the redjblack partitioning (1-5.3). Indeed, if we let

Us

and (1-7.5)
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then from (1-7.4) we obtain

[DR :J [~:J = [~:lHT

where

4
4 0

DR = 4

0 4

4

-1 -1 0 0
4

0 -1 0 -1 0

DB = 4 and H= -1 -1 -1 -1
4 0 -I o -I0 4 0 o -1 -1

Line Partitionings

(1-7.6)

For line partitionings the natural ordering of unknowns for u can be given,
for example, by the mesh point numbering given in Fig. 1-7.2a. With the
unknowns on line k denoted by Uk and with all boundary terms moved to
the right-hand side, the system of equations (1-7.2) can be written in the

, partitioned form

(1-7.7)

LINE 3

LINE 2

LINE I

( '\
l.A 7 8 9)

-/

( '\

fA 4 5 6)
-/

( '\
/'- I 2 3)

----
(0 )

LINE 2

LINE 3

LINE I

( '\
A 4 5 6)

-/

( '\

/'- 7 8 9)
-/

( '\

V I 2 3)
-/

( b)

Fig. /-7.2. Mesh point ordering for line partitionings. (a) Natural ordering, (b) red/black
ordering.
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(1-7.8)

(1-7.10)

(1-7.11)

[
-1 0 0]

Ak,k+l= 0 -1 O.
o 0-1

and

and

1.7 THE MODEL PROBLEM

[
4-1 0]

Ak,k = -1 4-1
o -1 4

then from (7.9) we obtain the red/black partitioning

where

DR = [A~'l A:,J, DB = A 3 ,3, and H = [~:::l
Note that here the matrices DR and DB are themselves block diagonal
matrices. Contrast this with the form of DR and DB for the point red/black
partitioning (1-7.6). However, in both the point and line cases, DR and DB
are block diagonal matrices whose diagonal blocks are determined by the
diagonal submatrices of the basic point or line partitioning imposed on u.

Iterative methods utilizing the redfblack partitioning (discussed in
Chapters 8 and 9) require that subsystems of the form DR UR = FRand
DBuB = FB be solved for every iteration. The work required to solve these
subsystems is reduced significantly when DR and DB are block diagonal
matrices which are "easily invertible." For some physical problems, careful
thought must be given in order to obtain such partitionings. This problem
is discussed in more detail in Chapters 9-11.

[ A~'l A~'2 ~:::] [~:] [~:]. (1-7.9)
A 3,l A 3 ,2 A 3 ,3 U 3 F 3

The red lines of unknowns are Uland U2, while U3 is the only black line. If
we now partition U by red and black lines, i.e., let

A red/black ordering for the line partitioning is defined by the mesh point
numbering given in Fig. 1-7.2b. The partitioned matrix resulting from this
ordering is

where the submatrix A k 1 gives the couplings of the unknowns frollliine k to
those on line I. Because ~fmatrix symmetry, Ak,l = A[k' For the mesh point
numbering of unknownst within a line given in Fig. 1-7.2a, we have

t As we point out later, the ordering of unknowns within a line does not affect the iterative
behavior of block methods but can affect the work required per iteration.
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In this chapter we give some background material on a class of iterative
methods for solving the linear system

Au = b, (2-1.1)

where A is a given real N x N nonsingular matrix and b is a given N x 1 real
column matrix.

All methods considered in this chapter are linear stationary methods offirst
degree. Such methods may be expressed in the form

u(n+ 1) = Gu(n) + k, 11 = 0, 1,2, " ., (2-1.2)

where G is the real N x N iteration matrix for the method and k is an associ
ated known vector. The method is offirst degree since u(n + 1) depends explicitly .
only on u(n) and not on u(n-l), ••• , dO). The method is linear since neither G
nor k depends on u(n), and it is stationary since neither G nor k depends on 11.

In this book we refer to any method of the form (2-1.2) as a basic iterative
method.

lQ
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In Section 2.2, we briefly discuss general principles concerning convergence
and rates of convergence of basic iterative methods. In Section 2.3, we
describe those basic methods which we consider in later chapters. These
methods are well known and include the RF (Richardson's) method, the
Jacobi method, the Gauss-Seidel method, the successive overrelaxation
(SOR) method, and the symmetric successive overrelaxation (SSOR) method.
We limit our attention to these basic methods because of the limitations of
space and our own experience. However, in Section 2.5 we give a brief
introduction to other solution methods which, although useful, will not be
considered elsewhere in this book. As in Chapter 1, no proofs are given. It is
assumed that the reader already has some familiarity with the use of basic
iterative methods, such as that provided by Varga [1962J or Young [1971].
References will be cited only for those results that are not given in either of
these basic texts.

2.2 CONVERGENCE AND OTHER PROPERTIES

In this section we discuss convergence and other properties of basic
iterative methods that will be used in later portions of the book.

We assume throughout that

G = I - Q- 1A, (2-2.1)

for some nonsingular matrix Q. Such a matrix Q is called a splitting matrix.
The assumptions of (2-2.1) together with the fact that A is nonsingular imply
that ii is a solution to the related system

(I - G)u = k (2-2.2)

if and only if ii is also the unique solution to (2-1.1), i.e.,

ii = A -lb. (2-2.3)

An iterative method (2-1.2) whose related system (2-2.2) has a unique solution
ii which is the same as the solution of (2-1.1) is said to be completely consistent.

If {u(n)} is the sequence of iterates determined by (2-1.2), then complete
consistency implies that (a) if u(n) = ii for some n, then u(n+ 1) = u(n+ 2) =
... = ii and (b) if the sequence {u(n)} converges to some vector £1, then £1 = ii.

We always assume that the basic iterative method (2-1.2) is completely
consistent since this property seems essential for any reasonable method.
Another property of basic iterative methods, which we do not always assume,
is that of convergence. The method (2-1.2) is said to be convergent if for any
dO) the sequence u(l), u(2), ••• defined by (2-1.2) converges to ii. A necessary
and sufficient condition for convergence is that

S(G) < 1. (2-2.4)
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To measure the rapidity of convergence of the linear stationary iterative
method (2-1.2), let the error vector a(n) be defined by

(2-2.5)

Using (2-1.2) together with the fact that ii also satisfies the related equation
(2-2.2), we have

a(n) = Ga(n-l) = ... = Gna(O). (2-2.6)

Therefore, for any vector norm {3 and corresponding matrix norm {3, we have
by (1-4.7) that

(2-2.7)

Thus IIGnll pgives a measure by which the norm of the error has been reduced
after n iterations. We define the average rate ojconvergence of (2-1.2) byt '

Rn(G) == -n-1log IIGnll p.

It can be shown that if S(G) < 1, then

lim (II Gnllp)l/n = S(G).
n-+co

Hence we,are led to define the asymptotic rate ojconvergence by

Rco(G) == lim Rn(G) = -log S(G).
n-+co

(2-2.8)

(2-2.9)

(2-2.10)

We remark that whereas Rn(G) depends on the norm {3 which is used, Rco(G)
is independent of {3. Frequently we shall refer to Rco(G) as the rate ojconver
gence.

If S(G) < 1, a rough approximation to the number <;>f iterations n needed
to reduce the norm of the initial error vector by a factor' can be given by

n ~ -(log O/Rco(G). (2-2.11)

The estimate given by (2-2.11) is often much too low if the matrix G has
principal vectors of grade two or higher (see Section 1.3) associated with one
or more eigenvalues of G. The use of the approximate formula

(2-2.12)

where RiG) is the average rate of convergence given by (2-2.8), would give
much more accurate results. Unfortunately, however, RiG) is seldom
available. In any case, the reciprocal of either Rco(G) or Rn(G) can be used as
a measure of the number of iterations required to reduce the error vector by a
factor of , = e- 1.

t In this book, log x denotes the logarithm of x to the base e.
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For most of the acceleration methods considered in this book, it is not
necessary that the basic method (2-1.2) be convergent. Normally, it is
sufficient that the method be "symmetrizable" in the following sense.

Definition 2~2.1. The iterative method (2-1.2) is symmetrizable if for
some nonsingular matrix W the matrix W(I - G)W -1 is SPD. Such a
matrix W is called a symmetrization matrix. An iterative method that is not
symmetrizable is nonsymmetrizable.

With this definition, the following results follow easily from the material
given in Section 1.3.

Theorem 2-2.1. If the iterative method (2-1.2) is symmetrizable, then (a)
the eigenvalues of G are real, (b) the algebraically largest eigenvalue M(G)
of G is less than unity, and (c) the set of eigenvectors for G includes a basis for
the associated vector space.

As we shall see in later chapters, properties (a)-(c) of the matrix G given
above turn out to suffice for the effective use of polynomial acceleration
methods. The difficulties encountered when one or more of these properties
is not valid will be discussed briefly in Chapters 6 and 12. For some of the
acceleration procedures given in later chapters, a symmetrization matrix
must be available for computational purposes.

Many iterative methods are symmetrizable. For example, the basic
method (2-1.2) is symmetrizable whenever A and the splitting matrix Q in
(2-2.1) are SPD. In such a case, A 1/2 and Q1 / 2 are symmetrization matrices.
Moreover, any matrix W such that Q = WTW is also a symmetrization
matrix. The W obtained from the factorization Q = WTW is usually the
most computationally convenient choice. In the next section, symmetrization
matrices Ware given for some of the basic iterative methods discussed there.
In Section 5.6, computational aspects in the use of symmetrization matrices
are discussed.

We remark that the symmetrization property need not imply convergence.
If the iterative method (2-1.2) is symmetrizable, then the eigenvalues of G are
less than unity but not necessarily less than unity in absolute value. Hence,
the convergence condition (2-2.4) need not be satisfied. However, as we now
describe, there always exists a so-called extrapolated method based on (2-1.2)
which is convergent whenever the basic method is symmetrizable.

The extrapolated method applied to (2-1.2) is defined by

where

u(n+ ll = y(Gu(n) + k) + (1 - y)u(n) = G[yju(n) + yk,

GlYl == yG + (1 - y)I.

(2-2.13)

(2-2.14)
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Here y is a parameter that is often referred to as the "extrapolation factor."
If the iterative method is symmetrizable, then the optimum value y for y, in
the sense of minimizing S(G[Yl)' is given by

y = 2/(2 - M(G) - meG)), (2-2.15)

where meG) and M(G) are the smallest and largest eigenvalues of G, re
spectively. Moreover, it easily follows that

In this section we describe five well-known basic iterative methods which
will be used in subsequent chapters. The methods considered are the RF
method, the Jacobi method, the Gauss-Seidel method, the successive over
relaxation (SOR) method, and the symmetric successive overrelaxation
(SSOR) method. Primary attention in later chapters is given to the Jacobi
and SOR methods. The Jacobi method is used primarily in discussions
concerning computational aspects and costs. The SOR method will be
studied in detail in Chapter 9.

We assume throughout this section that the matrix A ofthe system (2-1.1) is
symmetric and positive definite (SPD). For each method, we describe a
computational procedure for carrying out the iterations and discuss con
vergence properties. Specific rates of convergence are given for the model
problem. We also discuss whether or not a particular method is sym
metrizable.

S(G(ji)) = (M(G) - m(G))/(2 - M(G) - meG)) < 1.

Thus the optimum extrapolated method, which we define by

u(n+ 1) = Gmu(n) + yk,
is convergent.

2.3 EXAMPLES OF BASIC ITERATIVE METHODS

(2-2.16)

(2-2.17)

The RF Method

The RF method is based on a variant of the method of Richardson [1910]
and is defined by

u(n+ 1) = (I - A)u(n) + b. (2-3.1)

The iteration matrix Gfor the RF method is simply G = I-A. The associated
splitting matrix Q is the identity matrix. Since A is SPD, it is clear thatthe RF
method is symmetrizable; for example, W = I is a symmetrization matrix.

Each eigenvalue /l of the iteration matrix G = I - A for the RF method is
equal to 1 - v for some eigenvalue v of A. Thus we have

S(I - A) = max(11 - m(A) I, 11 - M(A) I),
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where meA) and M(A) are defined by (1-3.4). From this it follows that the RF
. method is convergent if and only if M(A) satisfies

M(A) < 2. (2-3.2)

The optimum extrapolation method (2-2.17) based on the RF method,
however, is always convergent. This extrapolation method, which we denote
by RF-OE, can be expressed in the form

u(n+ 1) = (I - YA)u(n) + 'lb, (2-3.3)

where
_ 2 2

y = 2 - M(G) - meG) = M(A) + meA)'
(2-3.4)

(2-3.5)

as K(A) --+ 00. (2-3.6)

The spectral radius of the corresponding iteration matrix G[YI = I - YA is

S(I _ -A) = M(A) - meA) = K(A) - 1
y M(A) + meA) K(A) + l'

where K(A) is the spectral condition number (1-4.18) of the matrix A. There
fore, the rate of convergence for the RF-OE method can be given by

_ K(A) - 1 2
Roo(I - yA) = -log K(A) + 1 ~ K(A)

For the model problem of Section 1.7, it can easily be shown that

meA) = 8 sin2 !nh, M(A) = 8 cos2 !nh. (2-3.7)

For this case, using (2-3.5), we have that

cot21.nh - 1
Roo(I - 'lA) = - log S(I - 'lA) = - log 2 ~ h 1

cot 2n +
and, after some manipulation, that

Roo(I - 'lA) ~ !n2h2
, h --+ O. (2-3.8)

The Jacobi Method

We assume for the remainder of this section that the system (2-1.1) is
partitioned in the form

A I ,1 A 1 2 AI,q U 1 F 1.
A 2 1 A 2 ,2 A 2 ,q U 2 F 2 (2-3.9),

Aq,l Aq,2 Aq,q Uq Fq
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where

o

(2-3.10)

0 A 1 2 A 1,3,

0 0 A 23,

Cu =- 0 0 0

0 0 0

o
D=

o

where Ai,j is an I1 j >< I1j submatrix and 111 + 112 + ... + I1q = N. Here the Vi
and Fi represent subvectors of order l1i' Since A is SPD, each diagonal sub
matrix Ai,i is also SPD. For use throughout this section, we express the
matrix A as the'matrix sum

0 0 0 0
. ..',: ~ A 2 ,l 0 0 0

CL = - A 3 ,l A 3 ,2 0 0 (2-3.11)

Aq,l Aq ,2 A q ,3 0

As we shall see, the Jacobi, Gauss-Seidel, SOR, and SSOR iteration methods
can be defined uniquely in terms of these D, CL , and Cu matrices.

Relative to the partitioning (2-3.9), the Jacobi method is defined by

q

A- .v\n + 1) = - " A- ,v\n) + F-
1,1 I l..J I,) J l'

j=l
j*i

i = 1, 2, ... , q. (2-3.12)

If the Ai, i are 1 x 1 matrices, the method is sometimes referred to as the poil1t
Jacobi method. Otherwise, it will be referred to as the block Jacobi method.
In order for the block Jacobi method to be practical, it is essential that the
subsystems

A- . v\n + 1) = y.
1,1 I I (2-3.13)

can be solved easily for v!n+ 1), given any Yi' Frequently, each Ai, i will be a
tridiagonal matrix or a matrix with small bandwidth for which special direct
methods can be used. Later in this section, we give a systematic procedure
which may be used to solve directly a symmetric and positive definite tri
diagonal matrix.

In the matrix notation of (2-3.11), the Jacobi method may be expressed as
I

U(n+ 1) = Bu(n) + k, (2-3.14)
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where B is the Jacobi iteration matrix defined by

B == D- 1(CL + Cu) = I - D- 1A (2-3.15)

and where

(2-3.16)u(n) ==

U(n) F
q q

Since A is SPD, it follows from (2-3.11) and (2-3.15) that D is also SPD and
that the Jacobi method is symmetrizablewith W = D 1/2. Other choices for
the symmetrization matrix include W = A 1/2 or W = S, where S is any
matrix such that STS = D.

The Jacobi method is convergent if and only if S(E) < 1. It can be shown
that S(B) < 1, for example, if the SPD matrix A has property d or if A is
irreducible with weak diagonal dominance. We refer to Young [1971J for a
definition of these properties. Property d is also defined and discussed in
Chapter 9. We remark that if the matrix A of (2-3.9) has property d, then
the eigenvalues of B satisfy

m(B) = - M(B). (2-3.17)

As for the RF method, the optimum extrapolation method (2-2.17) based
on the Jacobi method, which we denote by J-OE, is always convergent. The
J-OE method can be expressed in the form

u(n+ 1) = }i(Bu(n) + k - u(n» + u(n), (2-3.18)

(2-3.19)
for line Jacobi.

S(E) = M(B) = -m(B) = {CO:::lnh
. 2 - cos nh

The values given in (2-3.19) are valid for either the natural ordering or the
redfblack ordering. From (2-2.10) and (2-3.19), it can be shown that

{
tn2h2 for point Jacobi,

R (B) ~ h ~ O. (2-3.20)
00 n2h2 for line Jacobi,

Since M(B) = -m(B) for this problem, the J-OE method here reduces to
the unextrapolated Jacobi method.

where y is given by (2-2.15) with G = B. When the eigenvalues of B satisfy
(2-3.17), y = 1. For this case, the J-OE method reduces to the Jacobi method
without extrapolation.

For the model problem of Section 1.7, it can be shown that

for point Jacobi,



We now describe a direct solution procedure for solving the subsystem
(2-3.13) under the assumption that Ai, i is a p x p tridiagonal matrix of the
form

I
~
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A··=1,1

L..J

(2-3.21)

o

o cp - 1

Cp-l bp
"

The procedure we describe is based on a Cholesky decomposition (or
factorization) of the matrix Ai, i' Since Ai, i is SPD, there exists an upper
bidiagonal matrix Si of the form

d1 Jl
o d2 J2

such that

Si =

o o

(2-3.22)

jj = Cidj, j = 2,3, ... , p - 1.

(2-3.24)

Ai,i = SiSi'

The dj andjj for j = 1, ... , p are given by

d1 = jb;, Jl = clld1,

dj = Jb j - JI-l' j = 2,3, ... , p,

(2-3.23)

From (2-3.13) and (2-3.23), we have that SiSi u!n+ 1) = Yi' To determine
U!n+ 1) we first solveI ,

siz = Yi

for z by a simple forward substitution and then solve

s·u!n+l) = Z
I I

. (2-3.25)

(2-3.26)

for u!n+ 1) by a simple back substitution.
Note that the factorization (2-3.23) is independent of the source vector Yi'

Thus the coefficients of the factorization matrix Si need be computed only
once. In the case of the discrete analog of the generalized Dirichlet problem,
the use of line iteration requires roughly the same amount of wor15: per
iteration as would the corresponding point method. Solution procedures for
the subsystems (2-3.13) are discussed further in Sections 5.6 and 8.5.
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The Gauss-Seidel Method

27

The Gauss-Seidel method applied to the partitioned linear system (2-3.9)
is defined by

i-I q

A . .u\n+ 1) = - "A.. u\n+ 1) - " A U1n ) + F
1,1 1 L, l,j J L, i, j j i,

j=1 j=i+l

i = 1, 2, ... , q.

(2-3.27)

As in the case of the Jacobi method, each step of a Gauss-Seidel iteration
requires the solution of a subsystem of the form (2-3.13).

Using the matrix notation of (2-3.11), we can write (2-3.27) as
(D - CL)U 1n + 1) = Cuu 1n) + b. Thus the Gauss-Seidel method may be
expressed in the matrix form

where

U1n + 1) = 2u1n ) + k, (2-3.28)

and where

(2-3.29)

(2-3.30)

The matrix 2 is called the Gauss-Seidel iteration matrix.
The splitting matrix for the Gauss-Seidel method is (D - CL ), which is not

SPD. Moreover, the Gauss-Seidel method is not in general symmetrizable.
Since A and Dare SPD, it can be shown that the Gauss-Seidel method

always converges. In general, the eigenvalues of 2, though less than unity in
modulus, may be complex, and the set of eigenvectors for 2 may not include
a basis for the associated vector space. When this is the case, the extrapolation
method of (2-2.13) is not applicable. .

In certain cases, however, extrapolation can be used. For example, the
eigenvalues of 2 are real, nonnegative, and less than unity for the problems
of Sections 1.6 and 1.7 when the natural ordering or the redfblack ordering
of the unknowns is used. For these problems, an improvement in the asymp
totic convergence rate would be achieved by using extrapolation. We remark
that for problems with the natural ordering, the average rate of convergence
of the extrapolated Gauss-Seidel method can be significantly less than its
asymptotic rate. This is caused by the fact (see, e.g., Miles et al. [1964]) that
the matrix 2 for such problems can have principal vectors of grade two or
greater associated with zero eigenvalues of 2. (How the convergence of an
iterative procedure is affected by the presence of principal vectors of grade
greater than one is discussed later in Sections 6.8 and 9.4.) The above remark
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does not apply to problems with a redfblack ordering since, for this case, the
set of eigenvectors for 2 includes a basis for the associated vector space. See,
e.g., Tee [1963] ..

For the model problem, it can be shown for either the natural ordering or
the redfblack ordering that

{

COS
2 nh

5(2) = M(2) = M(Bf = ( cos nh )2
2-cos nh

for point Gauss-Seidel,

for line Gauss-Seidel,

(2-3.31)

h --+ O. (2-3.32)

and that m(2) = O. Thus from (2-3.31) we obtain

{
n2h2 for point Gauss-Seidel,

R ro(2) '" 2n2h2 for line Gauss-Seidel,

Letting 2 m denote the optimum extrapolated iteration matrix (2-2.17) based
on the Gauss-Seidel method, we have by (2-2.15) and (2-2.16) that y =
2/(2 - M(B)2) and that 5(2[i']) = M(B)2/(2 - M(B)2). Combining this with
(2-3.19), we can easily calculate that .

{
2n2h2 for point method,

Rro(2[y]) '" 4n2h2 for line method, h --+ O. (2-3.33)

The Successive Overrelaxation (SOR) Method

Relative to the partitioning (2-3.9), the SOR method is defined by

A. ·u\n+l) = OJ{- i~lA.. u(n+l) - ~ A. u(n) + F}
I, I 1 '-' J, J ) '-' J, J J . I

j=l j=i+l

+ (l - OJ)A i , i u!nl, i = 1, 2, ... , q. (2-3.34)

Here OJ is a real number known as the relaxation factor. With OJ = 1, the SOR
method reduces to the Gauss-Seidel method. If OJ > 1 or OJ < 1, we have
overrelaxation or underrelaxation, respectively. We shall be concerned only
with overre1axation. As before, each step requires the solution of a subsystem
of the form (2-3.13).

In the matrix notation of (2-3.11), the SOR method (2-3.34) becomes
Du(n+l) = OJ(CL u(n+ ll + Cuu(n) + b) + (1 - OJ)Du(n). This can be rewritten
in the form

u(n+ 1) = ft u(n) + keF)
({) co, (2-3.35)
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2 ro == (1 - WL)-l(WU + (1 - w)I) and k~) == (1 - WL)-l WD- 1b.

(2-3.36)

Here Land U are given by (2-3.30). The matrix 2 ro is called the SOR iteration
matrix.

The splitting matrix for the SOR method is (w- 1D - CL ), which, as in the
case of the Gauss-Seidel method, is not SPD. For w > 1, the SOR method is
not symmetrizable. Moreover, for the overrelaxati,9n case, the matrix 2 ro

normally has some eigenvalues that are complex.vThus extrapolation based
on the SOR method is not applicable for w > 1.

Since A and Dare SPD, it can be shown that the SOR method converges
for any w such that 0 < w < 2. Moreover, it is often possible to choose w so
that the SOR method converges rapidly; much more rapidly than the Jacobi
method or the Gauss-Seidel method, for example. Normally, such an
"optimum" value for w can be prescribed if the coefficient matrix A, relative
to the partitioning imposed, has property d and is consistently ordered.
These terms are defined later in Chapter 9, where a more detailed summary of
the theoretical properties of the SOR method is given. Here we note only
that any block tridiagonal matrix A or any matrix A partitioned into a red/
black form has property d and is consistently ordered.

In the case ofthe model problem, the optimum value ofw, which we denote
by Wb, is given by

2

1 + sin nh

2(1 + 2 sin2 nh/2)

(1 + J2 sin nh/2)2

for point SOR,

for line SOR.

(2-3.37)

The corresponding spectral radius of 2 rob is equal to (wb - 1) and can be
expressed in the form

5(2 ) = 1 - J1 - M(B)2 _
rob 1 + J1 - M(B)2

1 - sin nh

1 + sin nh

(
1 - .j2 sin nh/2)2

. 1 + .j2 sin nh/2

for point SOR,

for line SOR.

(2-3.38)



The Symmetric SOR (SSOR) Method

Relative to the partitioning (2-3.9), the SSOR method is defined by

A- .u\n+1/2) = w{- i;!A- .u(.n+ 1/2) - ~ A..U(!') + F.}
I, I I i...J 1, J J f..J I, J J 1
. }=I }=i+1

L

(2-3.39)h -> O.

r---

for point SOR,
for line SOR,
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From (2-3.38), it can be shown that the asymptotic rates of convergence for
the SOR method satisfy

. {2nh
Rro(Ierob) ~ 2nh,/2

i = 1, 2, ... , q, (2-3.40)

and

i = q, q - 1, .. " 1. (2-3.41)

{

i- I q }
A· ·u\n+l) = w - '\' A- .u<.n+ 1/2) - '\' A- ·u<.n+l) + F-

1,1 I L,; I, J } L,; I, J J I

}=I }=i+1

+ (1 - w)A- . u\n+ 1/2)
I, I r ,

Here one firstsuccessively computes u\n+ 1/2). U~ +1/2), .. " u~n+ 1/2), using the
SOR method (2-3.40). Then one successively computes U~+ 1), u~n!/l, ... ,
u\n+ I), using the backward SOR method (2-3.41). As in the cflse of the SOR
method, each step requires solutions to subsystems of the form (2-3.13).

Using the notation of (2-3.11), we may express the SSOR method in the
matrix form

Du(n+ 1/2) = w(CLu(n+ 1/2) + Cuu(n) + b) + (1 - w)D~(n),
(2-3.42)

• Du(n+ I) = W(CLU(n+ 1/2) + CUU(n+ 1) + b) + (l _ w)Du(n+ 1/2)

or equivalently in the form

u(n+ 1/2) = ro Urn) + k(F)
oZ,;w co'

urn + I) = 011 u(n + 1/2) + k(B)
ro ro'

where Iero and k<!) are given by (2-3.36) and where

011", == (I - wU)-I(wL + (1 - w)I),

k<!:) == (I - wU)-lwD-lb.

Combining (2-3.43) and (2-3.44), we have

u(n+l) = y u(n) + k
ro (J)'

(2-3.43)

(2-3.44)

(2-3.45)

(2-3.46)
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(2-3.47)
k", == w(2 - w)(I - WU)-I(I - WL)-ID- 1b.

One can verify that the splitting matrix for the SSOR method is

w (1 ) _1(1 )Q = 2 _ w w D - CL D w D - Cu . (2-3.48)

Moreover, since (w - 1D - CL)T = W - 1D - Cu , it follows that Q is SPD and
hence that the SSOR method is symmetrizable. Choices for the symmetriza
tion matrix include W = A 1

/
2

, W = S-I(w- 1D - Cu), where S is any
matrix such that STS = D, or

(2-3.49)

Since the SSOR method is symmetrizable, the extrapolation method (2-2.13)
may be applied to the SSOR method.

Since A is SPD, it can be shown that the SSOR method converges for any
w in the interval 0 < w < 2. Further, since

(1 )-1 (1 )-I(W - 1 )fI'",= wD-Cu D wD-CL w D-CL D- 1

X (w: 1 D - Cu)

is similar to the symmetric and nonnegative definite matrix

(2-3.50) .

[DI/2(~D - CLr1(w: 1 D - CL)D-1/2J

~ [DI/2(~D-CLrl(w:I D-CL)D-1/2T,

it follows that the eigenvalues of fI'"', in addition to being real, are also
nonnegative. Because of this, it can easily be shown that the optimum extra
polated SSOR method converges twice as fast as the ordinary SSOR method.

The rate of convergence of the SSOR method is relatively insensitive to
the exact choice of w so that a precise optimum value of w is not crucial. If
the spectral radius of the matrix L U satisfies

S(LU) ~ t,
then a good value of w is given by

2
W=--r=====

1 + )2(1 - M(S))

(2-3.51)



32 2 BACKGROUND ON BASIC ITERATIVE METHODS

i....

Here Land U are given by (2-3.30) and B is the Jacobi iteration matrix
(2-3.15). With this choice of W, the spectral radius of Y w satisfies

(2-3.53)

In order for the SSOR method to be effective, 5(LU) should either be less
than i or, at least, only slightly greater than i. This condition need not be
satisfied for matrix problems resulting from discretizations of some boundary
value problems involving discontinuous coefficients or some problems
involving nonuniform mesh subdivisions of the geometric domain. See, for
example, Habetler and Wachspress [1961J and Benokraitis [1974]. More
details concerning the SSOR method can be found in papers by Sheldon
[1955J, Ehrlich [1963, 1964J, Young [1971, 1972, 1977J, Hayes and Young
[1977J, and Axelsson [1972, 1974].

We now consider the use of the SSOR method in solving the model problem
of Section 1.7. If the redfblack ordering of the unknowns is used,t then the
optimum value of w, in the sense of minimizing 5(Y",), is unity. For this
choice of relaxation factor, the SSOR method reduces to the forward and
backward Gauss~Seidelmethod. Thus any advantage in using overrelaxation
is lost. However, if the natural ordering is used, then the spectral radius of
Y w with optimum W is often substantially less than 5(21),

If the natural ordering is used, it can be shown that the" SSOR condition"
(2-3.51) holds for the model problem. Using the W given by (2-3.52), we have
by (2-3.19) and (2-3.53) that

{

(I - sin ink)/(! +sin ink)

5(Yw) ~ (1 _ 1 - cos nh)2j( 1 )
2 - cos nh 2 - cos nh

for point SSOR,

for line SSOR.

(2-3.54)

From this it can be shown that the corn::sponding rates of convergence for
the SSOR method satisfy

for point SSOR,

for line SSOR,

h --+ O. (2-3.55)

The rates of convergence for the optimum extrapolated point and line SSOR
methods would be twice that of the unextrapolated point and line methods.

tIn 1his case, inequality (2-3.51) usually is not satisfied since here S(LU) = 5(2' 1), which is
normally close to unity.
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We present in Table 2-4.1 the asymptotic convergence rates of the basic
methods given in the previous section when applied to the model problem.
The convergence rates given are approximations for small h. Unless noted
otherwise, the values given are valid for either the natural ordering or the

TABLE 2-4.1

Approximate Asymptotic Convergence Ratesfor the Model Problem ofSection 1.7

Unextrapolated
point

line

Basic method

RF Jacobi Gauss-Seidel SOR SSOR

!n2h2 n2h2 2nh nh fill

n2h2 2n 2h2 2j2nh j2nh lal

Optimum
extrapolated

point

line

Optimum
Chebyshev
accelerated

point

line

Conjugate
gradient
accelerated

point

line

Cyclic
Chebyshev
accelerated

point

line

Cyclic Conjugate
gradient
accelerated

point

line

nh

~nh

nh

j2nh

2nh IhI

2j2nh 'hl

~2nh'hl

> 2 fi nh IhI- V

2n2h21hl

4n2h21hl

2nh Ihi

2j2nh lhl

2nh la,

2j2nh lal

~2;;hlal

~25/4;;hlal

a Natural ordering required.
b Redjblack ordering required.



red/black ordering of the unknowns. A dash indicates that a particular
procedure is not applicable.

For comparison purposes, we include in Table 2-4.1 data for the Chebyshev
and conjugate gradient polynomial acceleration methods given in subsequent
chapters. Briefly, the Chebyshev and conjugate gradient methods may be
used to accelerate the rate of convergence of any basic method that is sym
metrizable. The Chebyshev method requires the use of iteration parameters,
which must be properly chosen to obtain the greatest rate of convergence.
The optimum Chebyshev parameters are functions of the extreme eigen
values, meG) and M(G), of the iteration matrix G for the related basic method.
For the model problem data given in Table 2-4.1, the optimum Chebyshev
parameters are based on the exact values for meG) and M(G) given in the
previous section. The conjugate gradient method also utilizes iteration
parameters. However, these parameters are generated automatically during
the iteration process and require no information concerning the eigenvalues
of G. Formulas for the convergence rates ofthe conjugate gradient procedures
are not known. However, when measured in a particular norm, the average
convergence rate of the conjugate gradient method cannot be less than that
of the Chebyshev method. The cyclic methods are special Chebyshev and
conjugate gradient procedures that are applicable when the linear system is
partitioned into the redjblack form (1-5.3).

Model problem analysis is useful as a first step in the evaluation of any
iterative solution procedure. However, some methods give extremely rapid
convergence for certain model type problems but are less attractive, for
various reasons, when applied to a more general class of problems. Thus for
completeness, we augment the model problem results with a brief discussion
concerning the essential requirements and the expected behavior of the
procedures of Table 2-4.1 when applied to more general problems.

Before considering particular procedures, we make two general obser
vations. First, the fundamental requirement of all methods considered here
is that the coefficient matrix A be SPD. If A is not SPD, the procedures of
Table 2-4.1 usually are not effective except under special conditions (see, e.g.,
the discussions given in Section 6.8 and in Chapters 11 and 12). Second,
recall that the Jacobi, Gauss-Seidel, SOR, and SSOR methods are defined
relative to a fixed partitionirrg imposed on the coefficient matrix A. Hence for
a given matrix A, each of these methods is really a family of procedures; each
member corresponds to a different partitioning and each member possesses,
possibly, different convergence properties. The partitioning imposed on A
often is a key factor in the iterative behavior of procedures based on the
aforementioned methods.

For any partitioning of an arbitrary SPD coefficient matrix A, the Jacobi
method is symmetrizable. Thus the J-OE method isalways convergent, and

2 BACKGROUND ON BASIC ITERATIVE METHODS34
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moreover, the Chebyshev method or the conjugate gradient method can
always be used to accelerate the basic Jacobi method. For Chebyshev
acceleration, it is important that nearly optimum iteration parameters be
used for intrinsically slowly convergent problems. For general applications,
such parameters are not known a priori but can be determined by using the
computational algorithms given in Chapters 5 and 6. Although Chebyshev
acceleration and conjugate gradient acceleration of the Jacobi method are
effective for any choice of partitioning, we show in Chapter 8 and Section 9.9
that the fastest rates of convergence usually are obtained for partitionings
which are red/black.

The SOR method- with 0 < OJ < 2 is also convergent for any partitioning
of a coefficient matrix A that is SPD. But the effectiveness of the SOR method
depends strongly upon the availability of a prescription for selecting the
iteration parameter OJ. In Chapter 9 we give a precise formula for the OJ that
maximizes Ra:,(fL'(0); however, this formula for the" optimum" OJ is valid only
for a certain class of partitionings. When the partitioning of A is such that a
precise formula for the optimum OJ can be given, the SOR method is competi
tive with the best acceleration methods applied to the Jacobi method. For
other partitionings, the SOR method 9'Ormally should not be considered as
an effective general solution method. 'We remark that it is important to use

lan OJ near the optimum value for intrinsically slowly convergent problems.
Algorithms to determine numerically nearly optimum vaules of OJ are given
in Chapter 9.

For any partitioning of a SPD matrix A, the SSOR method is symmetriz
able. Therefore, the SSOR method with either Chebyshev or conjugate
gradient acceleration can be used to solve general problems. For the model
problem, the convergence rates of the best accelerated SSOR procedures are
considerably larger than those of any of the other iterative procedures.
Unfortunately, the SSOR condition (2-3.51) must be satisfied or nearly
satisfied in order to realize this extremely rapid convergence. When condition
(2-3.51) is not satisfied, as is the case for many practical applications, the
SSOR procedures are much less effective. Because of this and because the
computational effort for a SSOR iteration step is sometimes twice that re
quired by other methods, the SSOR procedures are not frequently used in the
solution of large' general problems.

In this book, the Gauss-Seidel method and related procedures are used
primarily in the discussion of other methods and are not considered as
distinctive general solution procedures. The reason for this is that any
Gauss-Seidel related procedure which may be of interest to us can be de
scribed and treated more easily in terms of other procedures.

The RF method also is used primarily in the discussion of other methods.
The simple point RF method we described is sufficient for our use but should
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t The imposed sparsity pattern for Hand K is often related to the sparsity pattern of A.

, I

"---J

(2-5.1)Qu tn + 1) = Rutn) + b,

2 BACKGROUND ON BASIC ITERATIVE METHODS

Basic Methods Based on Approximate Factorization

In Section 2.2, we assumed that any basic method can be defined uniquely
in terms of a splitting matrix Q. Let such a matrix Q be defined by the splitting
A = Q- R for the coefficient matrix A. By (2-2.1), the basic iterative method
(2-1.2) defined by this splitting can be written in the form

In this section we discuss briefly several useful solution procedures which,
because of limitations of space and our own experience, will not be considered
elsewhere in this book. We shall describe only the general ideas involved. No
details for any particular method will be given; however, references are cited
for the reader who wishes more detailed information. The methods that we
consider are: (i) approximate factorization methods, (ii) alternating direction
implicit methods, and (iii) fast direct methods.

with the corresponding iteration matrix G = I - Q-1 A = Q-lR. We
now consider those methods for which the matrix Qhas the form Q = HK.
Let the nonsingular matrices Hand K be chosen such that they are easy to
obtain and such that the matrix Q is "easily invertible." Moreover, to
maximize the rate of convergence, Hand K should also be chosen such that
the spectral radius of the iteration matrix G is as small as possible.

If A is symmetric and positive definite, one choice is to let H = L T and
K = L, where L is the upper triangular matrix defined by the Cholesky
decomposition A = LTL of A. In this case, R = 0, and the process would
converge in one iteration. Of course, this is just a form of the Gaussian direct
solution method, and for large sparse matrix problems, the matrix H = L may
not to be sparse and/or may not be easy to obtain.

One approach to avoid this problem of completely decomposing A is to
pick Hand K to be lower and upper triangular matrices, respectively, but
such that the product HK only approximates A. Usually this is done by
defining a particular sparsity patternt for Hand K and then determining the
nonzero elements of Hand K so that the product HK approximates A as
closely as possible. This approach encompasses a family of iterative techniques
that differ mainly in the choice for the matrices Hand K. Some members of

not be considered as a general solution procedure since block techniques
cannot be accommodated. We note in passing, however, that a viable
generalized form of the RF method can be defined (see, e.g., Young [1971J).
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this family are called "primitive iterative methods" by Varga [1960], "approx
imate factorization" by Dupont et ill. [1968] and Bracha-Barak and Saylor
[1973], "strongly implicit" by Stone [1968], and "incomplete Cholesky
factorization" by Meijerink and van der Vorst [1974, 1977]. Also see Axelsson
[1978], Chandra [1978], and Beauwens [1979].

If A is symmetric and positive definite, then an incomplete symmetric
factorization Q = HHT is usually used. If Q is positive definite,t then the
basic method (2-5.1) is symmetrizable and the Chebyshev and conjugate
gradient procedures described later may be used to accelerate the rate of
convergence. Considerable success has been reported when the conjugate
gradient method is used to accelerate approximate factorization splitting
methods. See, for example, Chandra [1978] and the references cited there.

Alternating Direction Implicit Methods

Douglas [1955], Peaceman and Rachford [1955], and Douglas and Rach
ford [1956] introduced a class of methods that are called alternating direction
implicit methods. We now describe briefly one method of this class which is
sometimes referred to as the Peaceman-Rachford method. The Peaceman
Rachford method is based on representing the matrix A of (2-1.1) as a sum

A=H+V, (2-5.2)

(2-5.3)

where A, H, and V are assumed to be SPD. The method is defined by

(H + PnI)u(n+1 /2) = b - (V - PnI)u(n),

(V + p~I)u(n+ 1) = b - (H - p~I)u(n+ If2l.

Here it is assumed that for any positive numbers Pn and P~, the first system
can be solved easily for u(n+ I f2l, given u(n), and that the second can be solved
easily for u(n+ 1), given u(n+ 1/2). In a typical case involving a linear system
arising from an elliptic partial differential equation, H and V might be
tridiagonal matrices or at least matrices' with small bandwidths. For finite
difference methods over rectangular mesh subdivisions, H is the matrix
corresponding to horizontal differences and V is the matrix corresponding
to vertical differences.

Normally, one would use particular values PI' pi!> P2' P~, ... , Pm' P~ of the
parameters in a cyclic order. The values of the Pi often dependt on bounds of
the eigenvalues of H and V. For the model problem of Section 1.7, it can be

t For some variants, some care must be taken to ensure that the resulting incomplete factori
zation Q = HHT is positive definite. See. for example, Kershaw [1978].

t For algorithms to generate the acceleration parameters p; and p;, see Wachspress [1963J
and Kellogg and Spanier [1965].
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shown (e.g., see Birkhoff et al. [1962]) that the parameters can be so chosen
that the number of iterations needed for convergence varies as log h-1 as the
mesh size h tends to zero. This is in contrast, for example, to h-1 for the SOR
method (see (2-3.39».

The basic theory for the Peaceman-Rachford method is valid only if the
matrices H and V commute. For elliptic partial differential equations, this
requirement implies that the differential equation is separable and that the
region is a rectangle (see Birkhoff and Varga [1959] and Birkhoff et al.
[1962]). Widlund [1966, 1969] extended the theory to nonseparable equa- .
tions with rectangular regions. The method works well in many cases in
which the existIng theory does not rigorously apply. However, Price and
Varga [1962] have constructed a case in which the theory fails to apply in an
essential way. In spite of many attempts to analyze the Peaceman-Rachford
method, a solid theoretical foundation still does not exist.

We now mention briefly a class of very fast methods that are often used to
solve certain linear systems. Such systems frequently arise in the solution of
linear elliptic partial differential equations with constant coefficients over
rectangular regions. These methods depend on the fact that a closed-form
solution to the discretized problem exists. This solution has a form similar to
the Fourier series solution that can be obtained for the continuous problem
in the "separable" case. For the discretized case, the solution is expressed in
the form of a finite sum with special properties which make it possible to find
the sum very rapidly. Sometimes these methods are referred to as fast Fourier
methods.

Fast direct methods also can be considered for more general linear systems
for which it is possible to apply certain transformations to successively reduce
the order of the system by a factor of two. Thus we have methods known as
cyclic reduction, odd-even reduction, etc. (Buzbee et al., 1970; Sweet, 1974).

For problems in which fast direct methods cannot be applied directly, they
can often be used in conjunction with other methods. Thus Concus and
Golub [1973] and Concus et al. [1976] use fast direct methods combined
with Chebyshev and conjugate gradient acceleration to solve certain partial
differential equations. Proskurowski and Widlund [1976] describe the use of
capacitance matrices to treat problems in which the region is not a rectangle.
Other fast direct methods are the marching algorithms of Bank [1975]; see
also Bank and Rose [1975] and Bank [1976].

For additional information on fast direct methods the reader is referred to
the papers cited above and to Buzbee et al. [1971], Dorr [1970], Hockney
[1965J, Swartztrauber [1974], and Sweet [1973].

2 BACKGROUND ON BASIC ITERATIVE METHODS38



CHAPTER

3
Polynomial Acceleration

3.1 INTRODUCTION

In this chapter we describe a general procedure for accelerating the rates
ofconvergence of basic iterative methods. This acceleration procedure, which
we call polynomial acceleration, involves the formation of a new vector
sequence from linear combinations of the iterates obtained from the basic
method. As noted by Varga [1962], such a procedure is suggested by the
theory of summability of sequences.

We define the general polynomial procedure, assuming only that the basic
method is completely consistent (see Section 2.2). However, later when we
consider Chebyshev and conjugate gradient polynomial methods, we
generally assume that the basic method is also symmetrizable.

The polynomial procedure we present is but one ofmany approaches that
may be used to accelerate the convergence of basic iterative methods. Some
nonpolynomial acceleration methods are discussed briefly in Section 3.3.

3.2 POLYNOMIAL ACCELERATION OF BASIC
ITERATIVE METHODS

Suppose the completely consistent basic method (2-1.2) is used to obtain
approximations for the solution ii of the nonsingular matrix problem Au = b.



Let the sequence of iterates generated by the basic method be given by
{w(n)}; i.e., given w(O), the sequence {w(n)} is formed by
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w(n) = Gw(n-l) + k, n = 1,2, .... (3-2.1)

From (2-2.6), the error vector ij(n) == w(n) - uassociated with the nth iterate
of (3-2.1) satisfies

n n n
Ii(n) = Irxn,iW(i) - u = Irxn,i(W(i) - u) = I rxn,is(i).

i=O i=O i=O

As a means to enhance the convergence of the w(n) iterates,t we consider a
new vector sequence {u(n)} determined by the linear combination

(3-2.4)

(3-2.3)

(3-2.2)

n = 0, 1, ....

n = 0, 1, '" .
n

I rxn,i = 1,
i=O

n

u(n) = ~ rx .w(i)L.J nt 1 ,

i=O

Using (3-2.2), we then may express Ii(n) in the form

Ii(n) = (.irxn,iGi)S(O).
•=0

It follows from (3-2.3)-(3-2.4) thats(O) = 1i(0). Thus, we may express Ii(n) in the
form

The only restriction we impose on the real numbers rxn. i is that

This condition is imposed in order to ensure that u(n) = u for all n ~ °
whenever the initial guess vector w(O) is equal to the solution U.

If we let Ii(n) == u(n) - udenote the error vector associated with the vectors
u(n) of (3-2.3), we have from (3-2.3) and (3-2.4) that

(3-2.5)

where QnCG) is the matrix polynomial Qn(G) == rxn,01 + rxn.1G + ... + rxn,nGn.
If QII(X) == rxn,o + rxn.1x + ... + rxn,nxn is the associated algebraic poly
nomial (see Section 1.3), then condition (3-2.4) requires that Qn(l) = 1. This
condition is the only restriction imposed thus far on QnCx).

Because of the form (3-2.5) for the associated error vector, we call the
combined procedure of (3-2.1) and (3-2.3) a polynomial acceleration method

t Since we have assumed only that the basic method (3-2.1) is completely consistent, con
vergence of the iterates win) to ii is not guaranteed.
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applied to the basic method (3-2.1). Varga [1962] calls this procedure a
semi-iterative method with respect to the iterative method (3-2.1).

The high arithmetic cost and the large amount of storage required in using
(3-2.3) to obtain u(n) make it necessary to seek alternative, less costly ways to
compute uln). We now show that a simpler computational form for u(n) is
possible whenever the polynomials Qn(x) satisfy the recurrence relation

Qo(x) = 1,

Ql(X) = YI X - Yl + 1,

Qn+ 1(x) = Pn+ 1(Yn+ l X + 1 - Yn+ l)Qn(X) + (1 - Pn+ l)Qn-l(X) for n 2 1,
(3-2.6)

where Yl' P2' Y2"" are real numbers. Note that the Qn(x), defined by (3-2.6),
satisfy Qil) = lfor all n 2 O. We remark that the set ofpolynomial sequences
{Qn(x)} satisfying (3-2.6) is large. For example, any properly normalized real
orthogonal polynomial sequence is"in such a set (see, e.g., Davis [1963]).

Theorem 3-2.1. Let the basic method (3-2.1) be completely consistent.
If the polynomial sequence {Qn(x)} is given by (3-2.6), then the iterates u(n)
of (3-2.3) may be obtained using the three-term relation

u(1) = Yl(GU(O) + k) + (1 - Yl)U(O),

U(n+ 1) == Pn+ 1 {Yn+ 1(GU(n) + k) + (1 - Yn+ l)U(n)} + (l - Pn+ l)U(n-l)

for n 2 1.

(3-2.7)

Conversely, any iterative procedure with iterates u(n) defined by (3-2.7) is
equivalent to the polynomial procedures (3-2.1) and (3-2.3), with the poly~

nomials {Qix)} given by (3-2.6).

Proof Let the polynomials {Qn(x)} be given by (3-2.6) and let 8(n) be the
error vector associated with the vector u(n) of(3-2.3). For n 2 1, we have from
(3-2.5) and (3-2.6) that

8(n+l) = {Pn+l[Yn+1 G + (1 - Yn+l)I]Qn(G) + (1 - Pn+l)Qn_l(G)}8(O),

(3-2.8)

and thus, again using (3-2.5), that

8(n+l) = Pn+l[Yn+1 G + (1 - Yn+l)I]8(n) + (1- Pn+l)8(n-1). (3-2.9)

By adding uto both sides of (3-2.9), we then obtain

u(n+l) = Pn+l[Yn+1 G + (1 - Yn+l)l]u(n) + (1 - Pn+l)U(n-l)

- Pn+1Yn+l(G - I)u. (3-2.10)



Since the set of eigenvalues {Jli}f=1 is in the interval [m(G), M(G)], we have
that

Since the complete eigenvalue spectrum of G is seldom known, it is more
convenient to consider the virtual spectral radius ofQiG) in place of S(QiG)).
If M(G) and m(G) denote, respectively, the algebraically largest and smallest
eigenvalues of G, then the virtual spectral radius of Qn(G) is defined by

Now, using the fact that Ii also is a solution to the related system (2-2.2), we
obtain the three-term form (3-2.7). The special case for e(l) follows similarly.
Conversely, let e(n) == uln) - Ii be the error vector associated with the vectors
u(n) of (3-2.7). By reversing the above steps using e(n+ 1) in place of e(n+ 1), we
get e(n+ 1) = Qn+ 1(G)e(O) with Qn+ 1(x) defined by (3-2.6). From this, it follows
that the iterative procedure (3-2.7) is equivalent to a polynomial acceleration
method, with the polynomials given by (3-2.6). •

As noted previously, there are many polynomial sequences {Qn(x)} that
satisfy (3-2.6). In this book, we consider only those polynomial sequences
that are associated with the Chebyshev and conjugate gradient acceleration
methods. We discuss below the general basis on which the polynomials
{Qix)} are chosen for these methods.

We now assume that the basic method (3-2.1) is also symmetrizable with a
symmetrization matrix W From (3-2.5), we have for any vector norm II·IIL
that

Ile(n)IIL = II Qn(G)e(O)IIL' (3-2.11)

For the conjugate gradient method, the polynomial sequence {Qix)} is
chosen to minimize II Qn(G)e(O)IIL, or equivalently Ile(n)IIL for a particular
choice of the vector norm II· ilL' The conjugate gradient method is discussed
in Chapter 7.

Since WGW- 1 is symmetric, it follows that the matrix WQn(G)W- 1 is also
symmetric. Thus from (1-4.7) and (1-4.11), we have that

Ile(n)llw ~ IIQiG)llwlle(O)llw = S(Qn(G))lle(O)llw' (3-2.12)

For the Chebyshev acceleration procedure, the error norm Ile(n)llw is made
small by picking the polynomials {Qn(x)} such that the spectral radius
S(Qn(G)) is small. More precisely, let {Jli}f=1 be the set of eigenvalues for the
N x N matrix G. Then {Qn(Jli)}f= 1 is the set of eigenvalues for the matrix
Qn(G). (See Section 1.3.) Thus we have

S(QiG)) = max \Qn(Jli) I. (3-2.13)
1 SiSN

(3-2.15)

(3-2.14)

, ,

~

S(Qn(G)) ~ S(Qn(G)).

S(QiG)) == max IQn(x)l.
m(G)SxSM(G)
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For the Chebyshev method, the polynomial sequence {Qn(x)} is chosen such
that S(Qn(G» is minimized. The Chebyshev method is described in Chapter 4.

Analogous to the definitions given in Section 2.2, the virtual average rate
ofconvergence for a polyllomial method is defined by

(3-2.16)

and provided the limit exists, the virtual asymptotic rate of convergence is
given by

(3-2.17)
n -+ <Xl

3.3 EXAMPLES OF NONPOLYNOMIAL ACCELERATION
METHODS

In this section we describe briefly several alternatives to the polynomial
approach for accelerating the convergence of basic iterative methods. The
classes of general acceleration procedures we present are called acceleration
by additive correction and acceleration by multiplicative correction.

Suppose the basic iterative process

u(n) = Gu(n-1) + k (3-3.1)

is used to obtain approximations for the solution uof the matrix problem
Au = b. It easily follows that the error vector /;(n) == u(n) - uand the residual
vector r(n) == Au(n) - b satisfy the residual equation

(3-3.2)

If Eq. (3-3.2) can be solved for /;(n), then we immediately have the solution
u= u(n) - /;(n). However, it is as difficult to solve (3-3.2) for /;(n) as it is to solve
Au = b for U. On the other hand, it is not always necessary to determine /;(n)

with great precision to improve the accuracy of u(n). Thus the basic method
(3-3.1) can often be accelerated by using the following procedure:

(1) Do L iterations of the basic method (3-3.1), using u(O) as the initial
guess.

(2) Compute 8(L), where 8(L) is some approximation to /;(L) of (3-3.2), and
set u(O) = U(L) - 8(L). Then go to step (1) again.

There are many ways to obtain the approximation 8(L). For example, if A
corresponds to the discretization with a mesh 7T:h of a continuous operator,
then 8(L) may be taken to satisfy A8(L) = r(L), where A corresponds to a dis
cretization over a coarser mesh, say 7T: Zh' Some methods that utilize this
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L

(3-3.3)

general approach are "the synthetic method" (e.g., see Kopp [1963J and
Gelbard and Hageman [1969J), "multilevel methods" (e.g., see Brandt
[1977J), and "multigrid methods" (e.g., see Nicolaides [1975, 1977J and
Hackbusch [1977J). Another approach is to obtain the approximation elL)

using the method of weighted residuals. To do this, let,e(L) be written as
M

e(L) = '\' c.C(.L. I l'

1= 1

where the C(i are some known vectors.t The unknown constants CI are
determined from the M equations

i = 1, ... , M, (3-3.4)

where the Wi are known weighting vectors. See, for example, de la Vallee
Poussin [1968J and Setturi and Aziz [1973].

The methods discussed above are called additive correction acceleration
methods. However, multiplicative correction methods have also been used.
Multiplicative correction methods attempt to improve the accuracy of U(L)

by multiplying U(L) by some matrix E instead of adding a vector elL) as in step
(2) above. Usually, E is a diagonal matrix whose diagonal entries are deter
mined by some weighted residual or variational method. Descriptions of
methods based on the multiplicative correction approach are given, for
example, by Kellogg and Noderer [1960J (scaled iterations), Nakamura
[1974J (coarse mesh rebalancing techniques), and Wachspress [1966J
(coarse mesh variational techniques). Wachspress [1977J considers an
acceleration procedure based on combined additive and multiplicative
correction.

t Often, the elemen(s of (Xi are chosen to be either 0 or 1.
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4
Chebyshev Acceleration

4.1 INTRODUCTION

In this chapter we consider Chebyshev polynomial acceleration applied
to basic iterative methods of the form

u(n) = GU(n-l) + k, n = 1,2, .... (4-1.1)

We assume throughout this chapter that the iterative method (4-1.1) is symmetriz
able.

Recall from Chapter 3 that the error vector associated with a general
polynomial acceleration procedure applied to (4-1.1) can be expressed as

(4-1.2)

where Qn(G) == IXn,0 I + IXn, I G + ... + IXn,n Gn is a matrix polynomial subject
only to the condition that .D'=o IXn,i = 1. Using the algebraic polynomial
Qn(x) associated with Qn(G), we defined

S(QiG)) == max IQII (x) I
m(G)';;x';;M(G)

(4-1.3)

as the virtual spectral radius of the matrix Qn(G). As before, M(G) and meG)
denote, respectively, the algebraically largest and smallest eigenvalues of G.
That particular polynomial method which is obtained by choosing the
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L

(4-2.1)

(4-2.2)

polynomial sequence {Qn(G)} such that S(Qn(G)), n = 1,2, ... , is minimized
is called the Chebyshev polynomial acceleration method.

In Section 4.2, we show that, indeed, the matrix polynomial Qn(G) that
minimizes S(QnCG)) can be defined in terms of Chebyshev polynomials. The
basic Chebyshev computational procedure is also derived in Section 4.2. It
turns out that the proper application of Chebyshev acceleration requires the
use of "iteration parameters" whose optimum values are functions of the
extreme eigenvalues M(G) and meG) of G. When optimum iteration param
eters are used, we show that Chebyshev acceleration can significantly
improve the convergence rate. For most practical applications, however, the
optimum parameters will not be known a priori and must be approximated
bysome means. In Sections 4.3 and 4.4, we study the behavior of the Chebyshev
method when iteration parameters which are not optimum are used. Compu
tational algorithms which generate the necessary Chebyshev iteration
parameters adaptively during the iteration process are presented in Chapters
5 and 6.

4.2 OPTIMAL CHEBYSHEV ACCELERATION

We first show that the matrix polynomial Qn(G) which minimizes S(QnCG))
is unique and can be defined in terms of Chebyshev polynomials. For any
nonnegative integer n, the Chebyshev polynomialt of degree n in w may be
defined by the recurrence relation .

To(w) = 1, T1(w) = W,

T,,+l(W) = 2wT,,(w) - T,,-l(W), n 2:: 1.

It can be shown by mathematical induction (see, e.g., Young [1971J) that
the T,,(w) may also be expressed by

T,,(w) = t[(w + Jw2
- 1)" + (w + Jw2

- 1)-nJ

= t[(w - Jw2
- l)n + (w - Jw 2

- 1)-nJ

= cosh(n cosh -1 w) when w > 1,

= cos(n cos -1 w) when -1::; w ::; 1.

We note that T,,(w) is an even function of w for n even and an odd function
of w for n odd.

The fundamental properties of Chebyshev polynomials that we shall use
are given in the following theorem.

t The Chebyshev polynomials utilized in this book are the so-called Chebyshev polynomials
of the first kind.
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Theorem 4-2.1. Let n be a fixed integer and let d be any fixed real number
such that d > 1. If we let

HnCw) = T,.(w)/T,.(d),

where T,.(w) is the Chebyshev polynomial (4-2.1), then

Hn(d) = 1

and

max IHnCw) I = 1/T,.(d).
-1';;w,;;1

(4-2.3)

(4-2.4)

(4-2.5)

Moreover, if Q(w) is any polynomial of degree n or less such that Q(d) = 1
and

max IQ(w)1 ~ max IHnCw)l,
-1';;w,;;1 -1';;w,;;1

then

Q(w) = Hn(w). (4-2.6)

Proof See, for example, Young [1971J or Flanders and Shortly [1950]. •

Returning now to the problem of minimizing S(QnCG», we seek that poly
nomial Pn(x) such that Pn(1) = 1 and such that

max IPnCx) I ~ max IQnCx) I,
m(G)';;xS;M(G) m(G)';;x';;M(G)

(4-2.7)

where Qn(x) is any polynomial of degree n or less satisfying Qn(1) = 1. The
existence and definition of such a polynomial follows from Theorem 4-2.1.
Specifically, let

w(x) == (2x - M(G) - m(G»/(M(G) - meG»~ (4-2.8)

be the linear transformation which maps the interval meG) ~ x ~ M(G)
onto the interval -1 ~ w ~ 1 and let

Hn(w) == T,.(w(x»/T,.(w(1».

Since the basic method (4-1.1) is symmetrizable, it follows from Theorem
2-2.1 that M(G). < 1. Thus w(1) > 1. If we nowdefine Pn(x) as

P ( ) == (2X - M(G) - meG»)! (2 - M(G) - meG») (4-2.9)
n x T,. M(G) _ meG) T,. M(G) - meG) ,

then obviously

max IPn(x) I = max IHn(w) I·
m(G)';;x';;M(G) -1 ';;w';; 1

(4-2.10)
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It now follows from Theorem 4-2.1 that the Pix) of (4-2.9) is the unique
polynomial satisfying (4-2.7). Thus we have

Theorem 4-2.2. Let Y'n be the set of polynomials {Qn(x)} of degree n or
less satisfying Qn(1) = 1. Then, the polynomial Pn(x) of (4-2.9) is the unique
polynomial in the set Y'nwhich satisfies

max IPn(X) I ~ max IQn(X) I
m(G):5x:5M(G) m(G):5x:5M(G)

for any Qn(x) E Y'n-
We now consider computational and convergence aspects of polynomial

acceleration using Pn(x) when applied to the basic method (4-1.1). Using
(4-2.1), it is easy to show that the polynomials Pn(x) satisfy the recurrence
relation

Po(X) = 1, Pl(x) = yx - Y + 1,

Pn+l(x) = Pn+l(YX + 1 - y)Pix) + (1 - Pn+l)Pn-l(x)

where

Y= 2/(2 - M(G) - meG»~,

Pn+ 1 = 2w(1)T,,(w(l»/Tn+1(w(1»,

for n ~ 1,

(4-2.11)

(4-2.12)

(4-2.13)

(4-2.15)

and where w(x) is defined by (4-2.8). It now follows from Theorem 3-2.1 that
the iterates for the polynomial procedure based on Pn(x) may be obtained by
using the three-term recurrence relation

u(n+l) = Pn+l{}i(GU(n) + k) + (1- y)u(n)} + (1 - Pn+l)U(n-l). (4-2.14)

We refer to the method defined by (4-2.14) with Yand Pn+ 1 given by (4-2.12)
and (4-2.13) as the optimal Chebyshev acceleration procedure. The term
"optimal" is used to distinguish the method from other (nonoptimal)
procedures in which estimates mE and ME are used for meG) and M(G),
respectively. Such procedures are described in Section 4.3.

Again making use of the Chebyshev polynomial recurrence relation
(4-2.1), we can write the parameters Pn+l of (4-2.13) in the more computa
tionally convenient form

- 1 -' (1 1 -2)- 1Pl =, P2 = - 2;(J ,

- (1 1 -2 - )- 1 2Pn+ 1 = - 40" Pn , n ~ ,

where

a = l/w(l) = (M(G) - m(G»j(2 - M(G) - meG»~. (4-2.16)
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It can also be shown (Varga, 1962) that

lim,on == ,000 = 2/(1 + J1 - (J2).

49

(4-2.17)

We now examine the convergence rate ofthe optimal Chebyshev procedure.
From (4-1.3), (4-2.5), and (4-2.10), the virtual spectral radius of Pn(G) is

S(PnCG» = [T,,(w(l»r 1 = [T,,(l/O')r 1. (4-2.18)

Using (4-2.2), and after a small amount of algebra, we can write T,,( I/O') in the
form

(1) 1+ 1'
n

T" if = 2rn/ 2 '

where

(4-2.19)

Thus we obtain

(4-2.20)

(4-2.21)

Thus from (3-2.16) and (4-2.20), the average virtual rate of convergence for
the optimal Chebyshev method is

- 1 1 (2)Rn(Pn(G»=--210gr--Iog -'
n 1 + r n

It is easy to see from (4-2.21) that the asymptotic rate of convergence defined
by (3-2.17) can be expressed in the form

Roo(PnCG» = - t log 1'. (4-2.22)

Note from (4-2.17) and (4-2.19) that l' = ,000 - 1. Thus we also have that

lim [S(PnCG»J1/n = (Poo - 1)1/2 and that Roo(Pn(G» = - t log(poo - 1).

From (4-2.21) and (4-2.22), it easily follows that Rn(PnCG» < Roo(Pn(G»
for all finite n. In fact, it can be shown that Rn(PnCG» is an increasing function
of n. We omit the proof. However, the data given in Table 4-2.1 show that
many iterations often are required before the asymptotic convergence is
achieved. In Table 4-2.1, we tabulate the values of the ratio

Rn(Pn(G» = -log(21'
n
/
2/(1 + F» = 1 + log(2/(1 + 1'

n
» (4-2.23)

Roo(Pn(G» -log 1'n/2 log rn/2

as a function of 1'. Thus we see that if, after n iterations, 1'n~ 0.1, then the
average virtual convergence rate for these n iterations is only about one-half
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TABLE 4-2.1

Values ofRnCPnCG))(R",CP.(G)) as a Function of P'

10- 1

10- 2

10- 3

10- 4

10- 5

R.(PnCG))/R",CPnCG))

0.481
0.703
0.800
0.850
0.880

10- 6

10- 12

10- 24

o

0.900
0.948
0.975
1.000

of its value for later iterations when the asymptotic convergence rate is
achieved.

We now compare the optimum Chebyshev acceleration procedure with
the optimum extrapolated procedure defined in Section 3.2. For the optimum
extrapolated method applied to the basic method (4-1.1), we have by (2-2.16)
and (4-2.16) that S(Grfj) = if and hence that

(4-2.24)

For the optimal Chebyshev procedure applied to (4-1.1), we have from
(4-2.22) that R,X)(Pn(G)) = -t log i', where i' is given by (4-2.19). It is easy to
show that

and that

-log if ,...., 1 - if, if-+1-

- t log i' ,...., J 1 - (12 ,...., -Ii J 1 -:.., if,

Combining this with (4-2.22) and (4-2.24), we have

if-+1-.

if-+1-. (4-2.25)

Thus for if close to unity, the optimum Chebyshev procedure is an order of
magnitude faster than the optimum extrapolated procedure.

As an example, consider the case in which M(G) = -m(G) = 0.99. In this
case we have if = 0.99 and i' ~ 0.753. Thus each iteration of the optimum
extrapolated method reduces the error by approximately a factor of 0.99,
while each iteration of the optimum Chebyshev method reduces the error by
approximately a factor of 0.868. The number of iterations needed to reduce
the norm of the error vector by a factor of 10- 6, as compared with the norm of
the initial error vector, would be approximately 1375 for the extrapolated
method and 98 for the optimum Chebyshev method. The factor of improve
ment would be greater for a larger value of if.



, '
L-.J

I

~

I
----..J

4.3 ESTIMATED EIGENVALUE BOUNDS 51

4.3 CHEBYSHEV ACCELERATION WITH ESTIMATED
EIGENVALUE BOUNDS

We now study the behavior of the Chebyshev acceleration process when
estimates mE and ME are used for meG) and M(G), respectively. When these
estimates are used, the normalized Chebyshev polynomial of (4-2.9) is written
as

= (2X - ME - mE)! (2 - ME - mE) _ T,,(WE(X»
Pn,E(X) - T" M T" M - T.( (1»'E - mE E - mE n WE

where WE(X) == (2x - ME - mE)/(ME - mE)' If we let

y == 2/(2 - ME - mE)'

O"E == (ME - mE)/(2 - ME - mE) = I/WE(1),

(4-3.1)

(4-3.2)

(4-3.3)

and

(4-3.4)

then it follows as before that the Pn,E(X) satisfy the recurrence relation
(4-2.11) with y and Pn+1 replacing the y and Pn+l, respectively. Thus from
Theorem 3-2.1, the iterates for the polynomial acceleration procedure based
on Pn,E(X) may be given by

u(n+l) = Pn+l{y(GU(n) + k) + (1 - y)u(n)} + (1 - Pn+l)U(n-l). (4-3.5)

We remark that the error vector s(n) == u(n) - uassociated with (4-3.5) now
satisfies

(4-3.7)
n ~ 2,(1 1 2 ) - 1Pn+1 = - 40"EPn ,

B(n) = Pn,E(G)B(O). (4-3.6)

Relations analogous to (4-2.15) and (4-2.16) also are valid for Pn+ 1; i.e.,

PI = 1, P2 = (1- !O"~)- \

and

(4-3.8)
2

limpn == Pro = J
n_ ro 1 + 1- O"~

In the above discussion, we have tacitly assumed that ME "# mE' If
ME = mE,theny = 1/(1- ME),PI = P2 = ... = landO"E = O.Forthiscase,
the Chebyshev acceleration procedure (4-3.5) reduces to the (nonoptimum)
extrapolation procedure (2-2.13). We shall not consider this case separately
in the balance of this section. The correct formulas can be obtained by a
limiting process.
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It was shown in the previous section that the Pn(x), defined by (4-2.9), is
the unique polynomial satisfying the inequality (4-2.7). Thus S(Pn, E(G» is
minimized only when Pn,E(X) == Pn(x); Le., when mE = meG) and ME =
M(G). We note that Pn.E(x) is that polynomial satisfying Pn.E(1) = 1 and
which has the minimum "maximum" magnitude over the interval mE :::;;
x :::;; ME' Because of this, equations for S(Pn, E(G» and Roo(Pn,E(G» analogous
to (4-2.18) and (4-2.22) need not be valid when Pn,E(X) is used. In the re
mainder of this section, we shall study the behavior of S(Pn,E(G» as a
function of mE and ME in more detail.

In order to simplify the discussion while at the same time retaining ade
quate generality, we will make one of the following two sets of assumptions:t

In later chapters, we shall strengthen the assumptions of each case by assum
ing additionally that ME < M(G).

We now graphically illustrate the behavior of Pn, E(X) for two cases, each
involving the assumptions of Case I. Figure 4-3.1 shows the behavior of
P10,E(X) when ME> M(G). Here r is defined in (4-3.21). For this case, it is
easy to see that

max !P10,E(X)! :::;; P10,E(ME).
mIG) ~ x ~M(G)

(4-3.15)

The equality holds for the value of M(G) shown in the figure. However, if the
value of M(G) were equal to the M* shown, then strict inequality would hold.
Figure 4-3.2 shows the behavior of P10.E(X) when ME < M(G). Here it is
clear that

max IP10,E(X)! = P10,E(M(G».
m(G)~x~M(G)

t The practicalities of these assumptions are discussed in Section 5.3.

(4-3.16)
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Fig. 4-3.1. Behavior of PI O. E(X) for Case I when ME> M(G). ME = 0.94737, mE = 0.00,
O"E = 0.90, r = 0.3~.

I
I
I
I
I
I
I

, I

l~lx:o ME \1.0

___ L M(G)

M~

.. X

Fig. 4-3.2. Behavior of PIO.E(X) for Case I when ME < M(G). ME = 0.789, mE = -3.0,
O"E = 0.90, ,. = 0.39.



(4-3.23)

(4-3.22)

(4-3.21)

(4-3.20)

(4-3.18)

(4-3.17)

if ME 2:: M(CT),

if ME ~ M(CT),

if ME 2:: M(CT),

if ME ~ M(CT),

if ME ~ M(CT),

if ME 2:: M(CT).

if ME ~ M(CT),

if ME 2:: M(CT).

4 CHEBYSHEV ACCELERATION

Roo(]Jn,E(CT» == -log J0'
2:: -log jr

_ 1 - J1 - ai A _ 1 - J1 - (aE/a*)2

r == 1 + J1 _af r == 1 + J1 - (aE/a*)2'

From (4-3.20), it follows that for either Case I or Case II we have

~(]Jn,E(CT» < 1.

where

We now show, under the assumptions of Case II, that the above bound on
Roo(]Jn, E(CT» is an increasing function of ME for M E~ M(CT) and a decreasing

From (3-2.17) and (4-3.20), the virtual asymptotic rate of convergence can
be given by

t Note that S(Pn.,,(G» = S(Pn,E(G» whenever M I'. 5,M(G).

where aE is given by (4-3.3) and

a* == (2M(CT) - ME - mE)/(2 - ME - mE)' (4-3.19)

Note that wE(M(CT» == a*/aE and that a*/aE == 1 when ME == M(CT). We use
a*/aE instead of wE(M(CT» merely for notation purposes in discussing
~(]Jn, E(CT» and i{LJ(]Jn, E(CT». Using (4-2.2), we can write the relations (4-3.18)
equivalently as

_ 2rn/2 j2f'/2
S(]Jn,E(CT» == 1 + rn 1 + f'

54

The symbols B, z, and ME shown in Fig. 4-3.2 are used later in Chapter 5.
From the above discussion we have, for either Case I or Case II,t that

~(]Jn,E(CT» == ]In,E(M(CT))

~ ]In,E(ME)

It then follows from (4-3.1) that

~(]Jn, E(CT» == 1'.(::) j1'.(alE)
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function of ME for ME ~ M(G). Indeed, by (4-3.12), (4-3.3), (4-3.19), and
(4-3.21) we have O:E = ME, 0:* = M(G),

1 - )1 - M~
r = ---'r====;;:

1+ )1 - Mf
and

(4-3.25)

The fact that ~K,)(Pn,E(G)) is a decreasing function of ME for ME ~ M(G)
follows from (4-3.23) and (4-3.24). It also follows from (4-3.23) that
Roo(Pn,E(G)) is an increasing function of ME for ME::s; M(G) if we can show
that -log(r/r) is an increasing function of ME' But by (4-3.24) and (4-3.25)
we have

d[ r] 2{ 1 1}- -10 - = - - - 4-326
dME g I' ME )1 - M~ )1 - (ME/M(G))2 ' ( . )

which is positive since M(G) < 1. Hence the desired result follows.
We remark that the above result can also be shown to be true for

Rn(Pn,E(G)) as well as for Roo(Pn,E(G)), and for Case I as well as for Case II.

4.4 SENSITIVITY OF THE RATE OF CONVERGENCE TO
THE ESTIMATED EIGENVALUES

In this section, we give quantitative results to illustrate the sensitivity of
the asymptotic virtual rate of convergence Roo(Pn,E(G)) to the estimates ME
of M(G) and mE of meG).

We first consider the behavior of Roo(Pn,E(G)) as a function of ME when
M(G) is close to one. For convenience of exposition, we shall assume here
that the assumptions of Case II hold with meG) = -M(G). With these
assumptions, we shall show that if(1 - M(G)) and (1 - ME) are both small,
then approximately

where

if ME::s; M(G),
if ME~ M(G), (4-4.1)

e= (1 - M E)/(1 - M(G)). (4-4.2)



r ~ 1 - 2.fi~J1 - M(G),

For the case ME::::;; M(G), we have by (4-3.23) that

Kt)(Pn,E(G)) = -log0 - (-logJ?). (4-4.3)

But for small (1 - ME) and small (1 - M(G)), by (4-3.24) and (4-3.25) we
have, approximately, that
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r~ 1 - 2.fiJif=l J1 - M(G).
(4-4.4)

Thus both rand rare close to unity so that R",,(Pn.~(G)) of (4-4.3) may be
approximated by R",,(Pn,E(G)) ~ i[(1 - r) - (1 - r)]. From this we obtain,
using (4-4.4),

(4-4.5)
- . .fi J(1 - M(G)
R",,(Pn,E(G)) =;= (Q riJ1'

ye+ y e-1

Moreover,from(4-2.22),R",,(Pn(G)) = -logr1/2,wherer = [1 - (1 - 0=2)1 /2J/
[1 + (1 - 0=2)1 /2J and where 0= is given by (4-2.16). But 0= = M(G) here since
we have assumed that meG) = -M(G). Combining these facts, we obtain

R",,(PnCG)) ~ t[1 - rJ ~ .fi J1 - M(G). (4-4.6)

Thus the first part of (4-4.1) follows from (4-4.5) and (4-4.6). A similarargu
ment can be used to show the second part of (4-4.1).

To illustrate these results, we consider the following examples. First,
consider the case M(G) = 0.99. If e= 1.1, we have ME = 0.989, which at
first sight would seem to be a very close estimate. However, we have r =
0.91400, r = 0.74229, and r = 0.75274, so that

[R",,(Pn,E(G))r 1 = 9.61120

as compared with

Thus the actual ratio of convergence rates in (4-4.1) is 1.36496. This implies
that the expected number of iterations when using ME = 0.989 is 36 %more
than if ME = M(G) were used. Wenote that

~ + Jif=l = 1.3650.

Thus the approximation (4-4.1) is quite accurate.
Suppose, on the other hand, that e= 0.9. In this case, ME = 0.991. Here

r = 0.76388 and

[R",,(P n,E(G))r 1 = (-tlogr)-l = 7.42544.
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The left ratio in (4-4.1) is 1.05455. Thus the expected number of iterations,
using ME = 0.991, is only about 5.5% more than if ME = M(G) were used.
We note that

Again, the approximation (4-4.1) is quite accurate.
Let us now consider the case e= 2, in which again M(G) = 0.99. In this

case, ME = 0.98, r = 0.66806, f = 0.75167, and [Roo(Pn E(G»r 1 = 16.961.
Thus the left ratio in (4-4.1) is 2.408. This should be 'compared with the
approximation (4-4.1); i.e.,

.fl + je=l = 2.414.

If 1 - M(G) is very small, the approximation (4-4.1) is accurate even for
quite large e. Suppose M(G) = 0.9999. If e= 100, then ME = 0.99, r =
0.75274, and r= 0.75383. Moreover, [Roo(Pn,E(G»r 1 = 1382.17 as com
pared with [Roo(Pn(G»r 1 = (-tlogr)-l = 70.706. (Notethatr = 0.97211.)
Thus the left ratio in (4-4.1) is 19.548. This should be compared with the
approximation

.fl + je=l = 19.950.

We remark that the behavior of Roo(Pn,E(G» as a function of ME for Case I
conditions is similar to that given above for Case II.

From the above discussion, it is clear that if we underestimate M(G), we
increase the expected number of iterations much more than if we over
estimate M(G) by an equivalent amount. However, upper bounds for M(G)
which are nontrivial in the sense that they are less than unity and yet close to
M(G) are very difficult to obtain. Moreover, it is very difficult to improve an
overestimated value even if one is available. On the other hand, if ME is an
underestimate for M(G), then improved estimates for M(G) can be obtained
by using the adaptive procedures given in Chapters 5 and 6. In addition, as
we shall see later, very accurate estimates of the iteration error may be
obtained when ME < M(G). For these reasons, the adaptive procedures
described in subsequent chapters are designed so that the estimates ME
converge to M(G) from below.

Turning our attention now to the estimate mE, we first note that
Roo(Pn,E(G» does not depend on mE when Case II conditions hold. For Case I
conditions, we shall show that Roo(Pn,E(G» is relatively insensitive to the
choice of mE as long as mE ::;; m(G).t Specifically, if (1 - M(G» is small, if

t The case in which mE is greater than meG) is considered later in Chapter 6.
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(4-4.13)

(4-4.12)
1 + b - mE

1 + b - m(G)

(m(G) - mE)/1 m(G) I ~ 0.1
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[Roo(Pn.E(G»r I -'
[Roo(p.(G»r I -,-

Thus

in order that the increase in the number of iterations using mE be less than 4%.

b = 1 - M(G), A = m(G) - mE' (4-4.8)

Since ME = M(G), we have from (4-3.23) that Roo(Pn,E(G» = -log r1/2 ,
where r = [1 - (1 - O"DI /2]/[1 + (1 - 0"~)1/2] and where O"E is given by
(4-3.3). Using (4-4.8) with ME = M(G), we obtain

(1 - O"E) = 2b(1 + b - m(G»-I.

Since b is small, it follows that r may be approximated by

r ~ 1 - 2.j2 Jl - O"E = 1 - 2.j2 J2b/(1 + b - mE)' (4-4.9)

Thus we have approximately that

Roo(Pn.E(G» ~ 1(1 - r) ~ .j2 J2b/(1 + b - mE)' (4-4.10)

From (4-2.22) together with (4-2.16) and (4-2.19), it follows similarly that
Roo(Pn(G» may be approximated by

Roo(Pn(G» ~ .j2 J2b/(1 + b - m(G». (4-4.11)

and (4-4.7) follows.
Thus it is clear from (4-4.7) that Chebyshev acceleration is relatively

insensitive to the estimate mE as long as mE ~ m(G). For example, if
A( =m(G) - mE) is equal to 0.1, then the expected number of iterations using
mE is only about 4 %more than if mE = m(G) were used. Further, if m(G) ~
- 1.0, then mE need satisfy only

[
A JI /2

~ 1 + 1 - m(G) ,

where

ME = M(G), and if mE ~ m(G) < 0, we show that, approximately,

[Roo(Pn.E(G»r I == [ 1 + b - mE ]1 /2< [ 1 - mE ]1 /2
[Roo(Pn(G»] I . 1 + b - m(G) - 1 - m(G)
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CHAPTER

5
An Adaptive Chebyshev

Procedure Using

Special Norms

5.1 INTRODUCTION

In this chapter we develop parameter estimation and stopping procedures
for the Chebyshev acceleration method applied to the basic iterative process

urn + 1) = Gu(n) + k. (5-1.1)

As in Chapter 4, we assume that the basic method (5-1.1) is symmetrizable
(Definition 2-2.1). Thus there exists a symmetrization matrix W such that

W(I - G)W- 1 (5-1.2)

is symmetric and positive definite. The adaptive procedures given in this
chapter are based on certain inequalities satisfied by the W -vector norm.
Examples of symmetrization matrices W for various basic methods were
given in Chapter 2. In this chapter, we assume that the matrix W; or at least
WTW; is conveniently available for computational purposes. Adaptive
procedures not utilizing the W-norm are given in Chapter 6.
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(5-1.7)

(5-1.5)

(5-1.6)

(5-1.3)

if n = 0,
if n = 1,
if n ~ 2,
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and

where

In the adaptive procedure given here, a test is made during each iteration to
determine whether or not the acceleration parameters are satisfactory. If the
acceleration parameters are judged unsatisfactory, the adaptive procedure
then gives new estimates for the required parameters. The decisions made by
the adaptive procedure are based on a comparison of the observed error
reduction of the iterates (5-1.4) with the expected error reduction when the
estimated parameters are optimal.

To obtain the optimum Chebyshev parameters, both meG) and M(G)
must be known. However, by making certain assumptions, we simplify the
problem in this chapter to that of determining only M(G). We state and dis
cuss these assumptions in Section 5.3.

In Section 5.4, the basic relationships used in the adaptive parameter and
stopping procedures are developed. The overall adaptive procedure is then
presented in Section 5.5 and some computational aspects are discussed in
Section 5.6. The effectiveness of the adaptive process is illustrated in Section
5.7, using a simulated iteration process.

We remark that the adaptive procedure given in Chapter 6 is applicable
to more general problems than is the procedure given here. However, the
fundamental ideas discussed here provide the basis for the procedure of
Chapter 6.

Before starting the development of the adaptive procedure, we introduce
in Section 5.2 the pseudoresidual vector, which plays an important role in our
adaptive procedure.

If mE and ME are estimates for meG) and M(G), respectively, the Chebyshev
procedure is defined by (4-3.5) and has the form

u(n+l) = Pn+l[y(GU(n) + k) + (1 - y)u(n)] + (1- Pn+l)U(n-l), (5-1.4)

It follows from Theorem 2-2.1 that the eigenvalues {Jl;}:;:;~ of the N x N
matrix G are real and may be ordered as
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For the iterate uln) of (5-1.4), the pseudoresidual vector bIn) is defined by

bIn) == Gu(n) + k - u(n). (5-2.1)

With the exact solution to (T - G)u = k denoted by ii, the error vector
e(n) == u(n) - ii and the residual vector bIn) are related by

(5-2.2)

Indeed, since k = (I - G)ii, (5-2.2) is obtained directly from (5-2.1). More
over, by (5-1.2), (I - G) is nonsingular so that

e(n) = (G - 1)-lb(n). (5-2.3)

For any vector norm 11·11 we have

II e(n) II s II(G - 1)-lllllb(n)11

and in particular from (1-4.11)

Ile(n'll w s (1 - M(G))-lllb(n)llw'

(5-2.4)

(5-2.5)

Thus an upper bound for Ile(n)llw can be obtained from Ilb(n)llw provided that
M(G) is known. The relationships (5-2.3) and (5-2.5) are fundamental to the
stopping procedures used in this book. We now show that the behavior of
the bIn) vectors is also related to the normalized Chebyshev polynomial
associated with (5-1.4).

By (4-3.6), the error vector associated with (5-1.4) satisfies

e(n) = Pn,E(G)e(O), (5-2.6)

where

Pn,E(X) == Tn(2X - ME - mE)/Tn(2 - ME - mE) (5-2.7)
ME - mE ME - mE

and Tn(w) is the Chebyshev polynomial defined by (4-2.2). Using (5-2.3), we
may express the relation (5-2.6) in terms of bIn) as

bIn) = Pn,E(G)b(Ol. (5-2.8)

Thus from (1-4.11) and (3-2.15), the W-norm of bIn) satisfies

Ilb(n)llw S S(Pn.E(G))llb(Olllw S S(Pn.E(G))llb(O)llw, (5-2.9)

where S(Pn.E(G)) and S(Pn.E(G)) denote, respectively, the spectral radius
and the virtual spectral radius of the matrix Pn,E(G). The relationships
(5-2.8) and (5-2.9) are fundamental to the adaptive parameter estimation
procedures given in this book..
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We remark that it is easy to show that e(n+ 1) and b(n+ 1) also satisfy the same
three-term recurrence relation. By (3-2.9), e(n+ 1) may be expressed as

e(n+1) = Pn+1[yGe(n) + (1 - y)e(n)] + (1 - Pn+1)e(n-l), (5-2.10)

which, because of (5-2.2), may also be written in terms of bIn) as

b(n+ 1) = Pn+ 1 [yGb(n) + (1 - y)b<n)] + (1 - Pn+ l)b(n- 1). (5-2.11)

5.3 BASIC ASSUMPTIONS

To estimate the optimum Chebyshev parameters y and Pn' both m(G) and
M(G) must be estimated. However, as shown in Section 4.4, the estimate ME
for M(G) is by far the most important. This fact is used in the following
alternative sets of assumptions on the estimates mEand ME and on the eigen
value bounds m(G) and M(G). By making eithe~ set of assumptions, we
simplify our parameter estimation problem to that of determining only
M(G). The two sets of assumptions are referred to as Case 1* and Case II*.
We have

Case 1*: mE < ME < M(G) < 1 and

Case II*: 0 < -mE = ME < M(G) < 1

mE ~ m(G). (5-3.1)

and Im(G)1 ~ M(G). (5-3.2)

We remark that Case 1* and Case II* are the same as Case I and Case II,
respectively, discussed in Chapter 4, except that here we require that ME <
M(G). The assumption that ME # mE is imposed for convenience and will
be relaxed later. The adaptive procedures given later in this chapter are
based only on Case 1* conditions. For reasons given below, C~se II* is of
considerably less practical interest than Case 1*.

For Case 1* conditions, the assumption that ME < M(G) can be satisfied
easily. As we shall see later, all that is required is that the initial guess Mjp)
for M(G) satisfy Mjp) < M(G); ifno better guess is available, this can be done,
for example, by picking M~O) close to mE' The inequality M(G) < 1 follows
from the fact that the basic method is symmetrizable.

Discussion of Case 1*

The basic assumption for .Case 1* is that a lower bound m for m(G) is
available. The estimate mE then can be chosen to be m. For Case 1* condi
tions, the adaptive procedure given later assumes mE = m to be fixed through
out the calculations. Thus only M(G) must be determined. Note that for this
case, we do not attempt to obtain the truly optimum Chebyshev parameters
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y and Pn+ 1 defined by (4-2.12) and (4-2.13). Instead we seek to obtain only
the "pseudo "-optimum parameters yand Pn+ 1, which are defined by (4-2.12)
and (4-2.13), except that the lower bound m is used for meG).

As shown in Section 4.4, the convergence rate of the Chebyshev process is
relatively insensitive to the estimate mE for meG). Thus if m is a reasonable
lower bound for m(G), the use of pseudoparameters rather than true optimum
parameters will not significantly affect the effectiveness of the Chebyshev
process. If M(G) is close to unity and if meG) and m satisfy

Os meG) - m s 0.1 if -1.0 s meG) s 0,

O < meG) - m < 0.1 ·f () 10 (5-3.3)- Im(G) I - 1 m G < - . ,

then (see Section 4.4) the use of "pseudo"-optimum parameters will cause
roughly a 5%increase in the number of iterations required for convergence.
Any m satisfying (5-3.3) may be considered reasonable.

We remark that the Chebyshev convergence rate may be significantly
decreased if m is too loose a bound for meG). For example, it can be shown
that the use of "pseudo"-optimum parameters can increase the number of
iterations by more than 40% whenever m < 2m(G) - 1.0. Thus some care
should be taken in the choice ofm. We warn the reader that iterative diver
gence may result ifmE does not satisfy mE s meG). An adaptive procedure for
estimating meG) and for detecting if possibly mE > meG) is given in Chapter 6.

Case 1* is important since a reasonable lower bound for meG) is readily
available for many problems. Some examples of this are the following:

(a) if the basic method (5-1.1) is the SSOR method or the "double
method" discussed below, then m(G) ~ 0;

(b) if the basic method (5-1.1) is a convergent process, then 5(G) < 1 so
that meG) > -1; and

(c) if IIGII", is conveniently calculable, then 5(G) s IIGII", so that
m(G) ~ -IIGII '" .
It is also sometimes possible to utilize special properties of the coefficient
matrix A in (2-1.1) to obtain a priori bounds for meG). Examples of this are
given in Chapters 8 and 10. Also, as we shall presently show, any Case II*
problem may be transformed into a problem satisfying Case 1* conditions.

Discussion of Case II*

An adaptive procedure for Case II* conditions is of considerably less
practical interest than Case 1*. There are two reasons for this. First, problems
that satisfy (5-3.2) often satisfy the so-called property d condition (defined
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in Chapter 9). For these problems, the special methods discussed in Chapters
8 and 9 should be used since they are more efficient than the Chebyshev
acceleration method described in this chapter.

The second reason is that any problem satisfying (5-3.2) may also be solved
efficiently as a Case 1* problem. This can be done in two ways. First, since
(5-3.2) implies m(G) > -1, any problem satisfying (5-3.2) can be solved by
using procedures for Case 1* with m = -1. Moreover, if M(G) is close to
unity, the use of m = -1 causes only a minimal loss of efficiency. This follows
from the discussion given in Section 4.4. Second, any basic method (5-1.1)
satisfying (5-3.2) may be reformulated as a so-called" double" method, for
which Case 1* conditions hold with m = O. The double method associated
with (5-1.1) is

u(n+ 1) = G(Gu(n) + k) + k = G2u(n) + (I + G)k. (5-3.4)

If G satisfies the Case II* conditions, then M(G 2
) < 1 and m(G2

) 2:: O. Thus
Case 1* conditions are satisfied for the basic method (5-3.4) with m = O. No
loss of efficiency occurs when the double method is used (see, e.g., Hageman
et al. [1977J).

In order to avoid the complication of developing two similar but different
adaptive procedures, henceforth, we shall be concerned only with problems
satisfying the more important Case 1* conditions.

5.4 BASIC ADAPTIVE PARAMETER AND STOPPING
RELATIONS

In this section we develop stopping and adaptive parameter estimation
procedures for the Chebyshev acceleration process (5-1.4) when the estimates
mE and ME satisfy the Case 1* conditions of (5-3.1).

The iteration stopping procedure we give is based on inequality (5-2.5).
The adaptive parameter estimation procedure we give consists of two
principal subprocedures, both of which are based on inequality (5-2.9). One
subprocedure is designed to determine whether or not the parameters
currently being used are satisfactory. The other subprocedure is designed to
give new improved estimates for the optimum acceleration parameters when
the present parameters are judged to be unsatisfactory.t The algorithm given
in the next section is divided into analogous subprocedures. It may be
instructive to the reader to look ahead at the algorithm while reading the
material given below.

t As we shan see, these improved parameter estimates will also be utilized in the iteration
stopping procedure.
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For the procedures presented here, we assume that the estimate ME for
M(G) will be changed several times during the iteration process. To indicate
more clearly that ME is changed and, hence, that different polynomial
sequences are generated during the iteration process, we introduce the
following notation:

Pp, Es(X) denotes the normalized Chebyshev polynomial of degree p
using the most recent estimate M Es for M(G); here, the sub
script s indicates that this is the sth estimate used for M(G)

q denotes the last iteration step at which the previous estimate
MEs _

1
was used; for the initial estimate in which s = 1, we

let q = 0
n denotes the current iteration step

Note that ME
s

is used first at iteration step q + 1 and that e(q) = u(q) - it is
the error vector prior to the first use of M Es ' From (5-2.6), the error vector
after step q + 1 is e(q+l) = P1,Es(G)e(q), and, in general, for step n = q + p,
the error vector e(") may be expressed as

(5-4.1)

Substituting for e(") and e(qj in (5-4.1) and using (5-2.3), we obtain a similar
equation for <5("), namely,

(5-4.2)

Thus using the above notation, we may express the fundamental inequality
(5-2.9) as

(5-4.3)

For notational convenience, we drop the subscript s on M Es and Pp,Es(G)

when the meaning is clear.

Evaluation of Current Parameters

Ifthe current estimate ME for M(G) satisfies ME 2: M(G), it follows from
(5-4.3) and (4-3.20) that

11<5(")llw/II<5(q)llw ::s;; 2rP/
2/(l + rP), (5-4.4)

where p = 11 - q and r is given by (4-3.21). Thus if inequality (5-4.4) is not
satisfied, i.e., if

11<5(")11 w/IWq
) II w> 2rP/

2/(1 + rP),

then we have conclusive evidence that ME < M(G).
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Even though at a given stage we have definite proof that M(G) is greater
than ME' it may nevertheless not be efficient to change ME' Any time we
change ME' we must start the Chebyshev process over again. In the limiting
case in which ME is changed after every iteration, we would always have
Pn = 1. Thus for this case, we would be carrying out the basic method with
extrapolation but without Chebyshev acceleration. Moreover, as shown in
Section 4.2, the average virtual rate of convergence for the Chebyshev process
increases to an asymptotic value and many iterations are often required
before the asymptotic state is reached. Thus if ME is changed too frequently,
the optimum asymptotic convergence rate will never be achieved.

We use a "damping factor" to prevent ME from being changed too often in
the following test: The current acceleration parameters are deemed to be
inadequate if

IWn)llw ( 2rP/2 )F
II <5(q) II w > 1 + rP . (5-4.5)

Here F is a strategy parametert which is chosen in the interval [0, 1]. We
shall refer to F as the damping factor. The purpose of F is to introduce a kind
of "damping "into the adaptive process. As we have already stated, choosing
F = 1 may result in changing parameters very frequently. On the other hand,
with F = 0 one would never change parameters no matter what value of
ME < 1 is chosen since we always have 11<5(n)llw < 11<5(q)llw. Our numerical
studies indicate that some value ofF in the range 0.65-0.85 is appropriate but
that the effectiveness of the adaptive procedure is relatively insensitive to F.
By choosing F < 1, we show in Section 5.7 that we are in effect resigning
ourselves to an average convergence rate which may be only F times the
optimum attainable. On the other hand, too large a value of F could result
in the parameters being changed too frequently. Further discussion on the
choice of F is given in Section 5.7.

The Estimation of New Acceleration Parameters

Once the present acceleration parameters are judged unsatisfactory, new
estimates must be obtained. For Case 1* conditions, this requires only a new
estimate M~ for M(G). To obtain this new estimate M~, we utilize again
inequality (5-4.3). First, since ME < M(G), we have from (4-3.17) that
S(Pp,E(G)) = Pp,E(M(G)). Thus inequality (5-4.3) may be expressed in the
form

11<5(n)llw/II<5(q)llw 5 S(Pp,E(G)) = Pp,E(M(G)) = TP(WE(M(G)))/Tp(WE(1)),
(5-4.6)

t By strategy parameter, we mean that no mathematical basis exists for choosing this param

eter and that the optimum parameter value is likely to be problem dependent. Usually, the
effectiveness of the process is relatively insensitive to the value chosen for a strategy parameter.
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where, as in Section 4.3, WE(X) is defined by

WE(X) == (2x - ME - mE)/(ME - mE)' (5-4.7)

We take as the new estimate M~ for M(G), the largest real x which satisfies
the Chebyshev equation

The situation can be illustrated, using Fig. 4-3.2. Let B = 11£5(n)llw/II£5(Q)llw
and assume that (5-4.5) is satisfied. Thus we have

(5-4.9)

(5-4.8)

The solutions to the Chebyshev equation (5-4.8) can be obtained by deter
mining the points at which the horizontal line through (0, B) intersect the
curve Pp,E(X), For the case of Fig. 4-3.2, the horizontal line through (0, B)
intersects P lO,E(X) at the points (M~, B) and (z, B). Note that both z and M~
lie outside the interval [mE, ME], but only M~ lies in the interval [meG),
M(G)]. Thus since the solution z is not relevant here, we take M~ to be the
new estimate for M(G). We note that the horizontal line through (0, B) and
the curve Pp, E(X) intersect only once if p is odd.

The largest real solution to the Chebyshev equation (5-4.8) may be easily
obtained in closed form.

Theorem 5-4.1. Let

(5-4.10)

and

(5-4.11)

where r is given by (4-3.21) and WE(X) by (5-4.7). If Case 1* conditions (5-3.1)
are satisfied and ifB > Q, then the largest real solution M~ to the Chebyshev
equation (5-4.8) is given by

ME < ME ::; M(G). (5-4.14)

Proof From (5-4.10) and (5-4.11), the Chebyshev equation (5-4.8) may be
written as

(5-4.12)

(5-4.13)Y = [(B/Q) + J (B/Q)2 - 1] lip.

where Y is the positive real number

Moreover, ME satisfies

(5-4.15)
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(5-4.16)

where (B/Q) > 1 by assumption. Thus by (4-2.2), a solution ME to (5-4.15)
satisfies

wE(ME) = COShGCOSh-l(~)) = ~(Y2y+ 1),
where Y is given by (5-4.13). Note that wE(ME) is positive. Then solving

. (5-4.16) for ME we obtain (5-4.12). To show that ME is the largest real solution,
suppose that Xl > ME is also a solution to (5-4.15). Since this implies by
(5-4.7) that WE(Xl) > wE(ME) > 0, we have by (5-4.16) that

0< WE(X l) - wE(ME) = WE(Xl) - cosh((1/p)cosh-l(B/Q»; (5-4.17)

but Xl also satisfies (5-4.8) so that 'Tp(wECx l » = (B/Q) > 1. Thus we get
from (5-4.17)

0< {WE(Xl) - cosh((I/p)cosh-1Tp(WE(Xl»)} = WE(X l) - WE(Xl) = 0,

which is a contradiction.
To prove (5-4.14), we use (5-4.6) and the fact that (B/Q) > 1 to obtain

(5-4.18)

Since cosh((I/p) cosh -1 X) is an increasing function of X for X ;;::: 1, we have
that

COShGCOSh-11) < COShGCOSh-l~) S COSh(tCOSh- l 'J;,(WE(M(G»»)

(5-4.19)

or equivalently from (5-4.16) and (4-2.2) that

1< wE(ME) S wE(M(G». (5-4.20)

Inequality (5-4.14) now follows from the definition of WE(X) and the proof of
Theorem 5-4.1 is complete. •

Thus when the test (5-4.5) to change parameters is satisfied, the new
estimate ME for M(G), given by (5-4.12), can be used to obtain improved
Chebyshev acceleration parameters')' and Pn' given by (5-1.5) and (5-1.6).
We note that the required condition B/Q > 1 of Theorem 5-4.1 is satisfied
whenever inequality (5-4.5) is satisfied. Result (5-4.14) ensures that any new
estimate ME for M(G) will satisfy the Case 1* condition that ME S M(G).

Remark. For the algorithm given in the next section, we permit an initial
estimate ME equal to mE' This is done primarily for convenience when no
other reasonable choice for ME is available. When ME = mE, the Chebyshev
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(5-4.21)

where GIy] = yG + (l - y)I. With mE:::; meG), it follows that S(G[yj) =
(M(G) - mE)/(l - mE) and that

11<5(nl ll w :::; (Mi
G2~EmE)"II<5(O)llw. (5-4.22)

(5-4.23)

Thus when mE = ME' an estimate ME for M(G) may be obtained using

, [11<5(n)1I wJ lin
ME = mE + (1 - mE) 11<5(O)llw .

Formula (5-4.12) for ME does not reduce to (5-4.23) when ME = mE'
However, an alternative expression for the solution ME to the Chebyshev
equation may be given which agrees with (5-4.23) in the limit as ME ~ mE'
This alternative expression may be obtained easily from (5-4.12). We initially
assume, as in (5-4.12), that ME #- mE' It can be shown, using (4-3.21) that

O"E = 20/(1 + r). But by definition (4-3.3),

O"E = (ME - mE)/(2 - ME - mE)'

Thus ME - mE = 20 (2 - ME - mE)/(l + r). Using this expression to
eliminate (ME - mE) in (5-4.12), we obtain

Termination of the Iterative Process

ME = ~ [ME + mE + (2 - ME - mE)C ~ r)(X + rX- I
)} (5-4.24)

where

x = [!(B + JB2 - Q2)(1 + rP)JI/P.

Since r ~ 0 and Q--+ 0 as ME --+ mE, it follows that (5-4.24) agrees with
(5-4.23) in the limit. The use of (5-4.24) instead of (5-4.12) in the algorithm
given in the next section enables us to treat the special case ME = mE in a
normal way. .

(5-4.25)e(n) == u(n) - ii,

As before, we define the iteration error vector by
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where u is the unique solution to (I - G)u = k and u(n) is the Chebyshev
iterate of (5-1.4). The iterations are to be terminated whenever some measure
of the error becomes sufficiently small; i.e., whenever

(5-4.26)

where II· lip denotes some vector norm and' is the desired accuracy. Since u
is not known, Ile(n)ll p cannot be computed directly. We shall use the pseudo
residual vector (j(n) to approximate e(n).

By (5-2.5) we have Ile(n)llw ~ [1/(1 - M(G))JII(j(n)llw' Thus if

(5-4.27)

(5-4.28)

then (5-4.26) is satisfied whenever f3 = Tv. There are two difficulties with the
use of (5-4.27) to terminate the iterative process. First, M(G) may not be
known. This, however, causes no great difficulty since sufficiently accurate
estimates for M(G) usually are available from the adaptive parameter
procedure or by some other means. The second difficulty is that the desired
measure of the error vector may not be the W-norm. We note that the sym
metrization matrix W depends on the 9asic iteration method being used as
well as on the problem to be solved.l1'he norm used to measure the error
vector should be adjustable to the type of problem under consideration. For
example, in solving heat conduction problems, the user is often interested in
the maximum temperature. For this case, the maximum component norm
11·1100 would be a meaningful measure for the error vector. For other types of
problems, appropriate measures for the error vector include the energy
norm,t the 2-norm, the W-norm, or some area weighted norm.

We now show that the error vector e(n) can be measured approximately by
/'

for any vector norm II· lip provided that M~ ~ M(G) and that n is sufficiently
large. The following lemma follows directly from Theorems 6-2.3 and 6-2.4,
given later in Section 6.2.

Lemma 5-4.1. IfmE and ME satisfy the Case 1* conditions of(5-3.1), thent
for any vector norm f3

(5-4.29)
n-+ 00

t The energy norm is defined by II·IIA'/" where A is the symmetric and positive definite
coefficient matrix of (2-1.1). For some problems, the energy norm is related to the energy of the
system.

t We also require that the expansion for 6(0) in terms of the eigenvectors of G not be void in
the eigenvector corresponding to M(G).
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(5-4.35)

Thus.provided that n is sufficiently large, we have for any vector norm 13
that·

118(nJll p~ 116(n)llpl(l - M(G)). (5-4.30)

With M(G) in (5-4.30) replaced by the estimate ME, we get (5-4.28).
Often, a relative error measure is desired; i.e., to terminate the iterative

process whenever--

118(n)llp/llull'l ~ (. (5-4.31)

Using (5-4.28) and the approximation Ilull'l ~ Ilu(n+1JII~, we obtain the
termination test

118(nJll p . 1 116(n)llp < r
Ilull~ =;= 1 - ME Ilu(n+ 1)11~ - \,. (5-4.32)

(Although any norm I] may be used in the normalization, some caution should
be taken in the choice of 1]. Some vector norms are functions of the vector
dimension and others are not. For example, if uwere nearly constant, then

II ilI12 ~ IN II ilil <x" where N is the dimension of u. For this case,the choice
of 13 = 00 and I] = 2 would result in an equivalent error measurement of

118(nJII oo/[IN Ilqll 00]' which can be unfortunate since it depends on the vector
I dimension N.vtJsually the normalizing norm II'II~ should be the maximum
, component norm 11·1100 or the same f3-norm used to measure 8(n).

Perhaps a better, but sometimes more costly, way to obtain a relative error
measure is to use the relative vector norm. This is defined as follows: Let z
be any vector with components Zi i= 0 and let P = (fii) be the nonsingular
diagonal matrix with elements Iii = IZi I· If 13 is any vector norm, the 13,
z-relative Horm of a vector 8 is then defined as

(5-4.33)

Obviously, 11·llp.z is a vector norm. The additional computational cost
results from the division required to obtain P- 18.

To terminate the iterative process based on the 13, ii-relative norm, we use
the obvious approximation

II (n)11 _== 116(n)llp,uln + 1) < r (5-4.34)
8 p, u· 1 - ME - \,.

If any component uln + 1) of U(n+ 1) is zero or very small'};i = 1 should be used,
If 13 is the oo-norm, then (5-4.34) becomes

1 16<n) I
II (nJII..:.. _i_ < r

8 00," -;- 1 M' max I I-\"
- E i Vi

where Ivd = 1 ifuln+1J is small and Ivd = luln+1J Iotherwise.



In Section 5.7 and in later chapters, numerical results are given which show
that the iteration error vector can be accurately measured using the pseudo
residual vector D(n), as described above.
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5.5 AN OVERALL COMPUTATIONAL ALGORITHM

We now describe a computational procedure based on the above dis
cussion. The overall algorithm is given below as an informal program. The
notation used is similar to that given previously. In addition, we use the
underbar, as!J, to indicate more clearly which variables are vectors.

The input required is summarized below.

( the stopping criterion number ( used in (5-4.32)
mE the lower bound for meG), the smallest eigenvalue of G. For Algo-

rithm 5-5.1, mE must satisfy mE ~ m(G)t.
ME the initial estimate for M(G), the largest eigenvalue of G. For

Algorithm 5-5.1, ME must satisfy mE ~ ME < 1. IfmE < 0 and it
is known that M(G) > 0, then ME = 0.0 is appropriate. If no
better choice is available, set ME = mE'

F the damping factor F used in the parameter change test (5-4.5).
The choice of F is discussed in Section 5.7. Typically, F should
satisfy 0.65 ~ F ~ 0.85.

!Jr the initial guess vector.

The counter n is the current iteration step number, while the counter p is
the degree of the Chebyshev polynomial generated (see Section 5.4). DELNE
is the norm of 15 used in the measurement of the error vector B, while DELNP
is the norm of 15 used in the adaptive parameter calculations. Comments are
enclosed by the symbols < >.

If an initial estimate ME ~ M(G) is used, it follows from (5-4.4) that the
parameter change test (5-4.5) will never be satisfied. Thus such an estimate
will be used for all iterations until convergence. We also note that the initial
estimate ME will be used for all iterations if F = O.

Algorithm 5-5.1. An adaptive procedure for Chebyshev acceleration
using the W-norm.

t If an appropriate lower bound for meG) is not available, we give in Section 6.5 a numerical
. procedure for estimating meG).
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Initialize:

n := 0; p := - 1; M~ := ME; !! := Q;

Next Iteration:

n := n + 1; p := p + 1;

If p = 0 then <Initialize for start of new polynomial)
Begin
M E:= M~; p:= 1.0; y:= 2/(2 - ME - mE);

CTE:= (ME - mE)/(2 - ME - mE);

r:= (1 - Jl - CT~)/(1 + Jl ~ CT~);
End
else <Continue polynomial generation)
Begin
Ifp = 1 then p:= 1/(1 - !CTD; else p:= 1/(1 - tCT~p);

End

Calculate New Iterate:

!!q, := !:!; !:! := !!r

Q:= G!:! + k - !!; DELNP:= 11~llw; DELNE:= IIQll p ;

Yr:= p(y§ + !!) + (1 - p)!!q,; YUN:= II!!rll~.

Calculate New Estimate M~

Ifp = 0 then
Begin
DELNPI := DELNP;
Go to Next Iteration
End
else
Begin
Q:= 2rP/

2/(1 + rP); B:= DELNP/DELNPI;
IfB> Q then

Begin

X:= [(1(1 + rP))(B + JB2 - Q2)Jl/p ;

M ' ._l.[M (2 - ME -' mE)(X2
+ r)J.E'- 2 E + mE +

1 + r X'

End
else M~:= ME;

End

73
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Convergence Test

5 AN ADAPTIVE CHEBYSHEV PROCEDURE

DELNE .
If YUN :$ (1 - ME) then pnnt final output and STOP (converged);

else continue;

Parameter Change Test

If B > (Ql then p := -1; else p := p + 1;

Go to Next Iteration

It would appear that storage is needed for each of the vectors Y, Y<j>, and
Yr in-Algorithm 5-5.1. However, upon closer inspection it is easy to see that
storage for only two y-type vectors is required and that the elements of these
vectors need not be moved each iteration. To show how this can be done, let
ylll and yl21 denote two vector storage arrays. Then replace Input, Initialize,
and Calculate New Iterate in Algorithm 5-5.1 by the following:

Modification 5-5.1. A modification for Algorithm 5-5.1.

Input: «(, ME, mE, F, ull])

Initialize

n := 0; p := - 1; ME := ME; y12] := Q; a := 1; b := 2;

Calculate New Iterate

~ := Gyla1 + k - y1a1; DELNP:= IIQ Ilw; DELNE:= IIQll p ;

y1b]:= p(yf> + y1a1) + (1 _ p)y1b]; YUN:= lI y1b]lI
q

;

c := a; a := b; b := c; (Relabeling to interchange y[a] and y1b])

5.6 TREATMENT OF THE W-NORM

Almost all of the computer cost in carrying out Algorithm 5-5.11ies in the
calculation of the vector f> and in the calculation of the vector norms II f> II w
and 11611p. Our object in this section is to discuss the choice of Wand the
overhead cost involved in the calculation of 11f>llw. We show that the extra
work in the computation of 11f>llw can be minimized in some cases. In Chapter
6 we give an adaptive parameter estimation procedure that uses only the
two-norm and thus avoids any need for the more general W-norm.

We first discuss the role that the W-norm plays in the overall computa
tional scheme. Recall from Section 5.4 that while the symmetrization matrix
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W is used to show that the Chebyshev acceleration process is effective, the
matrix W is not used directly in the iterative process. For example, the
"optimal" Chebyshev acceleration procedure of (4-2.12)-(4-2.14) does not
involve the matrix vv. In Algorithm 5-5.1, the matrix W is used in the compu
tation of 11<5/lw, which is used only in the adaptive parameter estimation
procedure. Thus the matrix W affects the Chebyshev acceleration process
only through the y and p acceleration parameters.

As shown in Chapter 2, more than one choice of the matrix W is often
possible. We do not consider here the interesting problem as to which
matrix W is best. However, in the following theorem, we show that a given
symmetrization matrix W may be replaced under certain conditions by
another matrix W1 without any effect on the Chebyshev process.

Theorem 5-6.1. Let W be a symmetrization matrix for G. If the non
singular matrix W1 satisfies

(5-6.1)

then W1 is also a symmetrization matrix for G. Moreover, W1and Ware norm
equivalent in the sense that for any matrix H and any vector v we have

and
IIHI/WI = I/HI/w (5-6.2)

Ilvl/wl = Ilvl/w· (5-6.3)

Proof. It is easy to show that if W(I - G)W- 1 is SPD, then so is
W1(I - G)W 11

• This follows since

WT[W(I - G)W- 1]W = WTW(I - G) = wIw1(I - G)

is SPD, and hence (WD-1[WTw1(I - G)]W11 = W1(I - G)W11 is also.
The relation (5-6.2) follows from

IIHI/ij, = IIWHW- 1
11

2 = S«WHW- 1)(WHW- 1)T)
= S(WH(WTW)-1HTW T)

= S«WTW)H(WTW)-1 H T) = S«WTW1)H(WTW1)-1H T)

= I/HlIij,1 (5-6.4)

Equality (5-6.3) follows from (5-6.1) and the definition of Ilvl/w. •

Thus if W1 and W satisfy (5-6.1), it follows from the above theorem that the
Chebyshev acceleration process is independent of the choice W or W1 for
the symmetrization matrix.

For the discussion which follows, we assume that the basic iteration matrix
G is expressed, as in (2-2.1), in terms of a splitting matrix Q as

(5-6.5)
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Here A is the coefficient matrix (2-1.1) of the linear system to be solved. We
assume that both A and Q are symmetric and positive definite. For this case,
candidates for a symmetrization matrix W include the symmetric matrices
Q1 /2and A 112•Since the computation of 111511~'/2 = (A 1/215, A 1/215) = (15,A15) is
usually more costly than that of 111511~1/2 = (Q 1/215, Ql /215) = (15, Q15), we assume
W = Q1/2 is the symmetrization matrix. The matrix Ql /2 is not convenient,
even if available, for computational use. Thus 111511~1/2 is computed by (15, Q15).

If carried out in a straightforward manner, the computation of 111511~1/2

requires the matrix-vector product Q15 plus the inner product (15, Q15).
Compared with the cost to compute u(n+ 1) from u(n) (i.e., to carry out (5-1.4)),
the overhead cost required to compute 1115IIQl/2 can be significant. The exact
cost is a strong function of the problem being solved and the basic iteration
method used. One way to reduce these overhead costs is simply not to
compute 1115IIQ'/2 (and 1115llp) at every step. Another way to avoid much of the
overhead cost is described in the following procedure, which is applicable
when Q is expressed in factored form as Q = STS.

STZ = Ru(n) + b,

and then obtaining 15(n) from

Sy = z (5-6.9)

15(n) = y - u(n). (5-6.10)

From (5-6.8), we have that STS = Q = Q1 /2Ql/2 = (Q1 /2)TQ1/2. Thus from
Theorem 5-6.1, the adaptive parameter estimation procedure is independent
of whether 1115IIQ1/2 or 1115lls is used. However, there are several reasons for
using 1115lls instead of 1115IIQl/2. First, it is usually more efficient computa
tionallyt to compute 111511~ = (S15, S15) rather than 111511~1/2 = (15, Q15). Second,

t This is true whenever S has fewer nonzero elements than Q.
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the additional matrix-vector product S6 needed for the computation of
11611s often can be avoided. As we now show, this can be done by working with
the vectors (Su(n» and (S6(n» instead of u(n) and 6(n).

To formulate the problem in terms of the Su and S6 vectors, we multiply
(5-1.4) by S to obtain

Su(n+l) = Pn+l[yS6(n) +Su(n)] + (1 - Pn+l)Suln- l ). (5-6.11)

Also, from (5-6.6) and (5-6.8), S6(n) may be expressed as

S6(n) = Z - Su(n), where z = (ST)-l[Ru(n) + b]. (5-6.12)

We now use (5-6.11) and (5-6.12) to reduce the computations required in
Modification 5-5.1.

Let SU[ll, SU[2l, S8, and!! denote four storage arrays. (The notation S8, for
example, implies the storage of the vector (86).) Now replace Input, Initialize,
and Calculate New Iterate in Algorithm 5.1 by the following:

_Modification 5-6.1. A Modification for Algorithm 5.1.

Input: «(, ME, mE, F, !!)

Initialize:

n := 0,' p := -1' ME' := ME" Su[ll := SU' SU[2l := 0' a := 1,' b := 2., - -, - -,

Calculate New Iterate:

S8:= (ST)-l[R!! + g]
S8:= S8 - Sural; DELNP:= IIS8112; DELNE:= DELNP;
SU[bl := p(yS8 + Sural) + (1 - P)SU[bl;
!!:= S-l(SU[bl); YUN := 11.!!ll n
c:= a; a:= b; b:= c; (Relabeling to interchange Sural and SU[bl>

The procedure given in Modification 5-6.1 requires only the matrix-vector
product R!! and the solution of the two triangular systems, ST~ = R!! + Q
and S!! = Su[bl. But to carry out the optimum Chebyshev process (4-2.14)
without the acceleration parameter estimation procedure requires these
same matrix-vector operations. (In fact, the basic method (5-1.1) also
requires these same operations.) Thus, using the above procedure, the only
overhead cost for the adaptive parameter estimation procedure is the
computation ofthe inner product (S8, S8). However, relative to Modification
5-5.1, the above procedure requires that one additional vector be stored.

The above procedure uses the S-norm in the measurement of the error
vector. If the maximum component or some measure other than the S-norm
is required for the stopping test, then the vector ~ is needed. If ~ = S-1(S8) is
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calculated, the above procedure has no advantage over that of Modification
5-5.1. However, ~ need not be calculated every iteration. Also, one may
require that the IIQ lis measure of the error vector be sufficiently small before
any estimates using IIQll p are computed.

For the balance of this section, we briefly discuss the use of the adaptive
procedure, utilizing the W-norm when the basic method is either the Jacobi
method or the SSOR method.

The Jacobi Method

For the Jacobi method, the splitting matrix Q is taken to be the block
diagonal matrix D of (2-3.11). Thus

Al,1 0
A22Q=D= , (5-6.13)

0 Aq,q

We still assume that the coefficient matrix A is symmetric and positive
definite. Hence each of the diagonal blocks Au of D is also symmetric and
positive definite. The factorization of D can be done by blocks and can be
expressed as

sIs1
0SIS2

D = STS = (5-6.14)

0
S;Sq

The fact that D is a block diagonal matrix has some advantages in the
solution of large matrix problems for which disk bulk storage is required.
To illustrate this, let the vectors So, SU1b1, etc. of Modification 5-6.1 be
partitioned in a subvector form which is consistent with the partitioning of
D; i.e., for i = 1, ... , q, we have So = [(So);J, etc. From the diagonal block
form (5-6.14) of STS, it is clear that the subvectors (So);, (Su1b1);, and (lJ); may
be computed for each i without reference to the other subvectors. Thus the
submatrix S; can be moved from disk storage, used to calculate (S8); and
(lJ);, and then discarded until the next iteration. Note that the subvector
(So); is not used after (SU1b1); is calculated. Thus for this case, the vector So
does not have to be stored; only temporary storage for (So); is required.

If S were an arbitrary upper triangular matrix, lJ could not be computed
until all components of SU1b1 were calculated. Thus if S could not be stored in
fast memory, the calculations So:= (ST)-1 [RlJ + 12J and !!:= S-1(SU1b1)



5.7 NUMERICAL RESULTS

probably would require that the matrix S (or equivalently ST) be moved from
bulk storage to fast memory twice every iteration. This can increase the
computer time required because data transfer from disk storage is slow.
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(5-6.19)

(5-6.18)

(5-6.15)

5.7 NUMERICAL RESULTS

From Section 2.3, the SSOR method can be written as

u(n+ 1) = [/ u(n) + k = 0/1 (fiJ u(n) + k(F») + k(B)co co ro (J) lJ) (JJ •

The SSOR Method

Thus in the adaptive parameter estimation procedure of Algorithm 5-5.1,
IWn)llw for the SSOR method may be computed, using

Ilo(n)llw = 2 - W IWn)/ID1/2 = 2 - W (,1(n), D,1(n))1/2. (5-6.20)
W W

When W is given by (5-6.16), Hayes and Young [1977J show that Wo(n)

can be expressed in terms of ~(n) as

Wo(n) = 2 - W D 1/2,1(n).
W

In this section we describe results of numerical experiments that illustrate
the effectiveness and behavior of the adaptive procedure given in Algorithm
5-5.1. The numerical experiments were carried out using a "simulation"
iteration procedure, which we now describe.

Here fiJ '" is the iteration matrix corresponding to the "forward" SOR
method and OU '" is the iteration matrix corresponding to the "backward"
SOR method. From (2-3.49), symmetrization matrices for the SSOR method
include W = A 1/2 and

W = D- 1/2[W- 1D - CuJ = D 1/2[W- 1I - UJ, (5-6.16)

where D, Cu, and U are defined by (2-3.11) and (2-3.30).
The pseudoresidual vector o(n) for the SSOR method is defined as o(n) ==

[/",u(n) + k", - u(n). From (5-6.15), o(n) may also be expressed as

o(n) = OU",(,1(n) + u(n») + k<,;j) - u(n), (5-6.17)

where ,1(n) is the difference vector for the "forward" SOR method, i.e.,

1;-----.l
fl- -
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The" Simulation" Iteration Proceduret

, 1

L.--J ..

(5-7.2)

From (5-1.4), the Chebyshev acceleration procedure applied to the basic
method (5-1.1) can be expressed as

u(n+ 1) = Pn+1[y(GU(n) + k) + (1 - y)u(n)] + (1 - Pn+1)U(n-l). (5-7.1)

We assume the basic method is symmetrizable (Definition 2-2.1). From
(5-2.3), (5-2.6), and (5-2.8), the error vectors and pseudoresidual vectors
associated with (5-7.1) satisfy

6(n) = (G - 1)-1c5(n) = Pn.E(G)6(0),

c5(n) = Pn. E(G)c5(O).

Let the W-norm be used to measure the error vector. Once 6(0) is given, the
behavior of the Chebyshev procedure of Algorithm 5-5.1 is completely
determined by 11c5(n)llw. If the eigenvectors of G are known, IWn)llw may be
computed by a less costly procedure than that given in the algorithm.

To show this, let v(1), ... , v(N) be a set of orthonormal eigenvectors of
WGW- 1 with corresponding eigenvalues J1.l> ••• , J1.N' We order the eigen
values as

m(G) == J1.N :::;;; J1.N-1 :::;;; ... :::;;; J1.2 :::;;; J1.l == M(G) < 1. (5-7.3)

It follows that the vectors {W-lv(i)}:~~ are eigenvectors of G and that s(O)
can be written as

N

6(0) = Le;(W-lv(i)),
i= 1

N

c5(0) = L Ci(J1.i - 1)(W- lv(i)),
i= 1

where Cl' ... , CN are suitable constants. From (5-7.2), we have

Ils(n)llw:::;;; IWn)llw/(1 - M(G)),

N

Ils(n)llij, = L [Ci Pn.E(J1.i)]2,
i= 1

N

11c5(n)llij, = L [cD - J1.i)Pn.E(J1.i)]2.
i= 1

(5-7.4)

(5-7.5)

t The" simulation" iteration procedure was developed independently by M. M. Sussman at
Westinghouse and by D. M. Young and K. C. lea at the University of Texas (Center for Numeri
cal Analysis Technical Memorandum TM 77.1).



5.7 NUMERICAL RESULTS 81

Thus, given the coefficients Ci of (5-7.4) and the eigenvalues Ili of G, II o(n) II w
may be computed using (5-7.5). By the" simulated" Chebyshev iteration
procedure, we mean the adaptive procedure of Algorithm 5-5.1 with the
calculation of Ilo(n)llw carried out by (5-7.5). In addition to being less costly
computationally, the simulation procedure permits different problem con
ditions (i.e., the choice of the Ci and Ili) to be imposed easily.

The input required by the simulation procedure is the same as that for
Algorithm 5-5.1 except for the initial guess vector u(O). Instead of u(O), the
simulation procedure requires input values for {cJl:::f and {IlJl:::f. We assume
that the initial guess vector u(O) is the null vector. Thus the unique solution u
to (I - G)u = k is simply ( _c;(O». This follows since then

u = -[u(O) - uJ = _c;(O).

We always let E T denote the true error measure

(5-7.6)

(5-7.7)

where

f = [1 - J1 - a 2 J/[1 + J1 - a 2 J and
u = [M(G) - m(G)J/[2 - M(G) - m(G)J. (5-7.10)

If ( is the input stopping number, we let n(ET ) and n(EA ) denote, respectively,
the number of iterations required for the inequalities ET ~ ( and EA ~ ( to
be first satisfied.

For the" optimal" nonadaptive Chebyshev procedure (4-2.14), by (3-2.12)
and (4-2.20) we have that

(5-7.9)

(5-7.8)

(5-7.12)

and let EA denote the approximation (5-4.28) to ET ; i.e.,

_ 1 Ilo(n)llw
EA = .

(1 - ME) Ilull w

The" theoretical" number of iterations, n(TNA), is defined to be the smallest
integer n satisfying [2fn/2/(1 + fn)J ~ (. It is clear that n(TNA) may be
closely approximated by

n(TNA) ~ [ -log«(/2)/-logJf]. (5-7.11)

As a measure of the effectiveness of the adaptive Chebyshev process, we use
the effectiveness ratio Iff, where
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We often use a graph of -log ET versus n to indicate the average virtual
rate of convergence for a particular iteration process. From (5-7.7), (3-2.12),
(3-2.15), and (3-2.16), we have

-log ET ;;:: n(- ~ log S(PnE(G))) = n[Rn(PnE(G))]. (5-7.13)n' ,

Thus the slope of the curve -log ET(n) as a function of 11 approximates the
average virtual rate of convergence.

The numerical results given here are designed to illustrate the following:

the choice of the damping factor F,
the overall effectiveness of the Chebyshev adaptive process,
the effect of the initial error distribution,
the effectiveness of the stopping test,
the sensitivity to the initial estimate ME for M(G), and
the sensitivity to the choice of mE = m.

The Choice of Damping Factor F

We first show that if an estimate ME is considered adequate by the test
(5-4.5), then (roughly) the average convergence rate obtained with the
estimate ME is at least F times the optimum average convergence rate.

From (4-2.21), the optimum average virtual convergence rate for the
Chebyshev method is

_ 1· 2fP/ 2

Rp(Pp(G)) = - -log 1 p'
p +r

(5-7.14)

where f is given by (5-7.10).
Now suppose that the current estimate ME :s;; M(G) is first used on the

(q + l)st iteration to obtain u(q+ ll. We assume, for reasons of simplicity, that
mE = meG) is used. From (3-2.16) and (4-3.20), the average (virtual) con
vergence rate with the estimate ME is given by

Rp(Pp,E(G)) = -t 10gS(Pp,E(G) = tlog{[/:/:P]/[1
2
:/;P]} (5-7.15)

where

r = [1 - )1 - a~]/[1 + )1 - a~],

aE = [ME - m(G)]/[2 - ME - meG)],
(5-7.16)

r = [1 - )1 - (aE/a*)2]/[1 + )1 - (aE/a*)2],

a* = [2M(G) - ME - m(G)]/[2 - ME - meG)].
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(5-7.17)

(5-7.18)

(5-7.19)

From (5-4.3), it is reasonable to use IWn)II/II15(q)11 as an approximation for
S(Pp,E(G)). Thus we have

RP(Pp,E(G)) -'- -log[II15(n)llwlll15(q)llw]

Rp(Pp(G)) ...,... -log[2fP/2/(1 + fP)l

Now ME is deemed satisfactory, using (5-4.5), only if

1115(") II w < ( 2rP/2 )F
1I15(q)llw - 1 + rP •

Since r ~ f, it follows from (5-7.17) and (5-7.18) that, approximately, we have

R (P (G)). ( 2rP/
2)Fj ( 2fP/

2)P P. E > log 1 > F
Rp(PP(G)) ...,... - 1 + rP - og 1 + fP - .

Thus the estimate ME is deemed satisfactory only if the ratio of actual to
optimum convergence rates is greater than F.

We use the simulation procedure to illustrate the above discussion.
Consider the simulative problem given by

N = 1000,

l1i = «1000 - O/999)M(G),

Ci = 1/(1 - l1i),

i = 1, ... , 1000,

i = 1, ... , 1000.

(5-7.20)

Both optimum nonadaptive Chebyshev acceleration and adaptive Chebyshev
acceleration were used to solve (5-7.20) with M(G) = 0.95. For the adaptive
procedure, we used F = 0.75, mE = 0, and ME = 0.01 as the initial guess for

ME'
A graph of -loglo E T versus n is given in Fig. 5-7.1 for both the adaptive

and optimal Chebyshev procedures. Numbers in circles (e.g., CD, Cl)) indicate
the iterations for which the estimate ME was changed. Note that each time
ME is changed the slope of the curve (which approximates Rp(Pp, E(G)))
becomes small and then increases. If one did not change parameters, the

slope would approach an asymptotic value of -loglo N, where rand r
are given by (5-7.16). For the optimum nonadaptive procedure, Rg(Pg(G)) =

0.19756. For the adaptive procedure, the average rate of convergence on
iteration 46 (i.e., Rg(Pg,E(G)) with ME = 0.9479) was measured to ,be 0.154.
Thus for this iteration, the ratio of actual to optimum convergence rates is
(Rg(Pg,E(G))/Rg(Pg(G))) > 0.78, which indeed satisfies (5-7.19).

We now illustrate the behavior of the adaptive procedure as a function
of F. In Fig. 5-7.2, graphs of -loglo E T versus n are given for different values
of F in solving the simulated problem (5-7.20) with M(G) = 0.99. We again
used mE = 0 and ME = 0.01 as the initial guess for ME' At the top of each
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curve we give the number of iterations required to satisfy ET ::::;; 10- 6
• For

this problem (and others), the value F = 0.75 was found to be as good as any
considered.

The problem with M(G) = 0.99 was also solved, using the uniform coeffi
cient distribution Ci = 1.0. The number of iterations n(ET ) required to satisfy
ET ::::;; 10- 6 for different values of F are summarized below.

Optimal
F 0.95 0.9 0.8 0.75 0.7 0.6 0.5 0.25 0.1 nonadaptive

n(ET ) 276 115 107 100 103 102 107 1I8 151 202 70

For this problem the value of n(TNA) is 73. The actual number of iterations
required, using the optimal nonadaptive process, was 70.

Overall Effectiveness of Adaptive Chebyshev Acceleration

In Table 5-7.1 we summarize the iteration data obtained in solving
problem (5-7.20) with M(G) = 0.95,0.99,0.999, and 0.9999. Results using a

TABLE 5-7.1
I',

i" Overall Effectiveness"
"'"

'"
Initial error distribution

I"I.,
Ci = I c, = (I - 11,)-1

Chebyshev
M(G) procedure n <ff n <ff

0.95 TNA 32 32
(r = 0.40260) NA 32 32

A 44 1.375 46 1.435

0.99 TNA 73 73
(r = 0.66942) NA 71 71

A 98 1.342 104 1.425

0.999 TNA 230 230
(r = 0.88114) NA 224 227

A 284 1.235 312 1.355

0.9999 TNA 726 726
(r = 0.96079) NA 708 726

A 847 1.165 855 I.I 76

U TNA: Chebyshev acceleration, optimal nonadaptive
(theoretical); NA: Chebyshev acceleration, optimal nonadaptive;
A: Chebyshev acceleration, adaptive (F = £); <ff = Il(A)jll(TNA);
11 = number of iterations.
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Ci = same as (5-7.21a) for i = 3, ... , 50.

Here {R;}f= 1 is a set of random numbers between °and 1.
In Fig. 5-7.3, graphs are given which indicate the estimate ME obtained by

the adaptive procedure in solving the three problems (5-7.21a)-(5-7.21c). A
jump in the curve indicates that a new estimate ME for M(G) was obtained

uniform coefficient distribution Ci = 1.0 are also given. The Chebyshev
procedures used are defined in the table footnote. The values of n for the TNA
procedure refer to the theoretical number of iterations n(TNA) given by
(5-7.11) with' = 10- 6

• The values of n for the optimum nonadaptive pro
cedure NA and the adaptive procedure A are the actual number of iterations
required for ET to satisfy ET ~ 10- 6 • For the adaptive procedure, F = 0.75,
mE = 0, and the initial estimate ME = 0.01 were used. It can be seen that the
effectiveness ratio never exceeds 1.5. In fact, Iff decreases as M(G) increases
and is only about 1.17 for the case M = 0.9999.

The Effect of the Initial Error Distribution {c l }

We now consider the effect of the initial error distribution {Ci} in solving
problem (5-7.20). It was found that the use of the distribution Ci = (1 - Ilr 1
leads to about as many iterations as any distribution and that one can expect
an effectiveness ratio of not more than 1.50 no matter what distribution is
used.

We now illustrate that the estimates ME obtained by the adaptive process
reflect the distribution {Ci} used (or equivalently the initial guess vector used).
Consider the simulative problem

(5-7.21)

(5-7.21c)

(5-7.21a)

(5-7.21b)

for i = 1, , 50,
for i = 51, , 100,

for i = 3, ... , 50,

i = 1, , 50,
i = 51, ,100,

C1 = C2 = °
Ci = same as (5-7.21a)

C1 = O.OlR!>

C2 = 0.01R2 ,

and

N = 100,

cos(inj101) {I
Ili = rt.i 2 _ cos(nj101)' where rt.i = 3

and the three {Ci} distributions

{
R;,

Ci = 1O- 4 R-
"
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(5-7.22)

at that point. For problem (5-721b), the ME estimates converged to J13 =

0.995168 instead of J11 = 0.999033. For problem (5-7.21c) with C1 and C2

only about 160 times the value of ('3' the estimates ME behaved initially as in
problem (5-7.21b) but then increased and converged to J11' Although not
shown in Fig. 5-7.4, the ME estimates prior to iteration 50 were almost the
same for all three problems. For all problems, mE = -3.0. F = 0.75, and
initially ME = 0.2.

The Effectiveness of the Stopping Tests

We now describe some experiments designed to study the effectiveness of
the stopping procedure

1 116(n)11
EA == (1 - ME) Ilull: ~ (.

The effectiveness of the stopping procedure (5-4.31), using a general norm /3,
will be illustrated later in Chapters 8 and 9.

Problem (5-7.20) with M(G) = 0.99, but with coefficients Ci = (1 - J1r a
,

was used for the numerical experiments. In Table 5-7.2, we give the number

TABLE 5-7.2
Iterations Required by the Adaptive Chebyshev Procedure, Using Various Stopping Tests

IX

0.2 0.4 0.6 0.8 1.0 1.25 1.5 1.75 2.0 2.25 2.50 2.75 3.0 3.5 5.0 10

n(ET ) 104 108 107 106 107 106 104 102 102 97 96 98 93 97 91 82
n(EA) 103 108 106 106 106 104 104 101 101 97 96 98 93 97 91 82
n(E'A) 104 108 107 106 107 106 104 102 10L. 97 96 98 93 97 91 82

of iterations n(E) required to satisfy E ~ 10- 6 for various values of 0: and
for E = ET , EA , and EA' Here EA and ET are given by (5-7.7) and (5-7.22) and

. EAis the same as EA , except that ME is replaced by M(G). The adaptive
Chebyshev procedure was used with the input values mE = 0, F = 0.75, and
ME = 0.01. For this problem, n(TNA) = 73. The value of n(EA ) was slightly
less than n(EA) in some cases because ME was used instead ofM(G). However,
n(EA)agreed exactly with n(ET ) in each case.

It can be seen that as 0: becomes large the values of n(ET ) decrease. Even
tually, for large 0:, n(ET ) would come very close to the corresponding value
for the optimum nonadaptive process. This follows since (CJC1) '" 0 as
0: -+ 00 for all i =j:. 1; thus for large 0:, B(n) and 6(n) for all n closely approximate
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the eigenvector vel) corresponding to M(G). Moreover, in this case, the
estimate ME obtained by the adaptive process would closely approximate
M(G) after one iteration.

The stopping test (5-7.22) based on EA is somewhat less effective for the
optimum nonadaptive Chebyshev acceleration procedure for which ME =
M(G). This is to be expected since the assumption of Lemma 5-4.1 that
ME < M(G) is not valid for this case. As we shall see in the next chapter, the
basic cause of this loss of accuracy in the approximation E A is that the e(n)

and b(n) vectors do not necessarily converge to an eigenvector of G associated
with M(G). In Table 5-7.3, we give the values of n(ET ) and I1(EA ) (=I1(E;''»)

TABLE 5-7.3

fterations Required by the Optimum Chebyshev Nonadaptive Procedure

0.4 0.6 0.8 1.0 1.5 5.0 10.0 50.0

n(ET ) 71
n(EA) 89

71
87

71
85

71
82

71
76

72
72

72
72

73
73

when the optimum nonadaptive Chebyshev process was used to solve the
problems of Table 5-7.2. Note that the stopping test based on EA is more
accurate for the larger values of rx. This is due to the fact, as noted previously,
that the vectors e(n) and b(n) for all 11 closely approximate the eigenvector vel)
when rx is large.

When the optimum nonadaptive Chebyshev procedure is used, it is often
possible to obtain a good a priori upper bound on the number of iterations
required for convergence. Assume it is desired to terminate the iterative
process when a certain error reduction has been achieved, Le., when

Ile(n)llw/lls(O)llw :s; (. (5-7.23)

For the optimum Chebyshev process, we have from (3-2.12) and (4-2.20)
that

Ils(n)llw/lls(O)llw:S; S(Pn(G)) = 2rn/2/(1 + rn), (5-7.24)

where r is given by (5-7.10). Thus (5-7.23) is satisfied for all n ;:::: n(TNA),
wheren(TNA) is given by (5-7.11). For the problems ofTable 5-7.3, n(TNA) =
73, which indeed is a good upper bound for n(ET). We remark that n(TNA)
is a rigorous upper bound on the iterations required for convergence only
when the error measure (5-7.23) is desired. However, the error measure

Ils(n)llw/llullw:S; (
is equivalent to (5-7.23) when the initial guess u(O) is the null vector.
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Sensitivity to the Initial Estimate M~O) for M(G)

--
91

In Table 5-7.4, we give the number of iterations n(ET ) required by the
adaptive Chebyshev procedure to satisfy ET :::;; 10- 6 for different values of
the -initial estimate Mj,O) for M(G). We also give in Table 5-7.4 the number of
iterations required by the nonadaptive (nonoptimal) Chebyshev procedure,
using ME = Mj,O) fixed for alliterations. The problem solved was (5-7.20) with
M(G) = 0.99. Again, F = 0.75 and mE = 0 was used.

TABLE 5-7.4

Sensitivity of the Adaptive and Nonadaptive Procedures to the Initial Choice of ME

n(ET ) n(ET )

Nonadaptive Nonadaptive
Adaptive (nonoptimal) Adaptive (nonoptimal)

Chebyshev Chebyshev Chebyshev Chebyshev
MIl) procedure procedure MC{!I procedure procedure

0.0 107 0.95 105 268
0.2 106 0.96 102 236
0.4 105 0.97 102 199
0.6 107 795 0.98 100 153
0.8 106 559 0.985 97 122
0.85 105 0.99 71 71
0.90 105 390

It can be seen that the behavior of the adaptive procedure is relatively
insensitive to the initial choice of ME unless the initial choice is very close to
M(G). On the other hand, the number of iterations required, using the
nonadaptive procedure, increases very rapidly as the fixed choice of ME
is decreased below M(G). For this problem n(TNA) = 73.

Sensitivity to the Choice of mE

We now discuss the sensitivity of the Chebyshev procedure to the choice
of mE, assuming only that mE:::;; meG). The numerical results obtained
verified the theoretical result of (4-4.12). Rather than present the np.merical
results, we use the theoretical result to illustrate the sensitivity of the Cheby
shev procedure to the choice of mE'

Let ME = M(G), where M(G) is close to unity. Let ii be the number of
iterations required by the optimum nonadaptive Chebyshev procedure and
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let n' be the number of iterations required by the nonadaptive procedure,
using the estimate mE for meG). From (4-4.12), we have approximately that

which is insignificant.
We again caution the reader that using an estimate mE> meG) may cause

iterative divergence.

We first illustrate the effect of a large underestimation of meG). Suppose
meG) = -3 but mE = -10. From (5-7.25), we have

n'/Ii ~ JIl- ~ 1.658. (5-7.26)

Hence a gross underestimation of meG) results in only a moderate, but
significant, increase in the number of iterations.

Next, consider the example in which meG) = 0 but mE = -1. In this case

n'/Ii ~ fi ~ 1.414. (5-7.27)

We remark that this result indicates that problems whose eigenvalues lie in
the interval [-M(G), M(G)] should require about fi times as many
iterations as problems whose eigenvalues lie in [0, M(G)].

As the final example, consider the case in which meG) = -0.99 but
mE = -1.0. Here we have

n'/n ~ J(1 - mE)/(l - meG»~.

n'/Ii ~ 1.0025,

(5-7.25)

(5-7.28)



CHAPTER

6
Adaptive Chebyshev

Acceleration

6.1 INTRODUCTION

In Chapter 5, procedures utilizing the W -norm were used to estimate the
required iteration parameters for Chebyshev acceleration applied to the
basic method

u(n+ 1) = Gu<n) + k.

Properties of the W-norm were used to obtain inequality (5-2.9)

IWn)llwlll<5(O)llw'::;; S(Pn,E(G)),

(6-1.1)

(6-1.2)

which is the fundamental relation for the adaptive parameter procedure, and
inequality (5-2.5)

(6-1.3)

which is the fundamental relation for the stopping procedure.
The W -norm procedures require the existence ofa "conveniently available"

matrix vv, or at least WTvv, such that W(I - G)W- 1 is SPD. However, there
are problems when neither W nor WTW is conveniently available, or else
it is not computationally convenient or efficient to work with W-norms. In
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this chapter, we consider adaptive procedures that involve the use of the
2-norm rather than the W-norm of the pseudoresidual vectors. The pro
cedures given are based on the convergence of the error and pseudoresidual
vectors to an eigenvector of the basic iteration matrix G.

As in Chapter 5, we assume the basic method (6-1.1) is symmetrizable
(Definition 2-2.1); i.e., there exists a nonsingular matrix W such that
W(I - G)W- I is SPD. In this chapter the matrix W will not be used in the
computational procedure. Here, the existence of such a matrix W is used
only to ensure that the set of eigenvalues {J1Ji~~ for G is real, and to ensure
that the set of eigenvectors {v(i)} for G includes a basis for the associated
vector space. We note that it is often possible to use Chebyshev acceleration,
even though the basicmethod is not symmetrizable.Singular and eigenvector
deficient nonsymmetrizable problems are discussed in Section 6.8. There we
show that the Chebyshev algorithms given in this chapter and in Chapter 5
may be used without modification to solve certain singular problems but that
these algorithms generally should not be used when the basic iteration matrix
G has an eigenvector deficiency. The use of Chebyshev acceleration when
some of the eigenvalues of G are complex is discussed in Chapters 11 and 12.

The basic adaptive procedures given in this chapter are similar to those
given in Chapter 5. For example, if inequality (6- 1.2) is satisfied in the 2-norm;
i.e., if

(6-1.4)

then using arguments similar to those given in Chapter 5, the same parameter
change test (5-4.5) and the same Chebyshev equation (5-4.8) can be obtained
as before except for the norm used. The key question here is that concerning
the validity of (6- 1.4).

The arguments presented concerning the validity of (6-1.4) are based on
the convergence of the pseudoresidual vector <5(11) to an eigenvector of G.
Thus in this chapter, two iterative processes are of interest. The main iterative
process concerns the convergence of the Chebyshev iterates u(ll+ I) of (5-1.4)
to the solution u of (I - G)u = k. The secondary iterative process concerns
convergence of the pseudoresidual iterates <5(11) of (5-2.8) to an eigenvector of
G. The requirements for convergence and the rate of convergence for the
secondary iterative process differ from those of the main iterative process.
In Section 6.2, convergence theorems are given which are applicable to the
secondary iterative process. More complete and rigorous arguments, together
with error bounds for the stopping test (5-4.32), are also given in Section 6.2.

The basic relationships for the adaptive parameter estimation procedure
utilizing the 2-norm are developed in Section 63. An overall computational
algorithm is then given in Section 6.4. The algorithm given is based on the
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assumption that the estimates ME and mE satisfy the Case 1* conditions of
(5-3.1); i.e.,

Case 1*: mE < ME < M(G) < 1 and mE:::; meG). (6-1.5)

Here M(G) and meG) are the algebraically largest and smallest eigenvalues of
G, respectively. Since the assumption ME < M(G) need not always be valid
when the 2-norm is used, the possibility that some ME may be larger than
M(G) is considered.

In Section 6:5, the behavior of the Chebyshev iterations when mE > meG)
is discussed. A procedure is given for detecting when this occurs and for
obtaining a new estimate for meG). The procedure described may also be used
to obtain an initial estimate for m(G). In Section 6.6, results of numerical
experiments are given. Finally, the possibility of accelerating the Chebyshev
iterations by intentionally overestimating M(G) is discussed in Section 6.7.

6.2 EIGENVECTOR CONVERGENCE THEOREMS

In this section, convergence theorems for the secondary iterative process
are given. Theorem proofs are inel uded for completeness and may be skimmed
if desired. Let the vector sequence {b(n>} be generated by

n = 0, 1, ... , (6-2.1)

where Qn(G)isamatrix polynomial ofdegree n (see Section 1.3) with Qo(G) = I
and G is an N x N matrix. We assume that G is similar to a symmetric
matrix. Thus the eigenvalues {Pi}::::~ of G are real and, assuming that
PI :f= Pj for some j, may be ordered as

meG) == PN:::; PN-l:::; ... :::; Pt < Pr-I = ... = PI == M(G). (6-2.2)

Note that the largest eigenvalue PI is assumed to be repeated t - 1 times. We
let v(i) denote an eigenvector of G associated with Pi; i.e., Gv(i) = /-liV(i). We
are concerned with the convergence of the vector sequence {b(n)} to the eigen
vector v(1). We show that a sufficient condition for convergence is that the
polynomial sequence {Qn(x)} be G-uniformly convergent.

Definition 6-2.1. Let G be an N x N matrix with the real eigenvalues
(6-2.2). The polynomial sequence {Qn(x)} is said to be G-uniformly convergent
if

and

for all n;::: 0

for all x E [PN' Pt].

(6-2.3a)

(6-2.3b)
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At the end of this section, we show that the sequence of normalized
Chebyshev polynomials {Pn.E(x)} given by (5-2.7) is G-uniformly convergent
when the Case 1* conditions of (6-1.5) are satisfied.

Before giving the convergence results, we develop some notation. Since G
is similar to a symmetric matrix, there exists a set of eigenvectors {v(i)}f= I
for G that is a basis for the associated vector space. Hence there exist con
stants d l , ••• , dN such that b(O) may be expressed as

N

b(O) = d1v(1) + ... + dt _ 1v(t - 1) + L div(i).
i ;:::: t

(6-2.4)

If some di =f. 0 for i = 1, ... , t - 1, then v(1) == d1v(1) + ... + dt - 1v(t - 1)
is also an eigenvector of G with eigenvalue J.! l' Thus no generality is lost by
expressing the eigenvector expansion of b(O) as

N

b(O) = div(l) + L d;v(i).
i=t

(6-2.5)

In what follows, we always assume that d l =f. O. As a measure of how closely
b(O) approximates the eigenvector v(l), we use the contamination factor K,

(6-2.6)

(6-2.7)

where the norm t/J is determined by the context in which K is used. Note that
if K = 0, then b(O) is an eigenvector of G associated with the eigenvalue J.!!.

If QiJ.!l) =f. 0, it follows from the expansion (6-2.5) that the vectors b(n) of
(6-2.1) can be expressed as

b(n) = Qn(G)b(O) = Qn(J.!I){d IV(l) + .f di gnti~ V(i)}.
.=/ n J.!I

to indicate the rate of convergence of b(n) to v(l). If the polynomial sequence
{Qn(x)} is G-uniformly convergent, we have from (6-2.3b) that

Thus if the polynomial sequence {Qix)} is G-uniformly convergent, we have
from (6-2.7) and (6-2.3b) that the sequence {b(n)} approaches (in direction)
the eigenvector v(1) at a rate governed by maxIQn(J.!;)/QiJ.!I)I, t ::; i ::; N.
Since the J.!i for t ::; i ::; N usually are not known, we use the factor

a(n) == max IQn(x)/Qn(J.!I) I
xe[I'N.I',l

lim a(n) = O.
n-+ 00

(6-2.8)

(6-2.9)



6.2 EIGENVECTOR CONVERGENCE THEOREMS

We now have

Theorem 6-2.1. Let the matrix G be similar to a symmetric matrix and let
the vector sequence {6(n)} be defined by (6-2.1), where 6(0) is given by (6-2.5).
If {Qn(x)} is a G-uniformly convergent polynomial sequence, then

where

(6-2. lOa)

Moreover,

and Ilry(n)11 ::;; Klld 1v(I)II. (6-2.10b)

Proof From (6-2.8)

n-+ 00

(6-2.11)

for i ~ t.[
_1tQn(flJ ] < 1
a(n) Qn(fll) -

Thus (6-2.10) follows from (6-2.7) and the definition (6-2.6) of K. The limit
(6-2.11) is an immediate consequence of (6-2.9) and (6-2.10). •

The next theorem relates the behavior of the vector norm sequence
{llb(n)ll} to the values of IQnCfll) I·

Theorem 6-2.2. Let G and {QnCx)} satisfy the conditions of Theorem
6-2.1. Then for any vector norm 11,11,

Ilb(n) II 1 + a(n)K
1115(0)11'::;; IQn(fll)llld1v(l) + ... + dN v(n)II/lld 1v(I)11

and

(6-2.12)

where Ilry(n)11 ::;; Klld 1v(I)II. Moreover, for sufficiently large n

116(n)11 Qn(fll) 1 + a(n)K
116(n 1)11::;; Qn-l(fll) 1 - a(n - 1)K'

Proof From (6-2.10), we have that

(6-2.14)

(6-2.15)
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(6-2.16)

Inequalities (6-2.12) and (6-2.13) then follow from (6-2.5), (6-2.10), and
(6-2.15). From (6-2.9), 0:(11 - I)K < 1 for sufficiently large 11. When this is
the case, we have from (6-2.10) that

118(11-1)11 Z QII-I(/1I)[1 - O'.(n - I)KJlld l v(1)11 > 0,

which together with (6-2.15) gives (6-2.14). •

In the next theorem, we compare two vector sequences {8(1I)} and {R(II)} that
satisfy

8(11) = Q (G)810)" . ,

R(II) = QII(G)R(O),

8(11) = (I - G)I;(II).

(6-2.17)

(6-2.18)

Theorem 6-2.3. Let (I - G) be similar to a SPD matrix, and let the vector
sequences {8(1I)} and {C(II)} satisfy (6-2.17), where 8(0) is given by (6-2.5). If
{QII(X)} is a G-uniformly convergent polynomial sequence, then for suffi
ciently large 11 and for any vector norm 11·11,

118(11)11 { [K]}
111;(11)11 :::;; I _ /11 I + 0:(11) I - o:(n)K .

In addition,

(6-2.19)

and

(6-2.20)

(6-2.22)

Proof Since (I - G) is similar to a positive definite matrix, the eigen
values Iii of G satisfy /1i < 1 and hence the matrix (I - G) is nonsingular.
Thus, using the eigenvector expansion (6-2.7) for (5(11), we may write /;(11) as

C(II) = (I - G)-18(1I) = QII(/1I){ d~(I) + i di QII(/1i) VU)}. (6-2.21)
1 /11 i=/I - /1i QII(/1I)

The limit (6-2.19) now follows from (6-2.3b). To show (6-2.18), we first
substitute for QII(/1I)d l v(1) in (6-2.21), using (6-2.7) to obtain

(II) _ 8(11) _ ~ (/11 - /1i) d; Q ( ) (.)
F. - 1 _ .L. 1 _ . 1._ . II /1i V I .

/11 •=/ /1. III

Since 1(/11 - /1;)/(1 - /11)1 < I, we have that

Ild")II:::;; 1 ~ [11 8(11)11 + 0:(11)1 QII(/1I) Ii _(I)lg"tJ)!lldiV(i)II]. (6-2.23)
III .=/ 0: n II III
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so that

for i;;::: t

(6-2.24)Ile(n)11 ~ 1 1. [11<5(n)11 + Ka(n)Qn(lll)lld lv(1)IIJ,
- III

where K is defined by (6-2.6). The result (6-2.18) then follows since, from
(6-2.16), Qn(lll)lld l v(l)11 ~ IWn)II/[I-a(I1)KJ for sufficiently large 11. To prove
(6-2.20), from (6-2.9) and (6-2.18) we have that limn_oo [lle(n)II/II<5(n)IIJ ~
1/(1 - Ill)' But for sufficiently large 11, it also can be shown that

Ile(n)11 ;;::: {I - a(I1)L _ ~(n)KJ} 111~n~I' (6-2.25)

Thus we also have that limn_oo [lle(n)II/II<5(n)IIJ ;;::: 1/(1 - Ill) and (6-2.20)
follows. •

We now give a sufficient condition for the sequence of normalized
Chebyshev polynomials {Pn,E(X)} defined by (5-2.7) to be G-uniformly
convergent.

Theorem 6-2.4. Let Pn,E(X) = T,,(w(x»/T,,(w(1», where T,,(w) is the
Chebyshev polynomial (4-2.1) and where

w(x) == (2x - ME - md/(ME - mE)' (6-2.26)

If mE and ME satisfy the Case I* conditions of (6-1.5), then the polynomial
sequence {Pn.E(x)} is G"uniformly convergent. Moreover, the associated
convergence factors a(l1) of (6-2.8) satisfy

a(n) ~ T,,(w*)/T,,(w(lld),

where w* = w(M E) = 1 for Ilt < ME and w* = w(llt) for Ilt ;;::: ME'

Proof We first show (6-2.27). By definition, we have

(6-2.27)

I
~-------,-. max IT,,(w(x))l. (6-2.28)
IT,,(w(1l d) I XE [IlN.lltl

Since mE and ME satisfy (6-1.5), it follows from (6-2.26) that

Iw(x)1 ~ w(ME) = I

w(x) > I

for xE[mE>ME],

and monotone increasing for x E (ME' 1).

(6-2.29)
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(6-2.31)

(6-2.32)

Using (6-2.29) and the fact that maL l5W5l1 T,,(w) I = T,,(1) = 1, we obtain

max IT,,(w(x)) I = Tn(w(Jl,» if II, ~ ME
XE [ItN, It,) (6-2.30)

~ T,,(w(M E)) if Jlr < ME,

which from (6-2.28) proves (6-2.27). From (4-2.2) and (6-2.29), it easily follows
that Pn,E(Jll) > O. Thus the sequence {Pn,E(X)} is G-uniformly convergent if

we can show that limn_ooa(n) = O. To do this, let hew) == w + Jw 2
- 1 so

that by (4-2.2)

T,,(w) = t[h(w)n + h(w)-n].

Thus from (6-2.27), a(n) satisfies

{[
h(w*)]n 1 }!{ 1}

a(n) ~ hew) + [h(w*)h(w)Jn 1 + [h(w)yn '

where w== W(Jll)' Since hew) > 1 for w > 1 and since h(w*)jh(w) < 1 for
ME < Ill, we have that limn_ooa(n) = 0, which completes the proof. •

From (6-2.10), the factors a(n) give a good indication of the rate at which
6(n) (and also 8(n» converges to the eigenvector v(l) of G. If ME and mE satisfy
the conditions of Case I*, it is easy to show that a(n) < 1 for all n. Moreover,
for fixed n, it can be shown (after considerable manipulation) that a(n) is a
decreasing function of ME for M E ~ Jl, and an increasing function for
Jlr ~ ME < Jll' Thus a(n) is minimized when ME = Jll' Note that since
a(n) = 1 for all n when ME = Jll' the rate at which 6(n) converges to v(l)
approaches zero as the estimate ME approaches Jll from Jll'

6.3 ADAPTIVE PARAMETER AND STOPPING PROCEDURES

In this section we develop stopping and adaptive parameter estimation
procedures not utilizing the W -norms for the Chebyshev acceleration
method applied to the basic method (6-1.1). The adaptive procedures we give
are basically the same as those given in Chapter 5, except that the W-norm
is replaced by the two-norm. We still assume that the basic method (6-1.1)
is symmetrizable. Let the eigenvalues {Jlili~~ for the N x N matrix G be
ordered as in (6-2.2), and let v(i) be an eigenvector for G associated with the
eigenvalue Jli'

We assume in this section that the estimates ME and mE for Jll and JlN'
respectively, satisfy the Case I* conditions of (6-1.5) and that the estimate ME
will be changed several times during the iteration process. Whenever a new
estimate ME for Jll is used, the generation of a new Chebyshev polynomial
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sequence is statted. Thus when adaptive parameter estimation procedures
are used, the total iteration process involves the successive application of
different Chebyshev polynomial sequences. We show later in this section that
successive polynomial generation can enhance the adaptive procedures.

Successive Polynomial Generation

To indicate more clearly the generation of successive polynomials, we use
the notation introduced in Section 5.4, i.e.,

q

n

denotes the normalized Chebyshev polynomial of degree p
using the most recent estimate ME. for Pl; the subscript s
indicates that this is the sth estimate used for Pl

denotes the last iteration on which the previous estimate
ME._

1
was used; for the initial estimate where s = 1, we

let q = 0
denotes the maximum degree polynomial generated, using

the estimate M Em , wherem < s
denotes the current iteration step, note that p = n - q

(6-3.2)

With mE and ME. as the current estimates for PN and Pl' respectively, the
Chebyshev acceleration procedure applied to (6-1.1) is defined by (5-1.4),
which in the above notation takes the form

u(n+l) = Pn+l[y(GU(n) + k) + (1 - y)u(n)] + (1 - Pn+l)U(n~l), (6-3.1)

where y = 2/(2 - ME. - mE) and

{

I if n = q,

Pn+ 1 = (1 - 1(JD- l if n = q + 1,

(1 - i(J~Pn)-l if n ~ q + 2.

Here (JE = (ME. - mE)/(2 - ME. - mE)' From Section 5.2, the error vector
e(n) == u(n) - it and the pseudoresidual vector J(n) == Gu(n) + k - u(n) asso-
ciated with (6-3.1) satisfy

J(n) = P (G)J(q)
p,Es '

e(n) = P (G)e(q)
p"Es ,

J(n) = (G - I)e(n),

where p = n - q and

Pp,E.(X) = Tp(2X - ME. - InE)jTp(2 - ME. - mE) .
ME. - mE ME. - mE

(6-3.3)

(6-3.4)
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is the normalized Chebyshev polynomial. Here Tiw) is the Chebyshev
polynomial defined by (4-2.1). .

Since n = p + q we have o(n) = o(p+q) = P o(q). To indicate more, . p,~

clearly the dependence of o(p+q) on the current estimate M Es ' we write
o(p+q)( =o(n») as o(S,P).t Thus we have (see Eq. (5-4.2))

o(s, p) == o(p+q) = P (G)o(q) == P (G)o(S, O) (6-3.5)p,Es p,Es ,

which clearly indicates the relationship between 0 and the normalized
Chebyshev polynomial currently being used. We note that o(s, 0) = 0(s-1,Ps-I).
Thus

o(s, p) = P (G)o(S, O) = P (G)o(S - 1, Ps - Il = P (G)P _ (G)o(S - 1, 0).
p,Es p,Es p,Es Ps-l,Es - 1

(6-3.6)
and in general

o(S,p) = Pp,Es(G)Pps_t,EsjG)··· PP1' dG)0(1 ,0). (6-3.7)

Similarly, we express the error vector e(n) as e(s, Pl. Relationships similar to
(6-3.5)-(6-3.7) are also valid for the e(s,p) vectors.

As in (6-2,5), let the expansion of o(m,O), m = 1, ' , . ,S, in terms of the
eigenvectors {v(i)} of G be given by

o(m,O) = d1,m v(1) + d"m v(t) + ... + dN,m v(N). (6-3.8)

Then, analogous to (6-2.6), the contaminationfactor Kmfor o(m, 0) is defined by

(6-3.9)

We now show that {Km } is a decreasing sequence under certain conditions.

Theorem 6-3.1. If M Em and mE satisfy the Case 1* conditions of (6-1.5),
then

(6-3.10)

where rx(Pm) satisfies

0< rx(Pm) ~ Tpm(w*)/Tpm(W(J1.1)) < 1. (6-3.11)

Here w*= max[1, w(J1.r)] and w(x) = (2x - M Em - mE)/(MEm - mE)'

Proof From (6-3.6), o(m+1,O) = o(m,Pm) = Ppm,EJG)O(m, 0). Thus the co
efficient di,m+1 in the expansion (6-3.8) for 0(m+1,O) satisfies di,m+1 =
Ppm,EJJ1.i)di,m' Hence we have

K m+1 ~ max IPpm,Em(X)/Ppm,EJJ1.1)IKm = rx(jjm)Km, (6-3.12)
x E [I'N, I'tl

t This notation is more general than that used previously in Section 5.4. Note that 15(" 0) = 15(Q).
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where a(Pm) is the convergence factor (6-2.8) associated with the polynomial
Pp~,E~(X). It now follows from Theorem 6-2.4 that a(Pm) satisfies (6-3.11). •

Feasibility of the Basic Inequalities (6-1.2) and (6-1.3)
Not Using the W-Norm

For our discussion here, we assume that M Ern and mE satisfy the Case 1*
conditions for m = 1, ... , s.

With <5(s, 0) given by (6-3.8), we have from Theorem 6-2.2 that

IWS,P)llz/II<5(S,O)llz ::;; Pp,dIl1)P(P, K s), (6-3.13)

where

pep, Ks) == 1 + a(p)Ks
Ild cs v(l) + ... + dN ,sv(N)llz/lld1,sv(1)llz

Moreover, if a(p)Ks < 1, from Theorem 6-2.3 we have for any vector norm
that

Ile(S,P)11 ::;; 11<5(S,
Pl

ll {I + a(p)Ks }. (6-3.15)
1 - III 1 - a(p)Ks

From Theorem 6-2.4, the factors a(p) satisfy (6-2.27) and limp~coa(p) = O.
Moreover, from Theorem 6-3.1, the contamination factor K s satisfies

K s ::;; a(Ps-1)Ks- 1 ::;; a(ps-1)'" a(P1)K 1, (6-3.16)

where K 1 is the initial contamination factor associated with <5(1,0) (= <5(0».
Note that K., for s > 1, can be made arbitrarily small by requiring each
polynomial generated to be of sufficiently large degree, i.e., by requiring each
Pm for m < s to be sufficiently large.

We use (6-3.15) to show that inequality (6-1.3) is feasible inanyvectornorm,
and we use (6-3.13) to show that inequality (6-1.2) is feasible using the 2-norm.
(Note that S(Pp,Es(G» = Pp,Es(1l1) in (6-1.2) since M Es and mE are assumed
to satisfy Case 1* conditions.)

For sufficiently large p, it follows from (6-2.20) that the error vector
e(s,p) can be approximated by

Ile(S,P)11 ~ 11<5(S, Pl ll,
1 - III

where 11·11 denotes any vector norm. Moreover, from (6-3.15) and the dis
cussion following (6-3.15), approximation (6-3.17) is enhanced when s is not
small. Thus the fundamental stopping relation (6-1.3) is feasible for any
vector norm provided p or s is not small.
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Relative to the inequality (6-3.13), we make the following observations
concerning f3(P, K s):

(a) f3(p, K s) ::; 1 if the eigenvectors v(i) are orthogonal.
(b) f3(p, K s) decreases as p increases. Moreover, if

Ild 1•sv(1) + ... + dN ,sv(N)112 > Ild1 ,sv(1)112'

then f3(p, K s) ::; 1 for sufficiently large p.
(c) Since f3(P, K s) ::; (1 + lX(p)Ks)j(1 - K s) if K s < 1, the upper bound

·for f3 approaches unity as the contamination factor K s approaches zero.

Hence if K s is small or p is sufficiently large, it is likely that f3(p, K s) ::; 1. When
this is the case, from (6-3.13), we have that

(6-3.18) .

Thus when p or s is not small, it is reasonable to assume (but with some
caution) that the fundamental relation (6-1.2) for the adaptive parameter
procedure is approximately valid in the 2-norm.

The validity of both (6-3.17) and (6-3.18) is enhanced if K s is small and p is
large. As noted above, K s can be made small by requiring each polynomial
generated to be of sufficiently large degree. However, if p is required to be too
large, the primary Chebyshev iterative process (6-3.1) will be slowed down
since many of the iterations will be carried out with a nonoptimum estimate
for 111' For the calculational procedure given in the next section, we require
each polynomial generated to be at least of degree p*, but we try to pick p*
such that the convergence rate of the primary Chebyshev iterative process is
not reduced significantly. With r defined by (4-3.21), the strategy we employ
is to pick p* to be the smallest positive integer greater than 5 that satisfies

(6-3.19)

or, equivalently, to pick p* to be the smallest integer greater than 5 that
satisfies

p* ~ (log d)j(log r).

The constant d is a strategy parameter lying in the range 0-1. Numerical
studies indicate that d in the range 0.15-0.03 is appropriate. In Table 6-3.1
we tabulate p* for different values of r with d = 0.1.

We note that p* could equivalently be defined as the smallest positive
integer (> 5) such that the ratio of average to asymptotic convergence rates
is greater than some constant, say a. That is, p* is the smallest integer greater
than 5 satisfying

(6-3.20)
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TABLE 6-3.1

Values of p* versus r When
d = 0.1

r p* r p*

0.5 6 0.95 45
0.7 7 0.975 91
0.8 11 0.98 114
0.9 22

where the ratio Rp./Roo is given by (4-2.23). A value ofain the range 0.42-0.6
is equivalent to d of (6-3.19) in the range 0.15-0.03. If a=0.481, the p*
obtained from (6-3.20) is identical to the p* obtained from (6-3.19) with
d = 0.1. (See Table 4-2.1.)

The assumption that M Em and mE satisfy the Case 1* conditions is discussed
in Section 6.4.

Parameter Estimation and Stopping Procedures

If (6-3.17) and (6-3.18) are valid, then using arguments similar to those
given in Chapter 5, the same adaptive procedure is obtained as before except
for the norm used.

For the parameter change test we use (5-4.5); i.e., the present estimate
M Es is deemed inadequate if

(6-3.21)

where F is the damping factor and r is defined by (4-3.21). If the present
estimate ME is judged unsatisfactory, a new estimate M~ is obtained by
solving the Chebyshev equation (5-4.8); i.e., M~ is the largest real x satisfying

(6-3.22)

where WE(x) is defined by (5-4.7). Moreover, if B == IWS,P)llz/llc5(S,O)llz, the
solution M~ can be obtained in closed form by (5-4.12) or by (5-4.24).

For the stopping test, we use (5-4.32), i.e.,

(6-3.23)

where' is the stopping number, M~ the best available estimate for /11' and
II· lip and 11·ll q are any appropriate vector norms.

For a discussion on the choice of norms in (6-3.23), see the remarks given
after Eq. (5-4.32) in Chapter 5.
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6.4 AN OVERALL COMPUTATIONAL ALGORITHM USING
THE 2-NORM

An adaptive procedure for Chebyshev acceleration based on the discussion
given in Section 6.3 is given as an informal program in Algorithm 6-4.1. The
adaptive parameter estimation procedure given utilizes only the 2-norm of
the pseudoresidual vector 15. Relative to the W-norm procedure given in
Algorithm 5-5.1, the 2-norm procedure given here requires fewer computa
tions per iteration, is applicable to a wider class of problems, and often
requires less storage. However, since the basic inequality (6-1.2) need not be
valid for the 2-norm, the estimate ME for J.ll obtained by solving the Cheby
shev equation (6-3.22) may be greater than J.ll' Certain precautionary steps
are taken in the overall procedure of Algorithm 6-4.1 in an attempt to ensure
that all estimates ME used are less than J.ll' When used to solve the same,
problem, the W-norm procedure often requires fewer iterations for conver
gence than does the 2-norm procedure. The difference is usually less than
10 %and is primarily caused by the additional precautionary steps mentioned
above.

Except for the additional strategy parameter d, the input required for
Algorithm 6-4.1 is the same as that for Algorithm 5-5.1. Again, we assume
that the input estimate mE for J.lN satisfies mE .::;; J.lN't If such an estimate mE
is not available, we give in Section 6.5 an algorithm for numerically estimating
J.lN' For completeness, we summarize each input quantity.

( the stopping criterion number ( used in (6-3.23)
mE the lower bound for J.lN' the smallest eigenvalue of G; for Algorithm

6-4.1, mE must satisfy mE .::;; J.lN
ME the initial estimate for J.ll' the largest eigenvalue of G; for Algorithm

6-4.1, ME must satisfy mE .::;; ME < 1. If mE < 0 and it is known
that M(G) > 0, thenME = 0 is appropriate; if no better choice
for ME is available, set ME = mE

F the damping factor F used in the parameter change test (6-3.21);
the choice of F is discussed in Section 5.7; typically, F should
satisfy 0.65 .::;; F .::;; 0.8

!!r the input guess vector
d the strategy parameter defined by (6-3.19) used to determine the

minimum degree required for each Chebyshev polynomial
generated; typically, d should satisfy 0.03 .::;; d .::;; 0.15

t For discussions on possible methods for obtaining a priori bounds mE such that mE ~ /IN,
see Section 5.3.
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The control variables and counters used are
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n counter for the current iteration step
p counter for the degree of the Chebyshev polynomial currently

being used
s counter for the number of different estimates ME used for f11

Os upper bound for the sth estimate ME for f11; Os is given in (6-4.1)
p* each Chebyshev polynomial must be at least of degree p* before

the estimate ME can be changed; p* is defined by (6-3.19)
T counter that has no effect on the procedure of Algorithm 6-4.1; the

counter T will be used in the next section
IE control variable that has no effect on the procedure of Algorithm

6-4.1; IE will be an input quantity in the next section

As in Algorithm 5-5.1, we use the underline mark, as !!, to indicate more
clearly which variables are vectors.

Algorithm 6-4.1. An adaptive procedure for Chebyshev acceleration
using the 2-norm.

Initialize:

n:= 0; p:= -1; ME:= ME; 114>:= Q; s:= 0; IE:= 1; R :=1.0; DELNP:= 1.0.

Next Iteration:

n:= n + 1; p:= p + 1; DELN,0:= DELNP;
If p = 0, then <Initialize for start of new polynomial)

Begin
s := S + 1; T := 0; if ME > Os> then ME = Os; else continue;
ME:= ME; p:= 1.0; y:= 2/(2 - ME - mE);
O"E:= (ME - mE)/(2 - ME - mE);

r:= (l - J1 - 0"~)/(l + J1 - O"~);
p* := [log dllog rJ;
If p* < 6, then p* = 6; else continue;
If IE.;::: 0, then continue; else p* = 8;
End
else <Continue polynomial generation)
Begin
Ifp = 1, then p:= 1/(1 -10"D; else p:= 1/(1 - to"~p);

End
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Calculate New Iterate:

g.:= G!dr + k - !!r; DELNP:= 11§112; DELNE:= IIQll p ;

!d:= p(y§ + !dr) + (1 - p)!!q,; YUN:= II!!II~.

!!.p := !!r; !dr := !!

Calculate New Estimate M'E:

R0:= R; R:= DELNP/DELNl'J;
Ifp ::;; 2, then

Begin
If p = 0, then DELNPI:= DELNP; else continue;
Go to Next Iteration
End
else
Begin
Q:= 2rP/

2/(1 + rP); B:= DELNP/DELNPI;
If B ~ 1.0, then

Begin
T = T + 1;
If IE > 0, then go to Next Iteration;

else go to Parameter Change Test;
End
else continue;

IfB > Q, then
Begin

End
else M~ = ME;

End

Convergence Test:

DELNE .
If YUN ::;; ((1 - M~), then pnnt final output and STOP (converged);

else continue;
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Parameter Change Test:

If p ~ p*, then
Begin
If B > (Qt, then p:= -1; else continue;
End
else continue;

Go to Next Iteration
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In an attempt to ensure that all estimates ME are less than or equal to 111'
two precautionary steps are taken in the procedure of Algorithm 6-4.1. First
is the requirement discussed in the previous section that each Chebyshev
polynomial generated be at least of degree p*. The second precautionary step
is that of imposing upper bounds on the ME estimates. Specifically, if s- 1
Chebyshev polynomials have been generated, then for polynomial s, we
require that ME ::;; "s, where the strategy parameters Is are chosen to be

II = 0.948, I 2 = 0.985, "3 = 0.995, I 4 = 0.9975,
(6-4.1)

Is = 0.9990, "6 = 0.9995, Is = 0.99995 for s ~ 7.

We have found that the upper bounds 0£(6-4.1) are imposed infrequently.
Note that the iteration convergence test is made only if p is greater than 2.
This is a minor precautionary step whose effect on the iterations required is
of little significance.

If Modification 5-5.1 is used, storage for only two y-type vectors is re
quired. Also note that the vector .6 need not be stored in some situations. For
a discussion on this, see the remarks given in Section 5.6 concerning the use
of the Jacobi method.

As mentioned previously, it may happen when the 2-norm is used that the
estimate ME used to generate Pp, E(G) is greater than 111' When this happens,
we show in what follows that it is highly unlikely that the parameter change
test (6-3.21) will ever be satisfied. Thus the iteration process will continue,
using ME until convergence occurs. Normally, when ME> 111' c5(s,P) and e(s,P)

will already closely approximate an eigenvector of G and ME also will be
close to 111' Thus the validity of the stopping test and the convergence rate of
the iterative process are usually not seriously hampered by the fact that
ME> 111' In fact, as we shall see in Section 6.7, the convergence rate is often
accelerated when ME> 111'

We now give an intuitive argument to show why the parameter change
test (6-3.21) is not likely to be satisfiedt and why the convergence rate is

t With ME> Ill; it is clear from (5-4.4) that inequality (6-3.21) can never be satisfied if the
W-norm is used instead of the 2-norm.
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sometimes accelerated when ME> fl.1' Since the occurrence of ME> fl.1 is
most likely for s not small, it is reasonable to assume that 6(5,0) closely
approximates the eigenvector v(l) of G. Thus, approximately, 6(5, 0) ~ d1, 5 v(l)
andt ~

6(5, p) == P (/I)d v(I). (6-4.2)• p.E ..... l 1,5

Let w = (JE(fl.1)/(JE(ME), where (JE(X) = (2x - ME - mE)/(2 - ME - mE)'
Since ME> fl.1' w is less than unity. Thus from the definition (4-2.2) of Tiw),
we can write Pp,E(fl.1) as

'Tp(w) cos pe
Pp ,E(fl.1) = Tp(l/(JE(ME» - Tp(l/(JE(ME» , (6-4.3)

where

(6-4.6)

(6-4.5)

(6-4.4)

It is clear for this case that the parameter change test will never be satisfied
for any value of p.

Since the error vector e(S,p) may be expressed as e(s,P) = (G - n- 16(s,P),

we have from (6-4.2) and (6-4.3) that

Ile(s, p) II ~ IPP. E(fl.1) Ille(s, 0) II = T)~;:E~~E» Ile(s, 0)11.

e= cos - 1 W = tan - 1[J1 - w2/w].

From (6-4.2), we then have that

116(5. p) II. Icos pe I [ 2rPl2
]

116(5,0)11 =;= T
p
(I/(JE(ME» = Icos pel 1 + rP •

Thus the error vector will become small as pe approaches n/2. We shall
discuss this occurrence again in Section 6.7.

Remark 1. The success of the adaptive procedures of Algorithm 6-4.1 is
not guaranteed mathematically for every problem. However, the procedures
are based on sound mathematical reasoning, complemented by numerical
experimentation, and have worked well in practice. Moreover, by printing
certain iteration data, an a posteriori measure of the effectiveness of the
adaptive procedure can be obtained. The following two numbers can be
useful in this appraisal.

The first number is

(6-4.7)

t For notational convenience, we drop the subscript s on ME and pp.E(x).
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With O"E(X) = (2x - ME - mE)/(2 - ME - mE), we first show that if
ME < Ill' then

(6-4.8)

where [3(p, K 5 ) is defined by (6-3.14). Indeed, from (6-3.4) we have that

and

(6-4.9)

which when combined with (6-3.13), gives (6-4.8). Now, [O"E(ME)/O"E(1l1)] < 1
if ME < Ill' Hence, using (4-2.2),we may express (6-4.8) in the form

L(5. p) :::;; [(1 + rP)/2rP/ 2 ][3(p, K5),

where r is given by (4-3.21) and is

(6-4.10)

Thus if V 5
, p) is greater than unity and is increasing with p, the implication

from (6-4.10) is that the current estimate ME
s

is less than Ill' If L(5, p) behaves
as Icos pel, the implication from (6-4.5) and (6-4.7) is that M Es > Ill' We note
that V5, p) = 1 under the ideal circumstances that ME

s
= III and that <5(5,0) =

d l 5 v(l).,
The second number suggested for printing is

loge 11<5(5, p) II 111<5(5,0) II ]
C(5,P) = 2 2

10g[2rP/
2/(1 + rP)]

(6-4.11)

(6-4.12)

We shall show that C(5. p) approximates the ratio of actual to optimum
average convergence rates and is useful mainly as a quick indicator of the
effectiveness of the adaptive process.t We define the optimum convergence
rate Rp to be that obtained when ME = III or

111
RiPiG» = - -log Pilll) = - -log (II *),

p p Tp 0"

where 0"* = (Ill - mE)/(2 - III - mE)' If ME < Ill' the average convergence
rate, by (3-2.16) and (4-3.17), is RiPp,E(G» = -(lip) log Pp,E(1l1)' For
sufficiently large p and s we have, from (6-3.13) and the discussion given there,

t Note that CS,PI = 1 + {(log L!s,P»/log[2rP!2/(1 + rP)]}.
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--
that Pp,E(pd ~ Ilb(S,P)112/IWS,O)112' Thus RP(Pp,E(G» may be approximated
by

_ . 1 IWS,P)112
RP(Pp,E(G» ::;: - plog Ilb(S,O)112' (6-4.13)

Moreover, since ME < P1' aE(M E) < a*, and Tp(I/aE(M E») > Ti1/a*) > 1.
Combining this with (6-4.12) and using the fact that Tp(I/aE(ME)) = (1 + rP)/

(2rP/
2

), we have

1 2rP/ 2

Rp(Pp(G)) .:s; - -log. (6-4.14)
p 1 + rP

Inequality (6-4.14) together with (6-4.13) then gives approximately that
- ~ . ( )
RP(Pp,E(G))/Rp(Pp(G)) ~ C s,p. (6-4.15)

Thus when ME < P1' C(S, p) may be given the following interpretation: The
average rate of convergence being obtained with the present estimate ME for
P1 is at worst only C(S, p) times the optimum convergence rate. When ME < P1'
obviously C(s,P) should be less than unity. If ME> P1' C(S,P) will be greater
than unity for sufficiently large p.

As in Section 5.7, it can be shown that the parameter change test (6-3.21)
is satisfied only if C(S,P) < F. Thus the estimate ME will not be changed if
C(S,P) ~ F.

Remark 2. Since P1 may be known for some problems, an option should
be added to the procedures of Algorithm 6-4,1 such that the input estimate
ME is never changed. This can be done easily by avoiding the test on r 1 and
setting p* to a large number.

Remark 3. As indicated in Table 5-4.1, each time a new polynomial is
started, its average rate of convergence starts at a low value and increases
monotonically with p to its asymptotic value. If ME or r is close to unity, p
is quite large before the asymptotic convergence rate is approached. Thus
if the stopping test is close to being satisfied, it may be more efficient to
continue to use the present estimate ME rather than to start a new polynomial
with a new estimate. Such a decision can be based on estimates for the
additional iterations required for convergence, using the present estimate
ME and using the new estimate ME'

6.5 THE ESTIMATION OF THE SMALLEST EIGENVALUE PN

The adaptive parameter estimation procedures given in Sections 5.5 and
6.4 are based on the assumption that the eigenvalue estimate mE satisfies
mE .:s; PN' It was shown in Chapter 4 that the convergence rate of the Cheby-
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shev method does not depend critically on the estimate mE, provided mE ~ /IN'
However, iterative divergence may result if mE > JlN' Since the a priori
methods given in Section 5.3 for obtaining appropriate estimates for JlN are
not applicable for all problems, numerical methods for estimating JlN and for
detecting when mE > JlN must be considered.

In this section, the behavior of the Chebyshev iterations when mE > /IN is
discussed and a procedure is given for detecting when this occurs and for
obtaining a new estimate of JlN' This procedure may also be used at the start
of the regular Chebyshev iterations to obtain an initial estimate for JlN'

The procedures given here do not attempt to estimate JlN and Jll simul
taneously; a lower bound for JlN must be obtained before Jll can be estimated
accurately. However, methods for estimating Jll and JlN simultaneously have
been developed. See, for example, Diamond [1971].

Behavior of the Chebyshev Iterations When mE > JiN

From Eqs. (6-3.5) and (6-3.8), the pseudoresidual vector <5(5, p) can be
expressed as

(6-5.1)

where

(6-5.2)

and where

(6-5.3)

In what follows, we assumet that ME < Jll' With this assumption we have

max IPp,E(Jli)! < max[Pp,E(Jll)' IPp,E(JlN)I].
1 :si:sN •

if (mE - JlN) < (Jll - ME), (6-5.4)

if (Jll - ME) < (mE - JlN) ~ (1 - ME),
(6-5.5)

(6-5.6)

Thus the divergence or convergence of <5(5, p) for large p is determined by the
maximum absolute value of Pp,E(X) at x = Jll or JlN' From (6-5.2), (6-5.3),
and the definition (4-2.2) of Tp(w), it follows that (see, for example, Figs. 6-5.1
and 4-3.2)

IPp,E(JlN) I < Pp,E(Jll),

Pp, E(Jll) < IPp, E(JlN) I ~ 1,

t For notational convenience, we drop the subscript s on ME, mE, and Pp,E(W) when the
meaning is clear. We also drop the subscript E, on w,
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I I
I I
I I
I I I I

I I--x *-*:-1---+--\-+--+-I-'-+--+--+--I-X-X-X:----...- X
ILN ~ mE ME \ 1.0

[mE-(I-MEl] -1 '-ILl

Fig. 6-5.1. Graph of PlO,E(X) when ME < III and mE> IlN, ME = 0.789, mE = -3.0,
O'E = 0.90, r = 0.39.

From these inequalities, it follows easily from (6-5.1) that (j(s,P) for suffi-
•

ciently large p behaves in a distinctive way, depending on the value of mE'

The characteristics of (j(s, p) as a function of mE are summarized in Fig. 6-5.2.
(We assume that the coefficients d1,s and dN,s in (6-5.1) are nonzero.) If mE

lies in the interval (- 00, A), where A is defined in Fig. 6-5.2, inequality
(6-5.4) implies that the behavior of (j(s,P) for large p is dictated by Pp,E(fJ.r).
This is basically the assumption of Case 1* in (6-1.5), and the previously given
procedures are valid.

If mE lies in the interval [A, B) of Fig. 6-5.2, (j(s, p) will converge to the null

~ 'A-",) '",-.,
(B-A) = I-ILl

!

ILN A B -1.0 o
I I I ..

Fig. 6-5.2. Behavior of0(" p) as a function ofmE.mE on line segment ( - 00, A); o(s. pi converges
with rate governed by pp.dlld. mE on line segment [A, B); o(s.P) converges with rate governed
by Pp •E(IlN).I1lE on line segment [B, ME); o(s.P) is nonconvergent.
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vector, but its behavior is now dictated by Pp, E(PN)' A special proceduret for
detecting the occurrence will not be given since the likelihood of mE lying in
this interval of length 1 - PI is small.

Inequality (6-5.6) implies that (j(s,p) will not converge to the null vector if
mE lies in the range (B, ME)' We now give a procedure for detecting this
occurrence and for obtaining a new estimate for PN'

A Procedure for Detecting When mE > J.lN

We assume mE lies on the line segment (B, ME) of Fig. 6-5.2; i.e., mE satisfies

(6-5.7)

(6-5.8)

For notational convenience, we also assume that PN-l =1= PN' Inequality
(6-5.7) then implies that IW(PN) I >1 W(Pi) I for i =1= N and that - W(PN) >
w(l) > 1. From the definition (4-2.2) of Tiw), it then follows that

IPp,E(PN) I > 1, -[Pp,E(PN)/Pp- 1 ,E(PN)] > 1,

lim [Pp,E(P;)/Pp,E(PN)] = 0 for i =1= N.

Thus for sufficiently large p and provided that dN,s #- 0, (j(s,P) of (6-5.1) may
be approximated by

(j(S,P) ~ Pp,E(PN)dN,sv(N).

With this approximation, we conclude that for sufficiently large s

(6-5.9)

(6-5.11)

(6-5.10)
II (j(S, p) II

B(S,P) == 11(j(S,O)11 ~ IPp,E(PN) I > 1,

R(S,p) == 11(j(s,p)11 == _ Pp,E(PN) > 1
11(j(S,P 1)11' Pp-1,E(PN) .

Thus B(s, p) > 1 and R(s, p) > 1 imply that condition (6-5.7) is satisfied
and may be used as a signal that mE > PN' We remark that R(s,P) may be
greater than unity under other conditions. For example, if ME ;;::: P1> it is
shown in Section 6.7 that R(s,p) can sometimes become greater than unity.
However, B(s,P) > 1 usually occurs only when mE> PN'

If B(S' p) and R(S, p) are greater than unity, new estimates for PN may be
obtained by solving Eqs. (6-5.10) and (6-5.11).

To obtain a new estimate m~ for PN' using (6-5.10), we use a procedure
similar to that used in Chapter 5 to obtain the estimate M~ for Pl' Analogous

t If(<5'''P))k ;6 0 is the kth component of <5"'P), then -1 < ((<5'.',P»d(<5 t',P-l»k) < 0 would be
indicative of this occurrence,
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to (5-4.8), we take mE to be the algebraically smallest real x that satisfies

ITp(w(x))!/TiW(1)) == B, (6-5.12)

where B == B(s, p) = 116(s, p) 112/116(s, 0) 112' If B > 1, it follows from the definition
of Tp(w) that

w(mE) < -1 and ITiw(mE)) I = Tilw(mE)J), (6-5.13)

Thus analogous to (5-4.16), if B > 1, a solution mE to (6-5.12) satisfies

-w(mE) = jw(mE)1 = COShG COSh-1(~)) = ~ (Y2: 1). (6-5.14)

where Qand Yare given by (5-4.11) and (5-4.13), respectively. Substituting
(6-5.3) into (6-5.14) and solving for mE, we obtain

, 1[ (ME - mE)(y2
+ 1)]mE = "2 ME + mE - 2 . Y . (6-5.15)

The fact that mE of (6-5.15) is the smallest real solution to (6-5.12) follows
from arguments similar to those given in the proof of Theorem 5-4.1.

Another estimate mE for /IN may be obtained from the relation (6-5.11).
Let mE be the algebraically smallest real x which satisfies

where

Tiw(x)) = u
Tp _ 1(w(x)) ,

(6-5.16)

u = Tiw(1)) R(s,p) = Tiw(1)) 116(s.P)112
- Tp_1(w(1)) Tp_1(w(1)) 116(S'P 1)112'

Note that [Tp(w(1))/Tp _ 1(w(1))] = [1/0][(1 + rP)/(1 + rP -
1
)], where r is

defined by (4-3.21). If U > 1, then mE satisfies (6-5.13); i.e., w(mE) < -1 and
ITiw(mE)) \ = Tp(lw(mE) I)· Thus with

h == jw(mE)1 + Jlw(m~)j2 - 1, (6-5.17)

the solution mE satisfies

(h + h- 2p + 1)/(1 + h- 2P - 2 ) = U. (6-5.18)

Equation (6-5.18) is obtained by substituting the definition (4-2.2) for
Tp( Iw(mE)I) into (6-5.16). But h > 1. Thus for sufficiently large p, h ~ U or,
equivalently, [jw(mE)1 + Jlw(mEW - 1] ~ U. Solving for Iw(mDI, we
then obtain the approximation

Iw(mE)I ~ (U 2 + 1)/2U, (6-5.19)
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which from (6-5.3) gives

/I • 1[ (ME - mE)(U2

+ I)JmE =;= 2" ME + mE - 2 -u-· (6-5.20)

The solutions (6-5.15) and (6-5.20) to Eqs. (6-5.12) and (6-5.16), respectively,
are reasonable estimates for IlN only if W(IlN) < -lor, equivalently, only if
mE> IlN' This necessary condition is implied whenever B(s,p) > 1. However,
as mentioned previously, R(S,P) > 1 need not imply that W(IlN) < -1. Thus
m~ should be used as an estimate for IlN only ifboth B(s, p) and R(S, p) are greater
than unity. Usually, m~ is a better estimate for IlN than is mE' This is so because
mE utilizes the ratio IWs, p) 11/ II <5(s, 0) II, while m~ utilizes the ratio II <5(S, P)II /
11<5(S,P-1)11, which reflects more recent data.

An informal program which utilizes the estimates mE and m~ is given in
Algorithm 6-5.1. The algorithm includes procedures for detecting when an
initial estimate mE is greater than IlN and for obtaining a new estimate for IlN
if needed. An option is provided whereby the initial estimate mE for IlN is
'obtained numerically. Except for the Update mE calculations, Algorithm
6-5.1 is similar to Algorithm 6-4.1.

Algorithm 6-5.1. An adaptive procedure for Chebyshev acceleration
which includes a procedure for estimating IlN'

Input: «(, ME, mE, F, !!r, d, IE, ILIM) <ME must satisfy mE < ME < I)

Initialize:

n:= 0; p:= -1; ME = ME;!!rjJ:= Q; s:= 0;
mE:= mE; DELNP:= 1.0; R := 1.0;
II I E ~ 0, then continue

else
Begin
ME:= '1; mE:= -'1;
End

Next Iteration: Same as Algorithm 6-4.1.

Calculate New Iterate: Same as Algorithm 6-4.1.

Calculate New Estimate ME: Same as Algorithm 6-4.1.

Convergence Test: Same as Algorithm 6-4.1.

Parameter Change Test:

Ifp is even then continue; else Go to Next Iteration;
Ifp ~ p*, then
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Begin
If IE ~ 0, then continue; else Go to Update mE;
If B > (Qt, then continue; else Go to Next Iteration
1fT = 0, then

Begin
p := - 1; Go to Next Iteration
End
else continue;

If R > 1 and T ~ 5, then Go to Update mE;
else Go to Next Iteration

End
else Go to Next Iteration

mE .= 0.0; mE'= 0.0; DR = 0;
If R > 1.0, then

Begin

U:= [1/;;:J[(1 + rP)/(1 + rP -
1)JR;

mE:=![ME + mE - t(ME - mE)«U2 + 1)/U)J;
Ifl R0 - R I < 0.1, then DR = 1; else continue
End
else continue

If B > 1.0, then
Begin

Y:= [(B/Q) + J(B/Q)2 - 1Jl /P

mE:= ![ME + mE - 1(ME - mE)«y2 + 1)/Y)J;
End
else
Begin
If IE = 0, then Go to Next Iteration; else continue
End

If IE = 0, then
Begin

. If DR = 0, then Go to Next Iteration;
else
Begin
mE := min[l.lmE, l.lmE, mEJ;
ME:=0.1;p:= -1;
End

End
else

\ 'J
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Begin
If DR = 0 and n < ILIM, then Go to Next Iteration;

else
Begin
mE = min[1.1m~, l.lmE, mE, -1.0J;
ME:= 0.1; IE:= 0; p:= -1; s:= 0;
End

End
Go to Next Iteration

Two additional input parameters are required for Algorithm 6-5.1. They
are

---'

implies that the initial estimate for fiN is input;

implies that an initial estimate for fiN is to be calculated by
the adaptive procedure.

{
the limit on the number of preliminary iterations to be done in

ILIM = obtaining an initial estimate for fiN (ILIM must be at least 8).

The formulas for m~ and mE are not valid if ME = mE' Thus for Algorithm
6-5.1, we insist that mE < ME' The other input quantities have been discussed
previously in Algorithm 6-4.1.

T is an additional control variable which counts the number of times the
ratio B(s,p) of (6-5.10) is greater than unity.

First consider the case in which IE = 0 and mE> fiN + (1 - ME)' By
(6-5.10), e<s, p) must become larger than unity for sufficiently large p provided,
of course, that d N•s =I- O. When B(s,p) beC0mes largert than unity, the T index
is increased in Calculate New Estimate M~. No attempt is made, however, to
calculate new estimates for fiN until the index T becomes larger than four and
the ratio R(s,p) of (6-5.11) is also greater than unity. When these conditions
are satisfied, new estimates m~ and mE are 0 btained, using (6-5.15) and (6-5.20).
The new estimates mE and m~ are considered to be sufficiently accurate if the
change in R (s, p) is lesst than 0.1 ; i.e., if

IR(S,P) - R(S,P-l)1 < 0.1. (6-5.21)

t Note that ME may be updated or convergence may occur before B(S,P) becomes greater than
unity.

:\: The estimates mE obtained from R(s, pi are usually considerably more accurate than those
obtained from B(S,P). Thus the change in R(s,P) is used to measure the accuracy or convergence of
the estimates for flN'
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(6-5.23)

Note that the control word DR equals zero if (6-5.21) is not satisfied. If
(6-5.21) is satisfied, the new estimate mE for J1N is taken to bet

mE = min[1.1mE, 1.1mB, mlr1dl
]. (6-5.22)

A new Chebyshev polynomial is then started, using mE as the estimate for J1N
and ME = 0.1 as the estimate for J11' The fact that a new estimate for J1N was
needed implies that the eigenvector modes with algebraically small eigen
values have been magnified in the eigenvector expansion of the error vector.
The Chebyshev polynomial method, using a small value for ME' will reduce
the magnitude of these eigenvectors quickly. It is for this reason that we use
ME = 0.1. For some problems, some other value for ME may be appropriate.t

The procedure used to obtain an initial estimate for J1N' i.e., when IE = -1,
is basically the same as that described above. The differences are

(a) ME = - mE = r 1 = 0.948 are used as the eigenvalue estimates for
the initial Chebyshev polynomial generated;

(b) no updating of ME is allowed;
(c) the eigenvalue estimates for the first Chebyshev polynomial after the

special initial iterations are completed are

mE = min[1.1 mE, 1.1mB, mE, -1.0J,

ME = 0.1,

where InE is the input estimate for J1N'

The eigenvalue estimates used in the Chebyshev polynomial generated by
the special initial iterations are based on the assumption that J1N < -1.0.
If J1N ~ -1.0, these special initial iterations will not give a good estimate for
J1N' In the determination of mE in (6-5.23), -1.0 is included to ensure that any
estimate mE obtained is less than - 1.0.

In Appendix A, we give a Fortran listing of a subroutine, called CHEBY,
which implements Algorithm 6-5.1 with the exception of the Calculate New
Iterate portion. The CHEBY subroutine is designed for use as a software
package to provide the required acceleration parameters and to provide
an estimate of the iteration error for the Chebyshev polynomial method.

6.6 NUMERICAL RESULTS

In this section we describe results of numerical experiments that were
designed to test the effectiveness of the Chebyshev adaptive procedures used

tThe multiplication by 1.1 may be considered as a safety factor to ensure that mE will satisfy
mE ::;; II,\".

t The choice ME = 0.1 here is based on the assumption that M(G) is close to unity. If M(G)
is close to zero, for example, then some other value should be used; perhaps ME = I1lE/2.
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in Algorithm 6-5.1. We shall be concerned primarily with numerical experi
ments that illustrate the effectiveness and the behavior of the adaptive pro
cedures for estimating flN' The" simulation" iteration procedure of Chapter 5
is used. That is, we assume that the set ofeigenvectors {v(i)}~:::~ for the iteration
matrix G is an orthonormal basis for the associated vector space.t Thus there
exist constants Ci> i = 1, ... ,N, such that the initial error vector 8(0) =
u(O) - Umay be written as

(6-6.1)

If fli is the eigenvalue of G corresponding to v(i), then the initial pseudo
residual vector 6(0) == 6(1.0) can be given by

6(1,0) = d1v(l) + d2 v(2) + ... + dNv(N),

where, since 6(1,0) = 6(0) = (G - 1)8(0), d
i
satisfies

di = (fli - l)ci'

Moreover, from (6-3.7), we have that

N

6(s,p) = I {Pp,Es(fli)Pps-"Es-Jfli)'" PJh,dfli)div(i)},
i= 1

and since 8(s, p) = (G - 1)- 16(S' p),

N

8(S,P) = I {Pp,dfl;)PpS-l,Es-Jfli)'" Ph E,(fli)Ci v(i)}.
i= 1

Since the vectors v(i) are orthonormal, we also have

N

116(S,P)II~ = I {Pp,Es(fli)'" Ppl,E,(fl;)dY
i= 1

and
N

118(S,P)II~ = I {Pp,dfli)'" PP1' E1(fli)CY,
i= 1

(6-6.2)

(6-6.3)

(6-6.4)

(6-6.5)

(6-6.6)

(6-6.7)

The adaptive procedure of Algorithm 6-5.1 requires only 116(S,P)112 from the
iteration process. But from (6-6.6), 116(S,P)112 can be calculated easily, given
only the set of eigenvalues {fl;} of G, the set of coefficients {c;} for the expan
sion (6~6.1), and data for the Chebyshev polynomials used. Since the Cheby
shev polynomial data are determined from the adaptive procedure, the

t The orthogonality assumption on the eigenvectors of G is equivalent to assuming that the
matrix G is symmetric or, equivalently, that the matrix Win (5-7.4) and (5-7.5) may be chosen
to be the identity matrix.
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. iterative behavior of any problem is uniquely determined by the eigenvalues
J1i' the coefficients Ci> and the adaptive procedure.

If

(6-6.8)

in
if °cos N + 1 > ,

J1i =

cos(in/(N + 1))

2 - cos(n/N + 1)

cos(in/N + 1)'f in
IX 1 cos < 0,

2 - cos(n/N + 1) N + 1

then the three sets of eigenvalues {J1;}i~f we consider for our test problems
are given in Table 6-6.1.

TABLE 6-6.1

Specification of Eigenvalues
for Test Problems

Problem N

1
2
3

40
100
100

1
3.0

10.0

If {R;}i~f is a set of random numbers between °and 1 and if

if J1i > 0,
if J1i < 0,

(6-6.9)

the different combinations of Ci we consider are defined by the (J's given in
Table 6-6.2.

TABLE 6-6.2

Specification of
Coefficients cJor

Test Problems

Guess fJ

A 1.0
B 10- 4

C 10- 6

Normally, the eigenvectors v(i) for small i are smoother than those for
large i. Since for most practical problems, the solution uand initial guess u(O)

are also relatively smooth, the coefficients Ci for small i are usually larger
than those for large i. We try to incorporate this property in our choices for
Ci' We also note that the worst case for detecting if mE > J1N occurs when the
Ci is small for large i.
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As shown in Section 5.7, we may generate the same adaptive Chebyshev
behavior using the simulated iteration process as that obtained from the
adaptive Chebyshev procedure applied to the general problem (6-1.1)
provided that the W-norm is used. Thus the simulated iterative process
simulates W-norm Chebyshev procedures, which is what we are trying to
avoid in this chapter. However, we chose to use the simulated iteration
process here since, as discussed in Chapter 5, it is easier to generate different
problem conditions with the use of this method. We note that the adaptive
process does not use the fact that the W-norm, in essence, is being used. For
the numerical results given in Chapter 8 on the cyclic Chebyshev method,
<5(S, p) is obtained from actual iterations. There it is shown that the behavior
of the iteration process is basically independent of whether or not the two
or W-norm of <5(s,PJ is used. In all likelihood, the same conclusion will also be
valid for the adaptive procedures of this chapter.

For the problems considered here, we wish to terminate the iterations
whent

(6-6.10)

As the estimate for Ile(S,P)112' we use (5-4.28). Thus we consider the problem
converged when

(6-6.11)

where ME is the best approximation to fll and is as defined in Algorithm
6-5.1.

Unless stated otherwise, we use the following input values for the adaptive
procedure: F = 0.75, d = 0.1, and IUM = 25.

Tables 6-6.3-6-6.5 contain summaries of the iterative behavior for the
three problems of Table 6-6.1 and under different problem conditions. The
mj,OJ and M!,oJ values in the "problem conditions" column are the input
values for mE and ME' Recall from Section 6.5 that IE is the input parameter
which signals whether or not the initial estimate for flN is to be obtained by
the adaptive procedure. The column headed by "last est. used for fl," gives
the value of ME used in the generation of the Chebyshev polynomial when
convergence was achieved. The C(s,p) in the fourth column is defined by
(6-4.11). The true error at convergence was obtained using (6-6.7), while the
estimated error was obtained from (6-6.11). When applicable, the columns
under the heading "re-estimation of flN" give the iteration on which a new
estimate for flN was first used and the value of this estimate. For all problems,
a new estimate for flN was obtained at most one time.

t For reasons of simplicity, we ignore here the normalization quantity Ilu(n+ Illl normally used
in most stopping tests.



TABLE 6-6.3 ['
Iteration Summary for Problem I: J1.1 = 0.994149 and J1.N = - 0.994149

Error at convergence Reestimation of J1.N r:
Problem Iterations Last est. C(s.P) at Value of new Calculated

conditions to converge used for J1.! convergence True Estimated est. for J1.N on iteration

Guess = B
[-

IE = 0
159 0.9943 1.13 x 10- 6 0.970 X 10- 6

mkO) = -1.0
M~O) = 0.994149 [-

(fixed)

Guess = B
IE = 0

204 0.993778 0.787 0.961 x 10- 6 0.968 X 10- 6 Lm\?l = -1.0
- -

M~O) = 0.2

Guess = B
IE = 0

198 0.994135 0.9803 1.00 x 10- 6 0.939 X 10- 6 -1.074 18 Im~) = 0.0
M~) = 0.2

Guess = B r:IE = -1
197 0.993856 0.814 0.945 x 10- 6 0.939 X 10- 6 25m\?l = 0.0

-1.000

M\?l = 0.2

Guess = C LIE = 0
210 0.994146 0.9979 0.843 x 10- 6 0.937 X 10- 6 -1.079 23

m\?) = 0.0
M~l = 0.2

L
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TABLE 6-6.4 [,Iteration Summary for Problem 2: III = 0.999033 and IlN = -2.99710

Error at convergence Reestimation of IlN

[~
Problem Iterations Last est. Cls.p) at Value of new Calculated

conditions to converge used for III convergence True Estimated est. for IlN on iteration

Guess = B [IE = 0
548 1.018 0.298 x 10- 6 0.986 X 10- 6

11l\?1 = - 3.0
-

MkO) = 0.999033
(fixed) [

Guess = B
IE = 0

647 0.999023 0.9403 0.953 x 10- 6 0.981 X 10- 6

11l~)= -3.0

LAI\?) = 0.2

Guess = B
IE = -I

683 0.999006 0.8753 0.960 x 10- 6 0.985 X 10- 6 - 3.208 9m\?) = 0.0

~•..~Mku1 = 0.2

Guess = C
IE = 0

727 0.998982 0.8104 0.975 x 10- 6 0.998 X 10- 6 -3.276 30 Lmko l = - 2.0
M\~)) = 0.2

Guess = A
IE = 0

707 0.998998 0.8496 0.959 x 10- 6 0.983 X 10- 6 -3.250 II LI1l~O) = - 2.0
M~O) = 0.2



TABLE 6-6.5

Iteration Summary for Problem 3: III = 0.999033 and IlN = -9.99033

Error at convergence Reestimation of IlN

Problem Iterations Last est. C(s.PI at Value of new Calculated
conditions to converge used for lit convergence True Estimated est. for IlN on iteration

Guess = B
IE = 0

908 1.019 0.302 x 10- 6 0.984 X 10- 6

mt;iJ = -10.0
-

MtOJ = 0.999033
(fixed)

Guess = B
IE = 0

1174 0.998965 0.7845 0.985 x 10- 6 0.986 X 10- 6

m~OJ = -10.0
MtOJ = 0.2

Guess = B
IE = -1

1179 0.998989 0.8457 0.981 x 10- 6 0.991 X 10- 6 -10.688 9
m\o"J = 0.0
M\o"J = 0.2

Guess = C
IE = 0

1107 0.999029 0.9821 0.976 x 10- 6 0.988 X 10- 6 -10.752 11
mlfl = -1.0
M~O) = 0.2

Guess = C
IE = 0

1140 0.999014 0.9176 0.984 x 10- 6 0.992 X 10- 6 -10.937 39
mWl = -9.0
MI,oJ = 0.2

l

L
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The first two rows in each table give the iteration data when the input mE
satisfies the Case 1* condition of (6-1.5), i.e., mtO) ~ IlN' The first row gives the
iterations required for convergence if III were known, i.e., the nonadaptive
case. The second row gives the iteration results when III was adaptively
estimated. The last three rows in each table give iteration results for various
problem conditions in which either the initial estimate for IlN was obtained
during the initial iterations or else an input value mt<» > IlN was used.

The following observations are made concerning the iterative behavior of
these problems:

1. With mt<» ~ IlN' the ratio of iterations required using the adaptive
procedure to the iterations required using ME = /11 fixed (nonadaptive)
varied from 1.19 to 1.33.

2. For all problem conditions considered, the procedure to reestimate IlN
worked well. Moreover, the iterations required for convergence did not
increase significantly when IlN was estimated or reestimated by the adaptive
procedure.

3. Accurate estimates for /11 were obtained for all problems.
4. The true error was accurately estimated whenever the adaptive pro

cedure was used. For the nonadaptive problems with MkO) = III fixed, the
true error was one-third to one-ninth that of the estimated error.

We remark that using an input mtO) which is considerably less than IlN may
significantly increase the number of iterations required for convergence. For
example, Problem 2 with ME = 0.999033 fixed was rerun with mkO) = -10.0.
This problem required 908 iterations to converge as compared to the 548
iterations given in Table 6-6.4 when mt<» = -3.0 was used.t

To give some indication of the behavior of the adaptive procedure for
different problem conditions, graphst of R(n) versus n and the eigenvalue
estimates used are given in Figs. 6-6.1-6-6.3 for three different conditions of
Problem 3 given in Table 6-6.5. No iteration data were printed for any
Chebyshev polynomial of degree three or less. Thus a break in the curve for
R(n) indicates that a new Chebyshev polynomial was started.

In Fig. 6-6.1, data are given for Case 1* problem conditions (i.e., mtO) ~ IlN)'
Figure 6-6.2 gives the behavior of R(n) when the initial estimate for /1N is
obtained by the adaptive procedure. Note that after the generation of the
second Chebyshev polynomial, the behavior of R(n) is the same as that in
Fig. 6-6.1. If /1N is significantly less than minus one, it is probably better to

t Note that the iteration ratio (908/548 = 1.657) obtained here agrees very closely with the
analytical bound given in Chapter 4. The bound given by (4-4.12) indicates that the ratio of

iterations using mE = -10.0 to that using mE = -3.0 should be less than j11/4 = 1.658.
t Recall from (6-5.11) that R(") = 11<5("1112/11<5("-1 1112'
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Iterations ME /liE Iterations ME /liE

1-7 0.200000 -3.0 63-75 0.991036 -3.0
8-14 0.478640 -3.0 76-90 0.993164 -3.0

15-21 0.837447 -3.0 91-107 0.995085 -3.0
22-28 0.912525 -3.0 108-128 0.996680 -3.0
29-35 0.942898 -3.0 129-155 0.997983 -3.0
36-42 0.963442 -3.0 156-214 0.998798 -3.0
43-51 0.979501 -3.0 215-647 0.999023 -3.0
52-62 0.987788 -3.0

Fig. 6-6.1. Graph of R(O) versus 11 for problem 3 with IE = 0 and mhO) = - 3.0.
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5:
a:

- -- -

0
0 10 20 30 40 50 60 70 80 90

ITERATION n

Iterations ME IIlE Iterations ME mE

1-9 0.948000 -0.948 74-78 0.993005 -3.209
10-26 0.200000 -3.209 89-105 0.994908 -3.209
27-33 0.264741 -3.209 106-126 0.996509 - 3.209
34-40 0.960730 -3.209 127-153 0.997845 -3.209
41-49 0.979351 -3.209 154-194 0.998741 -3.209
50-60 0.988040 -3.209 195-683 0.999006 -3.209
61-73 0.990902 -3.209

Fig. 6-6.2. Graph of Rln l versus 11 for problem 3 with the initial estimate for /IN obtained by
the adaptive procedure.
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f\. MEIterations ME mE Iterations mE
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1-7 0.200000 -2.000 71-83 0.990350 -3.276
8-14 0.514492 -2.000 84-98 0.992569 -3.276

2.0 f-
15-21 0.857331 -2.000 99-115 0.994589 -3.276 [22-30 0.924770 -2.000 116-136 0.996278 -3.276
31-43 0.100000 -3.276 137-161 0.997691 -3.276
44-50 0.218385 -3.276 162-194 0.998658 -3.276
51-59 0.979459 -3.276 19'5-727 0.998982 -3.276 ['60-70 0.984685 -3.276

- 1.5, [
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1.0 l- i. _ " ....... """"- "'-- -- - - - [
II I L

0.5 I I I J J J I I I J I I J I I J I J I I I I I J I I L
0 20 40 60 80 100 120 140 160 180 200 220 240

ITERATION n

[
Fig. 6-6.3. Graph of R(n) versus n for problem 3 with IE = 0 and M~) = -2.0.
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(6-7.2)

use a new guess for u(n) in the first iteration after obtaining the initial estimate
for IlN' In Fig. 6-6.3, data are given for the condition in which the input
estimate ml?) is greater than IlN' Note that this condition is not detected until
the fourth Chebyshev polynomial generated, and then it is indicated strongly.
The increase in the total number of iterations for this case is due more to the
last estimate used for III than to the fact that an initial mkO) > IlN was used.

We remark that the convergence rate of the Chebyshev acceleration
method depends strongly on the values of III and IlN but only weakly on the
size of the matrix problem. Thus although the number of unknowns is small
for the problems considered in this section, similar behavior would be
expected for much larger matrix problems with similar maximum and mini
mum eigenvalues.

6.7 ITERATIVE BEHAVIOR WHEN ME> III

For the following discussion, we assume that ME, > III and that mE < IlN'
Moreover, the occurrence of M Es > III is most likely for s not small. Thus as
in (6-4.2), it is reasonable to assume that 6(S,O) closely approximates the
eigenvector v(1) of G. When this is the case, we have approximately that

B(S,P) _ IWS,P)llz ..:.. P ( ) _ Tp(wdlll» (6-7.1)
- IWS,O)llz""7" p,Es III - T

p
(WE

s
(I»'

where WE(X) is defined by (6-5.3).t Since ME > Ill' W(lll) is less than I,lnity.
Thus, as in (6-4.5), we have the approximation

Icos pel [ 2rPIz
]

B(S,p) ~ Tiw(I» = 1 + r P Icos pel,

where

(6-7.3)

From (6-4.6), the error vector s(S,p) also satisfies the same relationship, i.e.,

II s(s, p) liz ..:.. [ 2rP1Z J
---,----""7" Icospel. (6-7.4)

II s(s, 0) liz 1 + rP

Thus Ils(S, P)llz achieves a local minimum whenever (pO) is closest to (i + -!-)n,
i = 0, .... To illustrate this behavior, Problem 2, with IE = -1, mkO) = 0.0,
MkO) = 0.2, and using Guess B, was resolved using estimates ME > III for
the last Chebyshev polynomial generated. For the result given in Table 6-6.4,

t Again for notational simplicity, we shall drop the subscript s on wand ME'
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the last Chebyshev polynomial generated was started on iteration 195, using
the estimates I11E = -3.208551 and ME = 0.9990061. The ME estimate was
less than III = 0.999033. This problem was rerun twice, using the same value
for I11E, but using ME = 0.99905 and ME = 0.9991 as the estimate for III in
the generation of the last Chebyshev polynomial. Graphs of Ile(n)lb versus n
for these three cases are given in Fig. 6-7.1. For the case in which ME =
0.99910, () is about 0.008 rad so that, from (6-7.4), a local minimum should
occur for p that is approximately equal to 196. From Fig. 6-7.1, a local
minimum was achieved on iteration 393 for which p = 198. For the case in
which ME = 0.99905, () is about 0.004 rad, which implies that a local mini
mum should be achieved at about iteration 597 when p is 392. Indeed, no
local minimum was detected for this case before convergence was achieved
on iteration 561.

The iterations required for convergence were 683, 646, and 561, respectively,
for the three cases ME = 0.9990061, ME = 0.9991, and ME = 0.99905. Thus
the overestimation of III can accelerate convergence under certain situations.

If ME > Ill> the easily calculable quantities VS,p) defined by (6-4.7), C(s,P)

defined by (6-4.11), and R(S, p) defined by (6-5.11) usually behave in a particular
way and may even be used to indicate the iteration on which the local
minimum occurs. From (6-7.2), when ME > III and approximation (6-7.1)
is valid, we have

and

B(S,P)

L(S,p) == [2rPI2j(1 + rP)] ~ Icos p()1 (6-7.5)

(6-7.6)

(6-7.7)

log B!S' p) log Icos p() Icts, p) = == 1 + :---=-::----:=:-:-:-c--_::_
log[2rP/2 j(1 + rP)] . log[2rPI2 j(1 + rP)l

Thus when ME > Ill> L(s,P) oscillates between 0 and 1 and achieves a local
minimum when (p() is closest to (i + t)n, i = 0, 1, .... Thus the occurrence
of a local minimum for Vs, p) and a local maximum for CIS, p) may be taken to
indicate that a local minimum for II e(s, P)112 was achieved on the same iteration.
With the same assumptions, it is easy to show that R(s,P) approximately
satisfies

RlS, p) = II o(S, p) 112 == -.f!L cos p()

- Ilo(S'p 1)112 . 2w(l) cos(p - 1)() ,

where Pp is the acceleration parameter (6-3.2). Hence, when ME> Ill' R(S' p)

will oscillate about unity and will go through unity from below when (p() is
close to (i + t)n, i = 0, 1, .... For the case ME = 0.9991 of Fig. 6-7.1, CIS, p)

achieved a local maximum on iteration 392, Vs,p) a local minimum on
iteration 393, and R(s, p) first became greater than unity on iteration 394.
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Fig. 6-7.1. Graph of log,oIIE(n11I z versus Il for problem 2 with different estimates ME in the
generation of the last Chebyshev polynomial. - x - x - x -. ME = 0.9990061 < Jll;
ME = 0.99905 > JI.;--. ME = 0.99910 > JlI'
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From the above discussion, it is clear that the Chebyshev method may ,be
accelerated by intentionally overestimating fl.l once the ME estimates have
converged to fl.l' The use of such a procedure would probably be beneficial
only for slowly converging problems.

6.8 SINGULAR AND EIGENVECTOR DEFICIENT
PROBLEMS

In this chapter as well as in the previous chapter, we have always assumed
that the basic method (6-1.1) is symmetrizable. Because of this assumption,
the iteration matrix G satisfied the important properties (a)-(c) given in
Theorem 2-2.1. Now we shall discuss briefly some difficulties introduced
when property (b) or property (c) is not valid. Problems for which property
(a) is not valid (i.e., G has complex eigenvalues) will not be considered here
since this case is discussed later in Chapters 11 and 12. Specifically, in this
section we show that the algorithms given in this chapter and in Chapter 5
may be used without modification to solve certain singular matrix problems
but that these algorithms generally should not be used when the basic
iteration matrix G has an eigenvector deficiency..

For our discussion, we let A be an N x N matrix and let b be any vector
for which the system

Au = b . (6-8.1)

has at least one solution. We assume that the system (6-8.1) is to be solved by
the polynomial acceleration method (3-2.7). Let il be any solution of (6-8.1)
and let e(n) == u(n) - il, n = 0, 1, ... , denote the error vector associated with
the iterates u(n) of (3-2.7). From Theorem 3-2.1, e(n) can be expressed in the
form

(6-8.2)

Here G is the iteration matrix associated with the basic method (6-1.1), and
Qn(G) is the matrix polynomial defined by (3-2.6). We assume that G is given
by (2-2.1), i.e.,

(6-8.3)

We first discuss the important case in which the system (6-8.1) is singular.

A is Singular, Symmetric, and Positive Semidefinite

We remark that for this case the source vector b must be orthogonal to the
null space of A in order for the system (6-8.1) to have a solution. (See, e,g.,
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Noble and Daniel [197-7].) Moreover, if the singular system (6-8.1) has a
solution, then it has infinitely many solutions. Also, since the singular matrix
A has an eigenvalue equal to zero, it follows from (6-8.3) that the iteration
matrix G has an eigenvalue equal to unity and that any eigenvector of G with
eigenvalue equal to unity is in the null space of A.

When the system (6-8.1) is singular and has a solution, we now show that
under certain conditions a modified Chebyshev acceleration procedure
applied to (6-1.1) leads to solution of(6-8.1) for any choice ofu(O). However,
the solution obtained will depend on ufO).

Theorem 6-8.1. Let the N x N matrix A of(6-8.1) be singular, symmetric,
and positive semidefinite, and let the system (6-8.1) have a solution. Let the
iteration matrix G of the basic method (6-1.1) be given by (6-8.3), where Q is
SPD, and let M(G) denote the largest eigenvalue of G that is less than unity.
If the polynomials {Qn(x)} of (3-2.6) are defined by

Qn(x) == Pix) == T,.(w(x»/T,,(w(I),

where T,,(w) is the Chebyshev polynomial (4-2.2) and

w(x) == (2x - M(G) - m(G»/(M(G) - m(G»,

(6-8.4)

(6-8.5)

(6-8.7)

then the polynomial acceleration procedure defined by (3-2.7) converges to
a solution of (6-8.1).

Proof Since Ql/2(I - G)Q-l/2 is symmetric and positive semidefinite,
it follows from the results of Section 1.3 that properties (a)-(c) given in
Theorem 2-2.1 are valid for G except that the largest eigenvalue(s) of G is (are)
equal to unity. Let the eigenvalues {,uJ::f of G be ordered as

m(G) ==,uN':::; ,uN-I':::; ... ':::;,ur < ,ur-l = ... =,ul = 1, (6-8.6)

and let the set of eigenvectors {v(i)}::f be a basis for the associated vector
space. We assume that Gv(i) = ,uiV(i).

Let u be any solution of (6-8.1), and let 8(0) = ufO) - u. As in Section 6.2,
the eigenvector expansion of 8(0) may be expressed as

N

8(0) = clv(l) + L CiV(i).
i= t

Also, by (6-8.2) we have that

8(n) = urn) - u= Pn(G)8(0).

Using the fact that Pn(1) = 1, we can express 8(n) in the form

N

8(n) = c1v(l) + L ciP(,u;)v(i).
i=t

(6-8.8)

(6-8.9)
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,1

Note that i\(x) is the same as the normalized Chebyshev polynomial
Fn(x) of (4-2.9) except that M(G) is replaced by M(G). It then follows from
(4-2.10) and (4-2.5) that

max IPIl(x) I = [T,lw(1))r I. (6-8.10)

Since w(l) > 1, it follows from (4-2.2) that limn -> 00 [T,,(w(1))r I = O. Hence,
using (6-8.10) in (6-8.9),we have

lim (/;(n) - c l v(1)) = O. (6-8.11)

Therefore,
n-> 00

(6-8.12)

Moreover, since vel) is in the null space of A, we have that

A(u + clv(l)) = Au = b, (6-8.13)

from which it follows that the limit (6-8.12) is a solution of (6-8.1). •

Computationally, the singular problem can be solved by using the Cheby
shev procedures given previously for thenonsingular case. When estimates
mE and ME are used for meG) and M(G), respectively, it is easy to show that
the Chebyshev method for singular problems can be carried out, using
(5-1.4)-(5-1.7) with ME replaced by ME' Moreover, the previously given
parameter and error estimation procedures may also be used. To show why
this is so, let PII E(X) denote the normalized Chebyshev polynomial (6-8.4)
with M(G) and 'meG) replaced by the estimates mE and ME' From (5-2.2),
(6-8.9), and (6-8.6), we then have

N

b(ll) = Pn,E(G)b(O) = L(lli - 1)Pn,E(lli)Civ(i).
i=t

(6-8.14)

Note that the expansion for b(n) is void of any eigenvectors of G with eigen
value unity. Because of this, previously given results for b(n) with III (= M(G))
replaced by III (= M(G)) are valid for the singular problem. Thus estimates for
M(G) can be obtained by using the procedures described previously. Note
that the error estimation procedure measures the vector /;(n) - clv(1) since
now

. II/;(n) - C1v(l) II _I

l~n:11 b(n) II ' = ( 1 - Ill) .

For singular problems, the algorithms given in this chapter and in Chapter
5 require only the additional assumption that the source vector b is ortho
gonal to the null space of A.t

t In the case in which the null space of I - G is one diniensional and a vector w in the null
space is known, the system Au = b - «b, w)/(W, wnw has a solution for any given vector. (See, for
example. O'Carroll [1973].)
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The Set of Eigenvectors for G Does Not Include a Basis

We now assume that the set of eigenvalues {,u;}::~ of A are real but that
the iteration matrix G has an eigenvector deficiency. To fix ideas, we further
assume that the set of eigenvectors for G, supplemented by one principal
vector of grade 2 (see Section 1.3), includes a basis for the associated vector
space.t Let,ul be the repeated eigenvalue associated with the principal vector.
Thus the set of basis vectors can be given by {v(1), p(I), v(3), , v(N)}, where
v(i) is an eigenvector of G satisfying Gv(i) = ,uiV(i), i = 1,3, , N, and p(l)
is a principal vector ofgrade 2which, from (1-3.15), satisfies Gp(l) = ,ulP(I) +
v(1).

With <;(0) given by <;(0) = clv(l) + czp(l) + If=3CiV(i), the error vector
<;(n) of (6-8.2) may be expressed as

N

<;(n) = CIQn(,uI)v(I) + czQn(G)p(l) + L: C;Qn(,ui)V(i).
i=3

(6-8.15)

Since, by (1-3.15), Glp(l) = ,uip(1) + 1(,uly- 1v(I), it follows that Qn(G)p(l) =

Qn(,ul)p(l) + dQn(x)/dxI IL1 v(I). Thus relation (6-8.15) takes the form

(n) Q ( ) "(I) dQn(X)!
<; = CI n,ul V + Cz d

X ILl

N

+ Cz Qn(,ul)p(1) + L: CiQnC,u;)V(i).
i=3

(6-8.16)

Comparing (6-8.16) with (6-2.21), we see that the presence of a principal
vector of grade 2 introduces a derivative of QnCx) into the expansion for <;(n).
In general, principal vectors of gradefintroduce derivatives of QnCx) oforders
up to f - 1 into the expansion for <;(n). When Qn(x) is the normalized Cheby
shev polynomial (4-2.9), Manteuffel [1975J has shown that convergence still
takes place, but usually at a much reduced rate.

Because of the introduction of the additional derivative term(s), neither
polynomial acceleration nor the algorithms given in this book are recom
mended when the set of eigenvectors for the iteration matrix G does not
include a basis.

t This assumplion corresponds to assuming that k = N - I in the Jordan canonical form J
of G given in Theorem 1-3.2.
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7
Conjugate Gradient

Acceleration

7.1 INTRODUCTION

In the early 1950s Hestenes and Stiefel [1952J presented a new iterative
method for solving systems of linear algebraic equations. This new method
was known as the" conjugate gradient method"; we shall refer to it as the CG
method. The CG method, though an iterative method, converges to the true
solution of the linear system in a finite number of iterations in the absence of
rounding errors. Because of this and many other interesting properties, the
CG method attracted considerable attention in the numerical analysis
community when it was first presented. However, for various reasons the
method was not widely used, and little was heard about it for many years. As
noted by Concus et al. [1976bJ, there was hardly any mention of the CG
method in the proceedings of a Conference on Sparse Matrices and Their
Applications held in 1971 (see Rose and Willoughby [1972J).

Beginning in the mid-1960s there was a strong resurgence of interest in
the CG method. A number of papers appeared, including those by Daniel
[1965, 1967J, J. K. Reid [1971, 1972J, Bartels and Daniel [1974J, Axelsson
[1974J, O'Leary [1975J, Chandra et al. [1977J, Concus et al. [1976bJ, and
many others.
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Although not generally recognized until fairly recently, the conjugate
gradient method is not just one method, but a whole family of methods
(Hestenes [1956]). Each such method can be regarded as an acceleration
process for a particular (basic) linear stationary iterative method of first
degree. (The classical CG method can be regarded as an acceleration pro
cedure based on the RF method of Section 2.3). Moreover, as shown by
Engeli et al. [1959], the CG method can be represented in a three-term form
which resembles Chebyshev acceleration applied to the RF method. One
can also develop a similar three-term form for conjugate gradient acceleration
applied to more general basic methods which resembles Chebyshev accelera
tion applied to those methods. It can also be shown that conjugate gradient
acceleration of a given iterative method converges with respect to a certain
error measurement procedure at least as fast as the corresponding Chebyshev
procedure. Furthermore, no parameter estimates are required in the imple
mentation of conjugate gradient acceleration. Because of these and other
attractive properties, conjugate gradient acceleration has been used exten
sively in recent years.

We describe the classical CG method in Section 7.2. In Section 7.3 we
describe the equivalent three-term form. In Section 7.4 we describe conjugate
gradient acceleration of a class of basic iterative methods. In Section 7.5 we
describe procedures for deciding when to terminate the iterative process.
Computational procedures are given in Section 7.6. In Section 7.7 numerical
results based on simulation experiments are given.

7.2 THE CONJUGATE GRADIENT METHOD

We now describe the classical conjugate gradient method (CG method)
of Hestenes and Stiefel [1952] as applied to the linear system Au = b given
by (2-1.1). We assume that the N x N matrix A is SPD.

The CG method can be regarded as a modification of the method of
steepest descent. To derive the method of steepest descent we consider the
quadratic form

Since
F(u) = !Cu, Au) - (b, u).

F(u) = F(u) + t((u- u), A(u - u»,

(7-2.1)

(7-2.2)

where u= A-Ib is the solution of (2-1.1), and since A is SPD, it follows that
the problem of solving Au = b is equivalent to the problem of minimizing
F(u). Moreover, the gradient of F(u) is given by

grad F(u) = b - Au. (7-2.3)
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The direction of the vector grad F(u) is the direction for which the functional
F(u) at the point u has the greatest instantaneous rate of change. Ifd") is some
approximation to ii, then in the method of steepest descent we obtain an
improved approximation U(II+ 1) by moving in the direction of grad F(U(II») to
a point where F(U(II+ 1») is minimal, Le., U(II+ 1) = U(II) + All grad F(U(II»), where
All is chosen to minimize F(U(II+ 1'). Using (7-2.1), we easily calculate that
All = (r(lI>, r(II»)!(r(II), Ar(II»), where r(lI) == b - AU(II). Since, from (7-2.3), grad
F(t/")) = r(II), we can express the method of steepest descent in the form

u(O) is arbitrary,

For ill-conditioned matrices A, the convergence rate of the method of
steepest descent can be very slow (see, e.g., Luenberger [1973J). However, by
choosing our direction vectors differently, we obtain the CG method, which,
as we shall see shortly, gives the solution in at most N iterations in the absence
of rounding errors.

Let u(O) be arbitrary and let successive approximations to the solution ii
be given by U(II+ 1) = U(II) + AII P(II), where p(lI) is a "direction vector." For the
CG method, we let p(O) = r(O) and p(lI) = r(lI) + (XIIP(II-1) for 11 ~ 1, where (XII is
chosen so that p(lI) is A-conjugate to p(1I -1), Le., (p(II), Ap(II-1)) = 0. Evidently,
(XII = - (r(II), Ap(lI- l»)!(p(II-1), Ap(lI- 1»). As before, choosing All to minimize
F(U(II+ 1»), we obtain All = (p(II), r(II»)!(p(II), Ap(II»). The formulas for the CG
method are given by

U(II + 1) = U(II) + All r(lI)

r(lI) = b - AU(II)

(r(II), r(II»)

All = (r(II), Ar(II») •

for 11 = 0, 1, ... ,

(7-2.4)

u(O) is arbitrary,

{

r(lI)
(II) _ '

P - r(lI) + (XIIP(II-1),

(r(II), Ap(lI- 1))

(XII = - (p(1I 1), Ap(II-1))'

r(lI) = b - Au(lI),

11 = 0, 1, ... ,

if 11 = 0,
11 = 1,2, ... ,

11 = 1,2, ... ,

11 = 0, 1, ... ,

11 = 0, 1, ....

(7-2.5)
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It can be shown that an, An' and r(n) can be given equivalently by

(r(n), r(n))
an = -(-:'(n---;I-:-)---'-(n---=-I"--») ,r , r
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r(n) = r(n-I) _ A Ap(n- 1)
n-1 ,

n = 0, 1, ... ,

n = 1,2, ....

(7-2.6)

Hestenes and Stiefel [1952J show that the residuals reo), r(1), ... and the
direction vectors p(O), p(I), ... generated by (7-2.5) satisfy the relations

(p(i), ApU») = 0

(r(i), ApU») = 0

for i i: j,

for i i: j,

for i i: j and ii:j+1.

(7-2.7)

Thus the residual vectors r(O), r(1), ... are mutually orthogonal and the
direction vectors p(O), p(1), ... are mutually A-conjugate. From the first
relation in (7-2.7), it follows that reS) = 0 for some s :0:; N. Thus the method
(7-2.5) converges, in the absence of rounding errors, in at most N iterations.
Hestenes and Stiefel [1952J also show that the error vector sen) == u(n) - ii
associated with the CG method satisfies

(7-2.8)

whenever sen) i: O. In the next section, we shall have more to say concerning
the average rate of convergence for the CG method.

It can be shown (see, e.g., Beckman [1960J) that the direction vector pen)
is a scalar multiple of the projection of the gradient vector r(n) = grad F(u(n»)
in the linear space spanned by pen), p(n+ 1), • : ., p(N-1). This fact coupled with
the fact that the direction vectors p(O), p(1), ... are mutually A-conjugate
accounts for the name "conjugate gradient method."

The CG method is a special case of the more general conjugate direction
(CD) method. In the CD method, the vectors p(O), p(I), .. . , p(N-I) are selected
to be nonzero and mutually A-conjugate but have no further restrictions. To
describe the basic idea involved, suppose that the set {p(n)}~~~-I of nonzero
mutually A-conjugate vectors is given. Since A is SPD, it is easy to show that
the set {p(n)}~~~-I is also linearly independent. Thus there exist constants
Co, CI"'" CN-I such that

(7-2.9)
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where u lO ) is some initial approximation to u. Multiplying (7-2.9) by A and
taking inner products with pIn), we obtain

n = 0, ... , N - 1. (7-2.10)

Note that the constants Cn are easily calculable.t
The CD method is given by the formulas

ulO ) is arbitrary,

rln) = b - Auln), n = 0, 1, ... ,

n = 0, 1, ... ,
(7-2.11)

It can be shown (see, e.g., Luenberger [1973J) that the An in (7-2.11) are equal
to the Cnfrom (7-2.10) and that the iterates uln + 1) in (7-2.11) can be expressed
in the form

where the c;, i = 0, ... , n, are those given in (7-2.10). From (7-2.12) and
(7-2.9), it follows that uln) = u for some n S N. Thus the CD method also
enjoys the property that convergence is achieved, in the absence of rounding
errors, in at most N iterations.

The CD method is not well defined in that no prescription is given for the
computation of the direction vectors pIO), pll), • " . Various formulas can be
given, with each leading to a special method. We can generate an A -conjugate
set of vectors from any set {vln)}~~~-lof linearly independent vectors, using
the Gram-Schmidt orthogonalization procedure. Hestenes and Stiefel
[1952J show that the CD method is equivalent to the Gauss elimination
method when the set {vln)} is chosen to be the unit basis vectors, i.e., when
vlO) = [1,0, ... , oy, Vll ) = [0, 1,0, ... ,oy, etc. For the CG method, the set
{vln)} is chosen to be the residual vectors, i.e., vln) = rln). The residual and
direction vectors for the CG method are not defined beforehand but are
determined sequentially in the order rIO), pIO), rll), pll), ... as the iterations
progress.

(7-2.12)

n = 0, 1, ....

t If the set {p(n)}:~~-1 were orthogonal and not A-conjugate, then Cn = (pin), (ii - uIO))/

(plnl, pin)). This expression for the Cn is of little help since Ii is not known.
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Engeli et ai. [1959J considered the following three-term form of the CG
method: '

u(n+ 1) = P {y r(n) + u(n)} + (1 _ P )u(n-l)n+l n+l n+l,

where

(r(n), r(n»

Yn+ 1 = (r(n), Ar(n»

and

(7-3.1)

(7-3.2)

[
Y ( r(n) r(n» 1] - 1

- 1-~ , -
Pn+l - (n 1) (n-l» ,

Yn r , r Pn
if n 2:: 1 (PI = 1). (7-3.3)

The above formulas can be obtained from (7-2.5) by eliminating pen) and
p(n-l) from the pair of equations u(n+ 1) = u(n) + AnP(n) and u(n) = u<n-l) +
An_lP(n-l). Thus we obtain (7-3.1) with

and

if n 2:: 1 (p 1 = 1) (7-3.4)

(7-3.5)

Formulas (7-3.2) and (7-3.3) can then be derived directly from (7-2.5) (see, e.g.,
Reid [1971J).

An alternative derivation of (7-3.2) and (7-3.3) can be given as follows (see
Concus et al. [1976bJ). By (7-2.5) and (7-3.1), we have

r(n+l)=p {_Y Ar(n)+r(n)}+(I-p )r(n-l)
n+l n+l n+l' (7-3.6)

We now use the fact that the residuals are mutually orthogonal. Ifwe require
that (r(n+ 1), r(n» = 0, we get (7-3.2), provided that Pn+ 1 # 0. But by (7-3.4)
and (7-2.6) it follows that

Pn+l 2:: I, n = 0, 1, .... (7-3.7)

If we require that (r(n+ 1), r(n-l» = °we get, assuming that (r(n), r(n-l» = 0,

°= (r(n+ 1), r(n-l»

= Pn+l{-Yn+l(Ar(n),r(n-1)} + (I - Pn+l)(r(n-l),r(n-l». (7-3.8)



Replacing n by n - 1 in (7-3.6) and taking the inner product of both sides
with r(II), we get

Substituting (7-3.10) into (7-3.8), we get (7-3.3).
Replacing r(lI) by b - AU(II) in (7-3.1), we can express U(II+ I) in the alternative

form

U(II+I) = PII+d"lIl+I(I - A)U(II) + b) + (1 - "III+I)U(II)} + (1- PII+l)U(II-I).

(7-3.11)

Since (I - A) is the iteration matrix for the RF method (see Section 2.3), it
follows from Theorem 3-2.1 that the iterates (7-3.11) correspond to a poly
nomial acceleration procedure applied to the RF method. Thus from (3-2.5),
there exists a matrix polynomial QII(G) = C(II, 01 + C(II, 1G + ... + C(II, II Gil such
that the error vector 10(11) == U(II) - it associated with (7-3.11) can be expressed
in the form

10(11) = QII(G)e(O) = QII(I - A)e(O).

It can be shown (see, e.g., Young et ai. [1980J) that the property that the
residual vectors are mutually orthogonal characterizes the CG method
among all polynomial acceleration procedures applied to the RF method.

It can also be shown (see, e,g., Young et ai. [1980J) that the CG method
minimizes the A 1/2-norm of the error vector among all polynomial accelera
tion methods applied to the RF method. Thus if 10(11) is the error vector associ
ated with (7-3.11) and if ;:;(11), where ;:;(0) = 10(0), is the error vector associated
with any other polynomial method applied to the RF method, then
Ile(II)IIAI/2 ::::; IW")IIAl/2. In particular, if ;:;(11) corresponds to the Chebyshev
acceleration method, it then follows from (3-2.12) and (4-2.20), since A 1/2 is
a symmetrization matrix for the RF method, that

2;;"/2

Ile(II)IIAl/2::::; 11;:;(II)IIAI/2 ::::; 1 -II ile(0)IIAl/2, (7-3.12)
+r

(7-3.9)

(7-3.10)

,-
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(Ar(lI- I), r(II» = (r(lI- I', Ar(II» = (Ar(II), r(II-I»

= - (r(II), r(II»/PII "III'

where

or

144

;; = (1- Jl- 0=2)/(1 + Jl _ ()2)

and

(7-3.13)

0= = [M(A) - m(A)J/[M(A) + m(A)J = [K(A) - IJ/[K(A) + 1]. (7-3.14)

Here K(A) is the spectral condition number of A defined by (1-4.18).
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In the previous section we have shown how the CG method may be
regarded as a polynomial acceleration procedure based on the RF method.
We now show how the CG method may be modified so as to correspond to a
polynomial acceleration procedure applied to more general basic iteration
methods.

Let us consider the basic iterative method defined by

u(n+ 1) = Gu(n) + k,

where for some nonsingular splitting matrix Qwe have

(7-4.1)

(7-4.2)

We assume that the method is symmetrizable in the sense of Definition 2-2.1.
Thus there exists a nonsingular symmetrization matrix W such that
W(I - G)W- 1 is SPD. If A is SPD, then our discussion includes the RF,
Jacobi, and SSOR methods, as well as any method in which the splitting
matrix Q is SPD. (In the latter case we can let W be any matrix such that
WTW = Q.)

To derive a CG acceleration procedure based on the iterative method
(7-4.1), we first construct a new linear system whkh has the same solution as
the original system (2-1.1). The coefficient matrix of the new system will be
SPD and generally will have a much smaller spectral condition number than
that of the matrix A of the original linear system.

To derive the new system, we first consider the related linear system (2-2.2):

(I - G)u = k, (7-4.3)

which, by complete consistency,t has the same solution as (2-1.1). We next
multiply both sides of (7-4.3) by a symmetrization matrix lv, obtaining

W(I - G)u = Wk. (7-4.4)

The matrix W(I - G) is not in general symmetric. However, by introducing
a new vector u= Wu, we can write (7-4.4) in the form

where

(7-4.5)

t See Section 2.2.

u= Wu, fj = Wk. (7-4.6)



The system (7-4.5) is often called the preconditioned systemt since, in general,
the condition number of A is much less than that of A.

We remark that one can also obtain the preconditioned system from
(2-1.1) as follows. Let Qbe the splitting matrix corresponding to (7-4.1). We
first multiply both sides of (2-1.1) by Q-l, obtaining

Q-1Au = Q-1b,

which is the same as (7-4.3) by (7-4.2). Then we multiply both sides by Wand
replace u by WU. Wethen obtain (7-4.5), where

A = WQ- 1AW-1, u= Wu, {j = WQ-1b.

If we apply the CG method of Section 7.2 to the preconditioned system
(7-4.5), we obtain, using (7-2.5) and (7-2.6), that

u(O) is arbitrary,
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1

'-----J L

n = 0, 1, ... ,

= (Wb(n-1), W bIn 1»'

A. = (Wp(n), Wb(n»
n (Wp(n), W(I _ G)p(n»

(Wben), W bIn»~
---:.,--;--------':__-----':,.--,-

(Wp(n), W(I - G)p(n»'

n = 1,2, ... ,

n = 0, 1, 2, ....

(7-4.7)

Here ben) is the pseudoresidual vector

ben) = Guln) + k _. u(n). (7-4.8)

This extension of the CG method is equivalent to that given by Hestenes
[1956]. (See also Daniel [1965J, [1967].)

From the first relation given in (7-2.7), it follows that the pseudoresidual
vectors b(O), b(l), ••• , defined in (7-4.8), are mutually W -orthogonal in the
sense that

i =1= j. (7-4.9)

t Preconditioning was used by Evans [1967], Axelsson [1974], and others. The precondi
tioning used here is slightly more general than that of Evans and Axelsson but reduces to theirs
if Q is SPD and if W = QI /2 or if W is any matrix such that WTW = Q.
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The second relation in (7-2.7) implies that the direction vectors p(O), p(l), •••

of (7-4.7) are WT W(I - G)-conjugate, i.e., that

(p(i), WTW(I - G)pU» = 0, i =I j. (7-4.10)

Analogous to (7-3.1)-(7-3.3) we can obtain the following three-term form
of the CG acceleration procedure (7-4.7):

u(n+ I) = P {y <5(n) + u(n)} + (1 _ P )u(n-I)n+l n+l n+l' (7-4.11)

where
_ (W<5(n), W<5(n» _ [1 _(W<5(n), WG<5(nl)]-1

Yn+ 1 - (W<5 (n), W(I - G)<5(n» - (W<5(n), W <5(n» ,

[
Y (W<5(n) W<5(n» 1]-1n+ 1 .,

PI = 1, Pn+l = 1 - -- (W <5(n-l) W <5(n-l»- ,
Yn , Pn .

(7-4.12)

if n ~ 1.

(7-4.13)

The above method represents a slight extension of the" generalized conjugate
gradient procedure" presented by Concus et al. [1976J; see also Axelsson
[1974J. It is equivalent to their method if Qis SPD and W = QI /2or W is any
matrix such that WTW = Q.

We refer to the methods obtained by applying CG acceleration to the RF,
Jacobi, and SSOR methods as the RF-CG, J-CG, and SSOR-CG methods,
respectively. Thus in our terminology, the classical CG method presented
previously in Sections 7.2 and 7.3 is the same as the RF-CG method.

Concerning the choice between the two-term form (7-4.7) and the three
term form (7-4.11)-(7-4.13) of CG acceleration, results of Reid [1972J
indicate that the two-term form is somewhat more efficient. On the other
hand, the three-term form is the same as that used for Chebyshev acceleration.
In any case, the difference between the two- and three-term forms does not
appear to be very significant.

It can easily be shown that CG acceleration ofthe method (7-4.1) minimizes
the [WTW(I - G)JI/2-normt of the error as compared with any polynomial
acceleration procedure based on (7-4.1). This follows from (7-4.5) and (7-4.6).
Indeed, we have

(8(n), A8(n» = (We(n), W(I - G)e(n» = (e(n), WTW(I - G)e(n», (7-4.14)

where we let 8(n) = We(n). Thus the CG acceleration procedure applied to
(7-4.3) minimizes (8(n), A6(n», which is equal to the square of the
[WTW(I - G)J 1/2-norm ofthe error e(n). IfA and Q are SPD and if WTW = Q,
then we minimize the A 1/2-norm of the error as in the CG method.

t In order for the square root to be well defined, WTW(I - G) must be SPD; but this follows
from the facts that WTW([ - G) = WTW(I - G)W- 1 Wand that W(I - G)W- 1 is SPD.
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As in (7-3.12), we can obtain a bound for the error vector associated with
the CG procedure (7-4.7), using known results for the Chebyshev procedure.
We first note that [WTW(I - G)]1/2 is a symmetrization matrix for the basic
method (7-4.1). To show this, since WTW(I - G) is SPD, we can write

[WTW(I - G)]1 /2(I - G)[WTW(I - G)r 1/2

= [WTW(I - G)]1/2(WTW)-I[WTW(I - GW /2

= {[WTW(I - G)]1 /2 W- I }{[WTW(I - G)]1/2W- I }T, (7-4.15)

from which the desired result follows. Now let a(n) and 8(n), respectively, be the
error vectors associated with the CG and Chebyshev acceleration methods
applied to (7-4.1). We assume 8(0) = a(O).Using the error minimization
property of CG acceleration and using (3-2.12) and (4-2.20) for Chebyshev
acceleration, we obtain

where r is given by (4-2.19). From (7-4.16) and (2-2.8), it follows that the
average rate of convergence for the CG acceleration method, when measured
in the [WTW(I - G)] 1/2 norm, is at least as large as that for the corresponding
Chebyshev procedure.

7.5 STOPPING PROCEDURES

We now describe a procedure for deciding when the CG iterative pro
cedure of Section 7.4 should be terminated. Ideally, we should like to stop
the iterative process and accept u(n) as a satisfactory approximation to the
true solution uwhenever u(n) satisfies the inequality

ET == Ilu(n) - ullw/IIUllw S (, (7-5.1)

where' is the stopping criterion number. As in previous chapters, we shall
express the unknown quantity u(n) - uin terms of b(nl.

By (5-2.5), it follows that Ildn) - ull w S (1 - M(G))-lllb(nlll w, and hence
we have

Ildn) - ull w < 1 Ilb(nlll w.

Ilullw. -:- 1 - M(G) Ilu\lw
(7-5.2)
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Based on (7-5.2), we propose the stopping test

(7-5.3)

where M~) is an estimate for M(G), whose determination we discuss below.
For the adaptive Chebyshev acceleration procedures described in Chapter

5, we used the latest estimate for M(G), which was obtained from the adaptive
process, for the stopping test. For the case of CG acceleration, we do not
require estimates for M(G) in order to carry out the iteration process. How
ever, we can easily obtain estimates for M(G) using

M(n) = M(T.)En' (7-5.4)

where T" is the tridiagonal matrix given by

1 -1 P2 - 1
- Y1

P2Y2

-1 1 -1 P3 - 1
Y1 - Y2

P3Y3

T.= (P2Y2)-1 1 -1n - Y3

0

o

Pn - 1

PnYn

(Pn_1Yn-1)-1 l_y;;1

(7-5.5)

or

Before discussing how to compute M(T,,), we give a justification for the
procedure. From (7-4.8) and (7-4.11), we have

(7-5.8)

Gc5(n) = 1 c5(n+ 1) _ 1 - Yn+ 1 c5(n) _ (1 - Pn+ 1) c5(n-l). (7-5.7)
Pn+1Yn+1 Yn+1 Pn+1Yn+1

Let s be the smallest number such that c5(s+ 1) = O. (We note that s ::;; N - 1
in the absence of rounding errors.) We then have
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(7-5.11)

(7-5.10)

Pn - 1

1 -1- Yn

Yn-1Pn-1YnPn

Pn - 1

Yn-1Pn-1YnPn

o
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G(<5(0) ••• <5(S»)v = ,1.(<5(0) ..• <5(S»)v.

From this it follows that

w = (<5(0) ••• <5(S»)v

1 -1 P2 - 1
- Y1

Y1P2Y2

P2 - 1 P3 - 1
0

1 -1- Y2
Y1P2Y2 hP2Y3P3

T.= P3 - 1 1 -1n - Y3
Y2P2Y3P3

is an eigenvector of G and A is the corresponding eigenvalue. It thus follows
that every eigenvalue of T. is an eigenvalue of G. Hence M(T.) ::; M(G). To
summarize, we have

As noted by Concus et al. [1976a], the above procedure for finding M(G) is
essentially the Lanczos [1950] algorithm. It has been shown by Kaniel
[1966] and Paige [1971] that good estimates of the extreme eigenvalues of
G can often be obtained by computing the eigenvalues of 1;" where n is
considerably less than s.

M(T1) ::; M(T2 ) ::; ••• ::; M(1;,) ::; ... ::; M(G).

The fact that M(Tn) ::; M(G) for all n follows from (7-5.8). To show this, let
A be an eigenvalue of T. with corresponding eigenvector v. Thus T.v = AV,
and from (7-5.8) we have that

(7-5.9)

It is well known (see, for instance, Barnard and Child [1952]) that the eigen
values of 1;,-1 interlace those of 1;,. Thus, in particular, we have

We note that since Pn ~ 1 by (7-3.7), the matrix 1;, is similar to the sym
metric matrix 1';, given by
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We now describe a numerical procedure for finding M(T,,). We use the
method of bisection (see, e.g., Young and Gregory [1973, Chap. 4J) as applied
to the determinant function ,1iA), defined by

,1iA) == det(T" - AI). (7-5.13)

The evaluation of ,1n(A) for a given A is easily carried out, using the recurrence
relation

,1n+1(.1.) = [- 1 - }'n+1 _ .1.J,1n(.1.) + 1 - Pn+1 ,1n-1(A). (7-5.14)
}'n+1 Pn+1}'n+1Pn}'n

Since the zeros of ,1n-1(A) interlace those of ,1i.1.) and since all of the zeros of
,1i.1.) are less than unity, by (7-5.12) and (7-5.13), it follows that there is
precisely one zero of ,1n(A) between M(T,,- 1) and 1. Thus we must have

(7-5.15)

This condition is sufficient to guarantee the convergence of the method of
bisection.

In practice, however, it may happen that since the computed value of
M(T,,-1) is not exact, we may have ,1iM(T,,- d) ,1il) > O. In that case, we
let M(T,,) = M(T,,- d. This should be sufficiently accurate for use with the
stopping procedure.

The stopping test used for the adaptive Chebyshev procedure is extremely
accurate. This is caused by the fact that as convergence is approached, the
error vector and the pseudoresidual vector are each nearly proportional to
the eigenvector corresponding to the largest eigenvalue of G. On the other
hand, with the nonadaptive Chebyshev procedure the test is somewhat less
accurate since little can be said about the relative sizes of the components of
the expansion of the pseudoresidual vector in terms of the eigenvectors of G.
The same is true of the CG method. However, we can assert that

1 11<5(n)llw < Iluln) - ullw < 1 11<5(n)llw
1 - m(G) Ilull w Ilull w - 1 - M(G) Ilull w · (7-5.16)

Thus the predicted value of ET = Ilu(n) - ullwiliull wcannot be too large by
a factor of more than (1 - m(G»(l- M(G»-1. Thus if m(G) = -1 and
M(G) = 0.99, then the predicted value of ET may be as much as 200 times the
actual value. If( = 10- 6, this may mean that about 30 %more iterations may
have to be performed than necessary.

7.6 COMPUTATIONAL PROCEDURES

In this section we describe computational algorithms for carrying out the
CG acceleration procedure (7-4.11)-(7-4.13). We assume that we are given
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the symmetrizable basic iterative method

u(n+ 1) = Gu(n) + k (7-6.1)

and a symmetrization matrix W such that W(I - G)W- I is SPD.
If we were to apply formulas (7-4.11)-(7-4.13) and (7-4.8) directly, there

would be two matrix-vector multiplications involving G (to get Gu(n) and
G(j(n») and two involving W (to get W (j(n) and WG(j(n»). (There would also be
a matrix-vector multiplication to get Wu(n) for the stopping test (7-5.3);
however, it is not actually necessary to recompute Ilu(nlll w every iteration.)
We can reduce the number of multiplications involving G from two to one by
using the following formula (see (7-5.6)):

(j(n+I) = Pn+I(Yn+IG(j(n) + (1 - Yn+l)(j(n») + (1- Pn+I)(j(n-1). (7-6.2)

Thus, assuming that Pn, Yn' (j(n), u<n), and u(n-I) are available from the previous
iteration, we can computeW(j(nl, WG(j(n), and then Yn+ 1 from (7-4.12) and
Pn+ 1 from (7-4.13). We then can get U(n+ 1) from (7-4.11) and (j(n+ 1) from
(7-6.2). Thus we have only one matrix-vector multiplication by G and two
by W; not counting wu<n), which is used in the stopping test. Later in this
section we shall show how in some cases we can eliminate the matrix-vector
multiplications by w:

We give below (Algorithm 7-6.1) an informal program that describes the
overall algorithm. As in Section 5.5, we use the underline, as !d, to denote
vectors. The input required is

( the stopping number used in (5.3)

!d the initial guess vector u(O)

In general, during an iteration, !! represents u(n), !!q, represents u(n- 1), and
!!N represents u(n+I); similarly, for Y and Yq,,§, §</>, and §N' Also, ~ represents
G(j(n), \jJ represents WG(j(n), and!. represents W(j(n). The rest of the notation is
self-explanatory.

Details of the computation of M(T,.), which is used for the stopping test,
are not given. The reader is referred to Section 7.5. We note that we allow the
IJ-norm to be used in the computation of the norm of u<n+ 1). This should
cause no problem since IIu<n+ I)ll q is basically a normalization constant. We
also allow for the computation of 11(j(n+ I)ll p for some f3-norm. If the test is
satisfied, it is expected that the condition

(7-6.3)

will be satisfied approximately. However, this cannot be guaranteed unless
f3 = w: If f3 = W; we replace DELNE by (DELNP)I/2 in the stopping test.
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7.6 COMPUTATIONAL PROCEDURES

Algorithm 7-6.1. Conjugate gradient acceleration.

Input: «(, !!)

Initialize:

n := 0; Y := 1.0; !!</> := Q; Q</> := Q;
Q:= Gu + k - u;
1:= WQ; DELNP := (:~, 1);

Next Iteration:

n:=n + 1;y</>:=y;

Calculate New Iterate:

e:= GQ

. [DEN J-1.1,:= we· DEN':= (t .1,). y:= 1 - .y -, -,y, DELNP'

. [ (Y)(1)(DELNP)J-1Ifn = 1, then p:= 1; else p:= 1 - y</> P DELN0 ;

YN:= p(YQ + y) + (l - p)y</>; YUN:= IIYNII~;

DELN0:= DELNP;
QN:= p[ye + (1 - Y)QJ + (1 - p)Q</>; DELNE:= IIQNll p
t := W 0 . DELNP := (t t)·- -N" -,-,

U := u· 0 := O·-</> -, -4> -,
!! := !!N ; Q:= QN;

153

Stopping Test:

Compute ME (if needed) from the 1',. matrix using bisection (see Section 7.5).
DELNE .. .

If YUN =:;; (1 - ME), then prmt final output and STOP (converged);

else continue;

Go to Next Iteration

We now describe how in some cases Algorithm 7-6.1 can be modified to
eliminate the extra matrix-vector multiplications involving the sym
metrization matrix W We now assume that the matrix G can be written in the
form

(7-6.4)

where

(7-6.5)



We also assume that for any vector v, less work is required to compute WGv
than to compute Gv. Thus we assume it is efficient to compute WGv by

WGv = W-Tyv, (7-6.6)

whereas to compute Gv we would use

154
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Gv = W- 1(WGv). (7-6.6')

An example of a situation for which the above assumptions apply is the
(block) Jacobi method, where the splitting matrix Q is the block diagonal
matrix D. Here we can take W = S, where S is an upper triangular matrix
with STS = D. (Note from Section 3.2 that if D is tridiagonal, S will be bi
diagonal.) In this case, we have Z = Q and Y = Q - A. Moreover, the
elements of Y corresponding to nonzero elements of Qvanish. The compu
tation of WGv for any vector v involves computing Yv and then W-Tv. Thus
we have

WGv = W-T(yv). (7-6.7)

Our strategy is to work primarily with Wu(n) and Wo(n) rather than with u(n)
and o(n). We rewrite (7-4.11) and (7-6.2) in the form

Wu(n+1) = Pn+1(WU(n) + Yn+1 Wo(n») + (1 - Pn+1)WU(n-1), (7-6.8)

Wo(n+1) = Pn+1(Yn+1 WGO(n) + (1 - Yn+1)WO(n») + (1 - Pn+1)WO(n-1).

(7-6.9)

Thus assumingthatp Y Wo(n) Wo(n-1) Wu(n) and Wu(n-1) are available, n' n' , , ,

from the previous iteration, we can compute o(n) and WGo(n) by

o(n) = W- 1(Wo(n»), (7-6.10)

WGo(n) = W-T(yo(n»). (7-6.11)

(Actually, to get y = W-T(yo(n»), we solve the system WTy = yo(n) for y.)
We then can get Yn+ 1 by (7-4.12) and Pn+ 1 by (7-4.13). Then we can get
WU(n+ 1) by (7-6.8) and WO(n+ 1) by (7-6.9). Thus for each iteration, we carry
out matrix-vector multiplications by W- T

, Y, and W- 1
• This, by our as

sumption, is equivalent to a single matrix-vector multiplication by G.
An informal program that uses the above ideas is given in Algorithm

7-6.2. We let Wu"" Wu, and WUN represent Wu(n-1), Wu(n), and Wu(n+ 1),
respectively. Similarly, W8q" W8, and W8N represent Wo(n-1), Wo(n), and
Wo(n+1), respectively. We also let Y", = Yn and Y = Yn+1'

Algorithm 7-6.2. Special algorithm for conjugate gradient acceleration
when G = Z-1 Y, Z is factored as Z = WI It; and W is
the symmetrization matrix.
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Input: ((,11)

Initialize:

n:= 0; y:= 1.0; WU4>:= Q; W04>:= Q;
WO:= (WG)y + Wk; Wu:= Wy;
Wo := Wo - Wu; DELNP := (Wo, Wo);

Next Iteration:

n := n + 1; y4> := y

Calculate New Iterate:

155

§ := W- 1(Wo);

[
DEN ]-1

we:= (WG)§; DEN:= (Wo, we); y:= 1 - DELNP ;

[ (Y)(l) DELNP]-1
Ifn = 1, then p:= 1; else p:= 1 - Y4> P DELN0 ;

WUN:= p(Wu + yWo) + (1 - p)Wu4>; YUN:= (WUN, WuN);
DELN0 := DELNP
WoN:= p[yWe + (1 - y)Wo] + (1 - p)W04>; DELNP:= (WON' WON);
WU4>:= Wu; W04>:= Wo
Wu := WuN; Wo := WON

Stopping Test:

DELNE:= [DELNP]1 /2; YUN:= [YUN]1 /2;
Compute ME (if needed) from the T" matrix, using bisection (see Section 7.5).

DELNE .
If YUN S ((1 - ME), then 11:= W- 1(Wu), pnnt final output and STOP;

else continue;
Go to Next Iteration

Remark. The error vector for thestopping test given here is measured in
the W-norm. If some other measure f3 is desired, then DELNE:= 11.Qll p can
be computed when 15 is obtained at the beginning of Calculate New Iterate.
The norm used in the calculation of YUN may need to be modified also.

We remark that for both Algorithms 7-6.1 and 7-6.2 the storage required
for the y- and .Q-type vectors can be reduced by using a procedure similar to
that given in Chapter 5. (See Modification 5-5.1.)

It is also possible to reduce the amount of work caused by matrix-vector
multiplications by W for the SSOR method. This can be done, using the



relations (5-6.19) and (5-6.20) between W6(n) for the SSOR method and the
difference vector Ll(n) for the "forward" SOR method. Details are given in
Hayes and Young [1977] and Grimes et al. [1978].
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7.7 NUMERICAL RESULTS

where the Ct> C2' ••• , CN are suitable constants. Since from (5-2.3) 6(0) =
(G - 1)/;(0), we can express 6(0) in the form

Note that the vectors {W-1v(i)}:~~ are linearly independent and are eigen
vectors of G with corresponding eigenvalues {f.lj}:~~' (Recall from Section
5.7 that the "simulated" procedure is based on the assumption that the
eigenvectors {v(i)}:~~ are known.)

Expanding the initial error vector /;(0) in terms of the eigenvectors of G, we
have

,~

(7-7.2)

(7-7.4)

(7-7.1)

(7-7.3)

N

/;(0) = L Cj(W- 1v(i)),
i= 1

N

6(0) = L e;(f.li - 1)W - 1v(i)).
i= 1

meG) == f.lN ::5: f.lN-1 ::5: ••• ::5: f.l1 == M(G) < 1.

From (7-4.12), we obtain using (7-7.3) that

= [1 _L~= 1f.li[e;(f.li - 1)]2]-1
Y1 LJ=l[Cj(fli - I)J2 .

In this section we describe results of numerical experiments that were
designed to test the effectiveness of conjugate gradient acceleration as com
pared with Chebyshev acceleration. The experiments given here were carried
out using the "simulated" procedure described in Section 5.7. In Chapter 8
we give results of other experiments which compare the effectiveness of CG
and Chebyshev acceleration for solving linear systems arising in the numerical
solution of ellipticpartial differential equations.

Consider the CG procedure (7-4.11)-(7-4.13) applied to the basic iterative
method u(n+ 1) = Gu(n) + k, where G is an N x N matrix. We assume that
this basic method is symmetrizable with the symmetrization matrix W The
symmetrization property (see Definition 2-2.1) implies that WGW- 1 is
symmetric. Thus there exists a set of orthonormal eigenvectors {v(i)}:~~ for
WGW- 1 with corresponding real eigenvalues {j.l;}:~~. We order the eigen
values of G as
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Now from (3-2.9), S(l) = [Yl G + (1 - Yt)]s(O). Thus s(1) can be expressed in
the form

N

s(1) = I Ci.l(W-1V(i»,
i= 1

(7-7.5)

where Ci,l = [Yl/li + (1 - Yl)]Cj. With S(l) given by (7-7.5), the above pro
cedure may now be used to calculate 6(1), Y2' P2' and S(2). Continuing in this
way, we "simulate" the CG procedure (7-4.11)-(7-4.13). Note that only the
coefficients Ci of (7-7.2) and the eigenvalues /li of G are needed to carry out
the simulation procedure.

We shall describe here only a few of the many cases which were run. As in
Section 5.7, we assume that the initial guess vector u(O) is the null vector. Thus
the unique solution it = (I - G)-lk is simply (_s(O».

For one set of experiments the iteration matrix G was chosen to have the
100 eigenvalues

cos(in/lOl)
if cos(in/l0l) > 0,

2 - cos(n/l0l)
/lj=

cos(in/lOl)
if cos(in/l01) < 0,Ci.

2 - cos(n/lOl)

where i = 1, 2, ... , 100. For the Cj We choose a set of random numbers R;
uniformly distributed in [0, 1]. The results shown in Table 7-7.2 were
obtained.

The number of iterations required using CG acceleration was substantially
less than the number required using the optimal nonadaptive Chebyshev
procedure. This was because the number N was relatively small. With a larger
value of N but with M(G) and m(G) unchanged, the number of Chebyshev
iterations would have been essentially unchanged while the number of
conjugate gradient iterations would have increased. However, we would
expect that, for any N, the number of CG accelerations would always be less
than, or at worst, only very slightly greater than the number of Chebyshev
iterations.

By comparing columns a and b in Table 7-7.1, we see that the approxi
mation (7-5.3) for ET is very accurate for the adaptive Chebyshev acceleration
procedure and much less accurate for the CG and optimal nonadaptive
Chebyshev procedures. As described in Chapter 6, the approximation (7-5.3)
is very accurate for adaptive Chebyshev acceleration since in the late stages
of the iterative process the pseudoresidual vector 6(n) is approximately an
eigenvector of G corresponding to the eigenvalue M(G). Thus for any norm
IHpweliave Ils(n)ll p ~ (1 - M(G»-1116(n)ll pasn -+ 00. For the case ofoptimal
nonadaptive Chebyshev acceleration and CG acceleration, however, even
in the late stages of the iteration process, 6(n) will not, in general, be close to an
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TABLE 7-7.1

, i
'-----' L

Number of lterationst Required by the Chebyshev and CG Methods

a=3 a = 10

,= 0.1 (= 0.01 ( = 10- 6 (= 0.1 ( = 0.01 ( = 10- 6

Method a b a b a b a b a b a b

Conjugate
gradient 63 106 96 126 127 134 65 139 158 177 178 188

Chebyshev
nonadaptive 94 132 166 201 463 501 154 218 274 333 772 822

Chebyshev
adaptive 174 172 284 284 598 598 279 271 453 453

t (a) Iterations determined by the stopping test: Ile(")llw/llullw :::; (.
(b) Iterations determined by the stopping test: (1/(1 - M(G)))II<5<"lllw/lliillw:::; (.

eigenvector of G corresponding to M(G). If W is a symmetrization matrix,
we know that IIE(nJllw ~ (1 - M(G))-III<5(n)llw, by (5-2.5). However, in
general, IIE(n)llw may be considerably less than (1 - M(G))-III<5(nJllw' (In an
extreme case we could have IIE(n)lIw '" (1 - m(G))-III<5(n)llw') Thus the
number of iterations required for cOI1,,:ergence, based on the stopping pro
cedure (7-5.3), may be considerably larger than necessary for the CG and the
optimal nonadaptive Chebyshev procedures.

We remark that for the conjugate gradient results given in this section, we
used the true value of M(G) rather than the largest eigenvalue of the appro
priate tridiagonal matrices as described in Section 7.5. This is relatively un
important since the largest eigenvalues of the tridiagonal matrices 1;, con
verge rapidly to M(G) in most cases.

In another set of experiments we assumed that the iteration matrix G has
N eigenvalues )1.1' )1.2' .•• , )1.N uniformly distributed in the interval [ - 0.99,
0.99J so that

0.99 = )1.1 > )1.2 > ... > )1.N = - 0.99.

The Ci were chosen by the formulas

(7-7.6)

1
Cj = (1 - )1.J(1 - ()1.JM(G))2)1/4'

The results shown in Table 7-7.2 were obtained. Here n(ET ) denotes the
number of iterations required for inequality (7-5.1) to be first satisfied. The
quantity n(TNA) is defined in Section 5.7.
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TABLE 7-7.2 .
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N

Optimal nonadaptive
Chebyshev

n(ET )

n(TNA)

Conjugate gradient
n(ET )

200 400 800 1600 3200 5000 7500

100 101 101 100 101 101 101
102 102 102 102 102 102 102

65 80 93 99 100 101 101

It can be seen that the number of iterations required for the optimal non
adaptive Chebyshev process is nearly independent of the number of eigen
values N. For CG acceleration, the number of iterations is much smaller for
small N but increases until both procedures require the same number of
iterations for large N. We remark that the distribution {c;} was chosen so that
for large N the polynomials corresponding to the CG process are nearly the
same as the normalized Chebyshev polynomials corresponding to the optimal
nonadaptive Chebyshev process.

Another experiment involved a choice of the {c;} distribution, which was
constructed so that for N very large the optimal nonadaptive Chebyshev
procedure would be slightly better than CG acceleration. We used the
distribution

1
Cj= , ii=l,N, Cl=C2, CN=CN-l'

")1 - J.li(l - (J.lJM(G»2)1/4

For this distribution and with the eigenvalues of G given by (7-7.6), we ob
tained the following results for the case N = 10,000:

optimal nonadaptive Chebyshev n(ET ) = 100,
n(TNA) = 102,

conjugate gradient n(ET ) = 102.

Thus optimal nonadaptive Chebyshev acceleration was indeed slightly
better than CG acceleration. However, with a smaller value of N we would
expect that CG acceleration would be much superior.

For large M(G), we would expect that the CG acceleration procedure
would be significantly better than nonadaptive Chebyshev except for ex
tremely large N. Thus with the distribution Cj = (1 - J.lr 1/2 and with
M(G) = -m(G) = 0.9999, we obtained

optimal nonadaptive Chebyshev

conjugate gradient

n(ET ) = 1020,
n(TNA) = 1025,

n(ET ) = 230.
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Here 1600 uniformly distributed eigenvalues were used. With the distribution
Cj = 1, CG acceleration required only 368 iterations for N = 5000. For
Chebyshev acceleration n(TNA) would still be 1025. For values of M(G)
very close to unity, it appears that N must be very large before n(ET ) for the
CG procedure approaches its limiting value (which would be close to the
number of iterations required by Chebyshev acceleration).

The numerical results based on the simulation experiments given in this
section, as well as the numerical results given in Chapter 8, support the
following conclusions.

(a) The rapidity of convergence of the CG acceleration procedure de
pends not only on M(G) and meG), but also on the number and distribution
of the eigenvalues of G as well as on the initial error vector e(O). For optimal
nonadaptive Chebyshev acceleration, on the other hand, the rapidity of
convergence depends almost entirely on M(G) and meG). The convergence
rate of the CG procedure, when measured in a certain norm, is at least as fast
as that of any polynomial acceleration procedure including optimal non
adaptive Chebyshev acceleration. As we have seen, while cases can be
constructed in which CG acceleration takes as many iterations as optimal
nonadaptive Chebyshev acceleration, in most cases CG acceleration requires
substantially fewer iterations. The CG acceleration process can take ad
vantage of certain properties of the distribution of the eigenvalues of G. Thus
if there are relatively few eigenvalues or if there are some isolated eigenvalues,
the convergence of CG acceleration can be substantially better than if there
are a large number of eigenvalues of G densely distributed over the interval
[meG), M(G)].

(b) Unless good estimates are available for meG) and M(G), one cannot
use optimal nonadaptive Chebyshev acceleration. Instead, one would
probably use adaptive Chebyshev acceleration. This will increase the
advantage in using CG acceleration.

(c) The approximation (7-5.3) for the iteration error is considerably more
accurate for the adaptive Chebyshev procedure than for the CG and the
optimal nonadaptive Chebyshev procedures.

In spite of the apparent advantages of CG acceleration over Chebyshev
acceleration, there are situations in which the use of the latter might be pre
ferable. If good estimates for nl(G) and M(G) are available, one might prefer
to use optimal nonadaptive Chebyshev acceleration because of its compu
tational simplicity. For example, the computation of inner products is not
required except for the stopping tests. Even for adaptive Chebyshev accelera
tion one could test for parameter changes only on certain iterations. The use
of the symmetrization matrix W can be avoided with Chebyshev acceleration,
whereas W must be used with CO acceleration.
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An~ther situation in which CG acceleration would appear to be less
advantageous than Chebyshev acceleration occurs when few iterations are
required. Such a situation might arise, for instance, when ( is large or when a
very accurate initial vector u(O) is available, as might be the case if one were
solving a two-dimensional time-dependent problem by an implicit method.
This phenomenon was observed by Wang [1977].

Additional comparisons of CG and Chebyshev accelerations are given in
Chapter 8. Also included in Chapter 8 is a discussion of hybrid methods
involving the use of both Chebyshev and CG acceleration. Numerical
experiments that compare the effectiveness of CG and Chebyshev accelera
tion procedures are also given by Eisenstat et al. [1979b].
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CHAPTER

8
Special Methods

for Red/Black
Partitionings

(8-1.1)

(8-1.2)

8.1 INTRODUCTION

We again seek to solve the matrix equation Au = b, where A is a given
N x N symmetric and positive definite matrix (SPD matrix). In this chapter
we describe several variants of the Chebyshev and conjugate gradient
acceleration procedures which are applicable when the coefficient matrix is
partitioned according to the redfblack partitioning (1-5.3); i.e., when A is
partitioned into the form

A = [~~ ~J
If we partition the vectors u and b in a form consistent with (8-1.1), we can
write the matrix equation Au = b as

[D~ HJ[URJ = [bRJ.
H DB uB bB

The procedures developed in this chapter exploit the structure of the red/
black partition to obtain increased convergence rates for the Chebyshev and

!li2
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conjugate gradient acceleration procedures applied to the Jacobi basic
method associated with the partitioning (8-1.2).

For a given matrix problem, many redjblack partitionings exist; however
not all of them will be computationally feasible. For the methods we give in
this chapter, each iteration step requires that the subsystems DR uR = YR and
DBuB = YB be solved for URand UB, given YR and YB' Thus it is important that
the redjblack partitioning be chosen so that the DR and DB matrices are
"easily invertible" (see Section 1.5). A common occurrence is that the DR
and DB are block diagonal matrices whose diagonal blocks are "easily
invertible." For this circumstance, the DR and DB matrices are also "easily
invertible." The formulation of redjblack partitionings, where the DR and
DB matrices are block diagonal is discussed and illustrated in Sections 1.7
and 9.2. It may be instructive for the reader to refer to these sections before
proceeding with the material of this chapter. We note that the iteration
procedures we describe here are not restricted to situations where the DR and
DB matrices are block diagonal or to situations where the subsystems in
volving DR and DB are solved by direct methods. For some matrix problems,
especially those resulting from the discretization of coupled differential
equations, the nature of the DR and DR matrices can be such that the solutions
to the subsystems DRuR = YR and DBuB = YB, for computational reasons, are
best computed approximately by a sub or inner iteration process. Iterative
procedures which utilize inner iterations are discussed later in Chapter 11.

Letting F R == -D;'H, FB == -Dij'HT
, CR == D;lbRand CB == Dij'bB, we

may express the matrix equation (8-1.2) in the form

The Jacobi method (see Section 2.3) associated with (8-1.3) is

U(n+ I) = Bdn) + C,

where C = (ci, C~)T and B is the Jacobi iteration matrix

B = [0 FRJ.FB 0

(8-1.3)

(8-1.4)

(8-1.5)

Because the matrix A is partitioned into a redjblack form and because A is
SPD, it follows (see, e.g., Young [1971] or Varga [1962]) that the eigenvalues
of B are real, occur in ± pairs, and are less than unity. That is, the eigenvalues
{JlJ of B satisfy

- Jll = . .. = - Jlt- 1 < - Jlr ::; . . . ::; 0 ::; .. . ::; Jlr < Jlr- 1 = ... = JlI < 1.
(8-1.6)
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Thus the algebraically smallest, m(B), and largest, M(B), eigenvalues of B
satisfy

t We show in Section 8.3 that (8-1.9) is satisfied by both the J-SI and J-CG methods when B
has the special form (8-1.5). '

:I: The derivation of (8-1.11) is given in Section 8.3.

then the procedure (8-1.8) for the redjblack partitioned problem can be
carried out by computing u~) only for n odd and u~) only for n even. Thus if
we let

We refer to (8-1.11) as the cyclic accelerated method. Note from (8-1.10) and
(8-1.11) that the cyclic accelerated method converges exactly twice as fast as
the original accelerated method (8-1.8). The procedure (8-1.11) for Chebyshev

(8-1.9)

(8-1.7)

(8-1.12)

(8-1.11)

(8-1.10)U(n) = u(2n)
B - B ,

(n) _
PB - P2n'

n ~ 1,

and

and

Yn = 1,

-m(B) = M(B) < 1.

(n) _
PR-P2n-l

U(n) = u(2n-l)
R - R

the process (8-1.8) can be carried out byt

U~) = P~)(FRU~-l) + cR - U~-l» + U~-1),

U~) = P~)(FB U~) + cB - U~-l» + U~-1)

for n ~ 1, where

With W = diag(D}/2, DfF), or more generally with W = S where S is any
matrix such that STS = diag(DR , DB), it is clear that the Jacobi method
(8-1.4) is symmetrizable (Definition 2-2.1). Thus the Chebyshev and conjugate
gradient acceleration methods discussed previously may be applied to the
basic Jacobi method (8-1.4). We denote the Chebyshev and conjugate gradient
acceleration methods applied to the Jacobi method by J-8I and J-CG, re
spectively. From (5-1.4) and (7-4.11), both of these acceleration methods may
be expressed as

uln + 1) = Pn+ dYn+ 1(Bu(n) + C - u(n» + u(n)} + (1 - Pn+l)uln- 1), (8-1.8)

where Pn+ 1 and Yn+ 1 are givenby (5-1.5)-(5-1.6) and (7-4.12)-(7-4.13) for the
J-8I and J-CG methods, respeytively. In this chapter, we describe two
Chebyshev (and two conjugate gradient) acceleration procedures which
utilize the special redjblack form (8-1.2) and which converge exactly twice as
fast as the J-8I (J-CG) acceleration procedure (8-1.8).

Golub and Varga [1961] observed that if the acceleration procedure
(8-1.8) is such thatt



8.1 INTRODUCTION 165

acceleration was first presented by Golub and Varga [1961] and was called
the cyclic Chebyshev semi-iterative (CCSI) method by them. Reid [1972] was
the first to observe that a similar reduction in computational work could also
be obtained for the conjugate gradient method. When conjugate gradient
acceleration is used, we call the cyclic method (8-1.11) the cyclic conjugate
gradient (CCG) method. The special CCSI and CCG procedures are dis
cussed in Section 8.3.

To obtain the second special procedure, we use the fact that the UR (or uB)

unknowns in (8-1.3) may easily be eliminated. Indeed, multiplying (8-1.3) by
the nonsingular matrix (I + B), we obtain (I - B 2 )u = (I + B)c or

(8-1.13)

Equation (8-1.13) represents two uncoupled systems so that the solution to
the original redjblack problem (8-1.3) may be obtained by solving, for
example,t the lower-order system

(8-1.14)

for UB , and then obtaining the UR unknowns explicitly from UR = FRUB + CR'

We refer to (8-1.14) as the reduced system. We show later that the matrix
(I - FBFR) is similar to a SPD matrix. Thus many of the iterative methods
discussed in earlier chapters may be used to solve the reduced system (8-1.14).
In the solution of the two-dimensional elliptic differential equation using a
5-point discretization formula, Hageman and Varga [1964] showed that a
4-line CCSI solution method applied to the reduced system (8-1.14) required
only half the computer time as that required by the 2-line CCSI method
applied to the original system (8-1.3). However, the 4-line CCSI method (and
most iterative methods) applied to the reduced system (8-1.14) requires that
the matrix FBFR be determined explicitly. This is feasible only when DR or
DB is a diagonal matrix or when certain other rather restrictive conditions
hold. Thus for the iterative solution of the reduced system (8-1.14), we
restrict our attention to the RF method which, as we shall see, does not
require that the matrix FBFR be computed explicitly.

The RF method (see Section 2.3) for the reduced system is given by

uln + 1) - F F u(n) + F c + CB - B R B B R B' (8-1.15)

t One could solve equally well the companion reduced system (l - FR FB)UR = CR + FRcB

for tlR and then obtain tl B from tl B = FBtlR + CB. Since the nonzero eigenvalues of FBFR are the
same as those of FRFB' the primary difference between the reduced systems is one of size, i.e., the
order of the system.
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Note that the explicit calculation of FBFR can be avoided by using the
procedure

U(n + 1) - F u(n) + c
R - R B R

U(n+1)-F u(n+1)+c
B - B R B·

(8-1.16)

Since (I - FBFJ is similar to a SPD matrix, either Chebyshev or conjugate
gradient acceleration may be applied to the basic RF method (8-1.15). We
refer to the Chebyshev and the conjugate gradient acceleration of (8-1.15) as
the RS-SI and RS-CG methods, respectively. The reduced system methods·
are discussed in Section 8.2.

For either Chebyshev or conjugate gradient acceleration, Hageman et al.
[1980J have shownt that the cyclic accelerated method (8-1.11) and the corre
sponding acceleration method applied to (8-1.15) each converge exactly
twice as fast as the acceleration method (8-1.8). That is, the CCSI and the

.RS-SI methods converge at the same rate, and each of these methods con-
verges exactly twice as fast as the J-SI method. Similarly, the CCG and the
RS-CG methods converge at the same rate, and each of these methods
converges exactly twice as fast as the J-CG method.

The storage and computational requirements for the RS-SI method are
slightly greater than that for the CCSI method. However, the difference is
slight, and the choice of method often is based on other factors such as
computer architecture, type of problem to be solved, and programming
convenience. Similar remarks also are valid for the RS-CG and CCG
methods. The development of the cyclic accelerated procedures is consider
ably more complicated than the development of the reduced system accelera
tion procedures. However, the algorithms presented are self-contained, and
their utilization does not require a detailed reading of the developmental
material.

8.2 THE RS-SI AND RS-CG METHODS

As given previously, the RF method for solving the reduced system (8-1.14)
is

u(n+ 1) - F F u(n) + F c + CB - B R B B R B, (8-2.1)

where FB, FR, cR , and CB are defined as in (8-1.3). In this section, we discuss
Chebyshev and conjugate gradient acceleration applied to the basic method
(8-2.1). We first show that the RF method possesses properties sufficient for

t See also Chandra [1978].
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the application of these acceleration methods. We then describe the Cheby
shev method (RS-SI) in Section 8.2(A) and the conjugate gradient method
(RS-CG) in Section 8.2(B).

From Chapters 5-7, Chebyshev and conjugate gradient acceleration
applied to (8-2.1) will be effective if the basic RF method (8-2.1) is sym
metrizable. To show that this is the case, we use the fact that the coefficient
matrix A of (8-1.1) is SPD. First, it is easy to show that FBFRis similar to a
symmetric, positive semidefinite matrix. Indeed, since DB and DR are positive
definite, these matrices may be factored using a Cholesky decomposition
(e.g., see Sections 2.3 and 5.6) as

and (8-2.2)

where SB and SR.are upper triangular matrices. Thus

(8-2.3)

from which the desired conclusion follows.
This similarity property, of course, implies that the eigenvalues of FBFR

are real and nonnegative. Moreover, since B 2 = diag(FRFB' FBFR), the
spectral radii of the Jacobi matrix B and the matrix FBFR satisfy

(8-2.4)

where the right inequality follows from (8-1.7). Thus the algebraically
smallest, m(FBFJ, and largest, M(FBFR), eigenvalues of FBFR satisfy

(8-2.5)

From (8-2.3) and (8-2.5), it follows that SBU - FRFB)S; 1 is SPD. Thus
the RF method of (8-2.1) is symmetrizable with W = SB' which is the
desired result.

A. The RS-SI Procedure

The Chebyshev acceleration method applied to the RF method (8-2.1) is
given by (5-1.4)-(5-1.7) with G = FBFR and may be carried out using either
Algorithm 5-5.1 or Algorithm 6-4.1. Since m(FBFR) 20, mE=O should be
used. For both algorithms, the matrix-vector product FBFRUB required in
the calculation of 15Bis best carried out using a two-step procedure analogous
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to (8-1.16). For example the Calculate New Iterate procedure of Algorithm
5-5.1 can be carried out by

Calculate New Iterate

!!", := y; y := !!r
!!R :=FR !! + ~R

~B:= FB!!R + ~B - !!; DELNP:= IloBllsB; DELINE:= 118Bli p
Yr:= P(Y~B + y) + (1 - p)Y",; ,YUN:= IIYrll~

In the above procedure, all vectors are of the same order as u~ + 1) in (8-2.1)
except for !!R and ~R' We note that only two of the three vectors {!!, !!"" yrJ
need to be stored (see Modification 5-5.1). Moreover, as discussed in Section
5.6, it is not necessary to store the QB vector if DB is a block diagonal matrix.

We remind the reader that the matrices FBand FRusually are not computed
explicitly. For example, if DR and DB are factored as in (8-2.2), then !!R =
FR!! + ~R is obtained by solving the equation

(8-2.6)

and ~B is computed by QB = ?; - !!, where?; is obtained by solving the equation

(8-2.7)

The stopping test in the RS-SI procedure measures the iteration error
only for the unknowns of the vector UB. However, when measured in a
particular norm, u~) is as accurate as u~). To see why this is so, let s~) ==
u(n) - U and s(n) = u(n) - u whereB B R - R R'

U(n) - F u(n) + CR - R B . R' (8-2.8)

Since (8-2.8) is also satisfied by the solution subvectors, UR and UB, we have

c(n) - F c(n)
"R - R "B • (8-2.9)

By definition, FR = -(S~SR)-lH and FB = -(S~SB)-lHT. Hence from
(8-2.9), we have

Ils~)lIsR = IISR(S~SR)-lHSBlSBS~)112 ~ JS(FBFR)lls(~lIsB < Ils~)llsB'
(8-2.10)

Thus Ils~)llsR is less than Ils~)llsB' Note that this implies that the error vector,
s == (si, s~?, for the whole system satisfies

Iisiis = [llsRII~R + IlsBII~BJl/2 < J2llsBlIsB. (8-2.11)

Here, S == diag(SR' SB)'
For an arbitrary fJ-norm, it is not possible in general to show that



'-"--

8.2 THE RS-SI AND RS-CG METHODS

- ,---,<'

169

118~)llp/llu~)llq ~ 118~)llp/llu~)llq. However, if desired, 118~)llp may be approxi
mated by

(8-2.12)

where L1~) == u~) - U~+I) and R(n) == 11(j~+I)II/II(j~)II. Analogous to the
stopping test (6-3.23), we show that (8-2.12) is valid provided that the eigen
value estimate ME satisfies ME < M(FBFR) and that n is sufficiently large.
Using the successive polynomial notation of Section 6.3, we have from (5-2.6)
that 8(n) = 8(s, p) - P (F F )8(S,O) Multiplying this equation by F weB - B - p, E B R B . R'
obtain by using (8-2.9) that

~(n) = ~(s, p) = P (F F )~(S, 0)GR - GR p, E R BGR . (8-2.13)

(8-2.16)

IfME < M(FBFR), it follows from Theorem 6-2.4 that the sequence {Pp,E(Y)}
is "FRFB-uniformly convergent." Thus from (6-2.11), for sufficiently large p
we have approximately that

8~'P) ~ Pp,E(A1)VR(l), (8-2.14)

where Al = M(FRFB) and where vR(I) is an eigenvector of FRFBcorrespond
ing to the eigenvalue AI' Using the approximation (8-2.14) in the expression
L1~'p) == L1~) = u~) - u~+l) = 8~'P) - 8~'P+l), we obtain the approximation

L1(s,p) == [1 - Pp+ 1 ,E(A1)] (s,p) (8-2.15)
R· P (A) 8R •

p, E 1

Now (j~'P) = Pp,E(FBFR)(j~'O). Thus from (6-2.14), for sufficiently large p we
have that

11 (j(S,P+l)11 P (A )
B ...:... p+l,E 1

11(j~,P)11 ...,.- Pp,E(Al)

and (8-2.12) follows. In the above discussion, we used the fact that FBFRand
FRFBhave the same nonzero eigenvalues.

B. The RS-CG Procedure

The conjugate gradient acceleration method applied to the RF method
(8-2.1) is given by (7-4.11)-(7-4.13) and may be carried out using Algorithm
7-6.1 with G = FBFR' If DB and DR are factored as in (8-2.2), then W = SB
may be used as the symmetrization matrix. Moreover, in this case, the matrix
vector multiplication \jt := W~ can be eliminated. To show how this can be
done, we first note that since FBFR = DB 1HTD; 1H we have

DEN = c~,~) = (W§., WG§.) = (SB§.' SBFBFR§.) = «SD- 1H§., (SD- 1H§.).
(8-2.17)
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Using (8-2.17), we may compute DEN during the calculation of ~ and thus
avoid the need for \jJ. For example, DEN, y, and !t in Algorithm 7-6.1 can be
computed by using-the procedure

!;R := (SI)-lHQ; DEN:= (?;R, ?;R);
QR := (SR) - ll;R;

e := (S )-l(ST)-1 HT8 ._ n n _R'

The additional matrix-vector multiplication 'I := WQN must still be carried
out in Algorithm 7-6.1. To eliminate this multiplication, Algorithm 7-6.2
must be used with Z = S~Sn and Y = HTDi 1H.

As for the RS-SI procedure, any matrix-vector multiplication involving
the matrix SnFnFR is best carried out using a two-step procedure. For
example, in Initialize of Algorithm 7-6.2, W8 ( = Sn 8) can be calculated by

!JR := FR!! + QR;
Sn8 := (SnFn)!!R + Sn~n; Sn u := Sn!!;
Sn8:= Sn8 - Snu; DELNP:= (Sn8, Sn8);

Here 1!. is the input guess vector for the solution vector Un of(8-1.14). Similarly,
in Calculate New Iterate, the Qand we ( = Sn e) vectors can be calculated by

Q:= (Sn)-I(Sn 8)
QR:=FRQ -

Sn e := (SnFn)QR; DEN:= (Sn8, Sne); y:= [1 - D~~~Pr1

;

In the above calculations, a procedure similar to that given by (8-2.6)-(8-2.7)
should be used to obtain the matrix-vector products involving the FR and
(SnFn) matrices.

We remarJ< that the alternate expression (8-2.17) for DEN also is valid here.
For programming reasons, it often is more convenient to compute DEN
(using the alternate expression) concurrently with QR.

8.3 THE CCSI AND CCO PROCEDURES

In this section, we discuss the cyclic acceleration method (8-1.11) for both
the Chebyshev and conjugate gradient cases. We first show that condition
(8-1.9), which is necessary for the use of the cyclic method, is valid for both
Chebyshev and conjugate gradient acceleration. We then derive the cyclic
method from the original acceleration method (8-1.8). In Section 8.3(A), we
develop and describe the cyclic Chebyshev (CCSI) procedure. In Section
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8.3(B), we develop and describe the cyclic conjugate gradient (CCG) pro
cedure. The development of these cyclic procedures is somewhat involved.
However, the algorithms presented are self-contained and their utilization
does not require a detailed understanding of the developmental material. On
a first reading, some readers may wish to skim the developmental discussion.

We now show that Yn+ 1 = Y = 1 for both Chebyshev and conjugate
gradient acceleration whenever B has the special form (8-1.5). First, from
(8-1.7), -m(B) = M(B). Thus for Chebyshev acceleration, the Case II*
condition (5-3.2) that -mE = ME may be used. From (5-1.5), this condition
then implies that Yn = Y = 1 for the Chebyshev method.

For conjugate gradient acceleration, it follows from (7-4.12) that (W<5(n),
WB<5(n») = 0, n = 0, 1, ... is a sufficient condition for Yn+ 1 to equal unity for
all n. We show that this sufficient condition holds when the following rea
sonable choices are made for the symmetrization matrix Wand for the initial
guess vector:

(a) W = diag(SR' SB), where SR and SB, respectively, are the Cholesky
decomposition matrices for DR and DB given by (8-2.2).

(b) u(O) is given by

.u~) arbitrary,

ukO) = F Ru~) + CR'

With W given by (a) above and with B given by (8-1.5), we have

(w<5(n) W B<5(n») = (S <5(n) S F <5(n») + (S <5(n) S F ~(n»), R R' R R B B B' B BUR .

(8-3.1)

(8-3.2)

Here, <5~) and <5~) are the subvectors of <5(n) consistent with the partitioning
(8-1.3). We show that (W<5(n), WB<5(n») = °for all n by showing that

(8-3.3)

To do this, we first express the pseudoresidual vector <5(n) defined by (7-4.8)
in the form

<5(n+l) = Pn+l{Yn+l B<5(n) + (1 -Yn+l)<5(n)} + (1- Pn+lWn
-l). (8-3.4)

The recurrence relation (8-3.4) is obtained by substituting u(n) from (7-4.11)
into the expression <5(n+ 1) = (B - I)u<n) + c. Now from (8-3.1), <5kO) = FBu~O)

+ CR - u~) = °so that Yl = 1. By (8-3.4), we also have <5~1) = FB<5kO) = °
so that Y2 = 1. Now assume <5k2n) = <5~n+ 1) = 0, which also implies that
Y2n+ 1 = Y2n+ 2 == 1. Thus again from (8-3.4), <5lfn+ 2) = P2n+ 2[FR<5~n+ 1)] +
(1- P2n+2)<5lfn) = 0, which implies that Y2n+3 = 1. Similarly, <5~n+3) = 0,
from which we get that Y2n+4 = 1. Hence by induction, it follows that
Yn+ 1 = 1 for all n > 0. Thus the condition (8-1.9) is satisfied by both Cheby
shev and conjugate gradient acceleration.
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(8-3.5)
U(n+l) - P [F u(n) + c ] + (1 _ P )u(n-l)

B - n+ 1 B R B n+ 1 B •

That the cyclic accelerated method (8-1.11) is nothing more than the
original accelerated method (8-1.8) with half of the calculations bypassed
can now be easily shown. With B given by (8-1.5) and with Yn+ I = 1, the
iterates (8-1.8) can be written as

u~+1) = Pn+I[FRU~) + cRJ + (1 - Pn+l)U~-I),

If these iterates are represented as

(8-3.6)

it is easily seen from (8-3.5) that the circled subvector iterates can be computed
without calculating the subvector iterates which are not circled. Thus for the
red/black problem, the original acceleration method can be carried out by
calculating only the subsequences {ulln+ 1)};;,,= 0 and {U~n)};;,,=l' from which
(8-1.11) follows.

A. The CCSI Procedure

The CCSI procedure is given by (8-1.11) where, from (8-1.12) and (5-1.6),

P(I) = 1 p(l) = 2/(2 - M 2 ) and for n > 1R 'B . E' -

(n+ I) _ 1
PR - 1 l.M 2 p(n)'

- 4 E B

(n+ 1) _ 1
PB - 1 l.M 2 p(n+l)·

- 4 E R
(8-3.7)

(8-3.8)

Here ME is the estimate for the eigenvalue M(B). Recall that because of
(8-1.7), we assume -mE = ME' The difficulty with implementing the CCSI
method is that the adaptive procedures given previously in Chapters 5 and 6
cannot be used directly. The reason for this, as we shall see, is that the error
and residual vectors normally associated with (8-1.11) do not satisfy the basic
Chebyshev polynomial relations (5-2.6) and (5-2.8).

The partitioned error vector associated with the CCSI method is

[

e(n) = v(n) - it ]-In) _ R - . R R
C - -(n) _ v(n) -,

CB = B - UB

where (uL U~)T is the partitioned solution vector for(8-1.2). If c~) == u~) - itR

and c~) == u~) - itB are the corresponding error subvectors for the J-SI
iterates (8-3.5), then from (8-1.10), we have

c(n) _ e(2n- I)
"R - "R , (8-3.9)
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From (5-2.6), the subvectors slf') and sll) satisfy

(8-3.10)

where Pm.E(X) is defined by (5-2.7).
Since Pn. E(X) is an odd polynomial for 11 odd and an even polynomial for

11 even, it is obvious that there exists (see Varga [1962]) polynomials Rn• E(Y)
and Ln. E(Y) of degree 11 in Y such that

and

Hence since

we have

Thus from (8-3.9)-(8-3.10) and (8-3.12), we have

Sin) = S(2n-l) = FR L (F F )S(o)
R R ME n-l. E B R B'

S~) = slin) = Rn.E(FBFR)ShO).
(8-3.13)

Note from (8-3.11) that RO• E(B 2
) = I and Lo.E(B 2

) = MEl.
We now seek to investigate procedures for estimating the iteration error

vector s~). In Chapters 5 and 6, the pseudoresidual vector c5(n) corresponding
to the basic method is used to estimate the error vector. The difficulty here
is to find a "residual" vector which is suitable for this purpose.

We first consider the vector g~) defined by

g(n) = F F u(n) + F c + c - u(n)
B-BRB BR B B' (8-3.14)

Since the solution UB satisfies UB = FB FRUB + FB CR + CB , it easily follows
that g~) satisfies g~) = (FBFR - I)s~) and, since (I - FBFR) is nonsingular,

(8-3.15)



from which it follows that

, 1

L--J

(8-3.17)

, I
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~

where the right equality follows from (8-3.11). Thus J'~) satisfies the basic
inequality (5-2.9), and estimates for It 1 may be obtained using the adaptive
procedures given in Chapters 5 and 6.

The problem with implementing any adaptive procedure based on the
J'~) vector is that J'~) does not appear naturally in the CCSI process and is
difficult computationally to obtain. In what follows, we use the easily obtain
able difference vector

Moreover, SB(FBFR)S; 1 is symmetric so that

Hence estimates for e~) may be obtained from J'~) using procedures similar
to those given in Chapters 5 and 6.

The residual vector J'~) also may be used to obtain estimates for M(B) = Pl'
Indeed, substituting for e~) in (8-3.13) by using (8-3.15), we obtain
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A(n).= v(n) v(n+l)
°B - B - B (8-3.19)

either directly in the adaptive procedure or else to determine J'~).
From (8-111) !:i(n) satisfies !:i(n) = _p(n+ ll(F v(n+l) + c - v(n» Since

• 'B B B B R B B'

fiB = FBuR + CB' it follows that !:i~) can be expressed in terms of the CCSI
error vector as

(8-3.20)

or from (8-3.13)

A (n) _ Q (F F ) (0)
°B - n + 1. E B R eB , .(8-3.21)

where Qn+ I, E(Y) is a polynomial of degree n + 1 in Y and is defined by

(8-3.22)

Note from (8-3.11) that we also have

(8-3.23)
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Adaptive Parameter and Stopping Procedures

For the discussion on the use of ~~), we use the successive polynomial
notation of Section 6.3; that is,

q

n

denotes the normalized Chebyshev polynomial of degree p
using the most recent estimate M Es for M(B). The sub
script s indicates this is the sth estimate used for M(B).

denotes the last iteration on which the previous estimate
MEs-l was used. For the initial estimate where s = 1, we
let q = 0.

denotes the maximum degree polynomial generated using
the estimate MEm' where m < s.

denotes the current iteration count. Note that p = n - q.

(8-3:24)

Also, as in Chapter 6, to indicate more clearly the relationship between
n, s, and p, we write e5~) (== e5\f + q) as e5~' P), e(n) (== e(p + q) as e(s, P), and ~~)

(==~\f+q) as ~~,p), Thus (8-3,13) and (8-3.21) may be written as

e(n) = e(s, p) = R (F F )e(S,O)B - B p, Es B R B ,
~~) == ~~,P) = Qp+1,E.cFBFR)e~'O),

As before, e~'O) = e~-l,PS-l), so that

e~'P) = R p,dFBFR)Rps_l, ES_l(FBFR) .. , Rpl,E/FBFR)e~'O). (8-3.25)

However, a relationship analogous to (8-3.25) is not valid for the ~~,p)

vectors since now ~~' 0) 1= ~~- 1, Ps-.J.

In the following, we assume the eigenvalues {It;} of B are given by (8-1.6),
Thus from Section 8.2, the eigenvalues {A;} of FBFR satisfy Ai = Ilf and can
be ordered as

°::; AN ::; ... ::; At < At- 1 = ... = ,11 = (M(B»2 < 1, (8-3.26)

where N (< N) is the order of F B FR' Moreover, we let vB(i) be the eigenvector
of FBFR associated with Ai' Since FBFR is similar to a symmetric matrix, we
may assume the set {VB(i)}:~~ is a basis and write e~'O) as

(8-3.27)

(8-3.28)

If c1 ,s 1= 0, the contamination factort of the vectore~' 0) is defined to be

K s = [J21Ici,SVB(i)II",}llc1,sVB(l)II""

t Note that the contamination factor here is defined in terms of the error vector instead of the
pseudoresidual vector as was done in Chapter 6.



where

and that

(8-3.32)

(8-3.29)

(8-3.30)

(8-3.31)

2 - pIS, p) II L1(." p) IIR(s,p) = n n Z
- 2 - p~,P+l) 11L1~'P l)llz'

we show in Section 8.7 by using (8-3.29)-(8-3.31) that approximately

R(S,p) ~ IPz p,E(lll)1/IPZP-Z,E(/11) I (8-3.33)

Ii = max[R(S,P), IPzp,E(ME)/Pzp-2,E(ME)IJ.

If R(S,p) 2 1, no test for convergence is made. The quantity Ii, instead of
R(s,p), is used in (8-3.35) as a precautionary step in case ME 2 /11' IfM E ;2: Ill'
we show later in this section that the quantity R(s, p) probably will oscillate
about (Pzp.E(ME)/Pzp-z,E(ME»' Thus on some iterations, (l - R(S,P» may

L1(S,p) _. L1~'P)

B\~' p) ~ . n (8-3.34)
1 - PZP+Z,E(/11)/PZP,E(/11) "7" 1 - (3(P)R(S,P)'

where (3(P) == [(plf+ 1) - 1)/(plf) - 1)]. The relationships (8-3.33)-(8-3.34)
are valid for sufficiently large p and/or sufficiently large s provided, of course,
that ME < /11'

Thus from (8-3.34),101' the stopping test we use

II B~' p) II fl -'- 1 II L1~' p) II fl <
IIU);')II" "7" 1 - {3(P)Ii IIU~)II'1 - (, (8-3.35)

t See Definition 6-2.1.

Moreover, if ME. < /11 for all s, it can be shown, as in Chapter 6, that the
contamination factors (8-3.28) decrease with s.

If

Theorem 8-3.1. If 0 < ME < /11' then the polynomial sequences {R p,E(Y)}
and {Qp,E(Y)} are FnFR-uniformly convergenq

Hence if ME < /11' it follows from (8-3.24) and Theorems 6-2.1 and 6-2.2
that for large p and/or large s we have approximately that

-Is, P)/R (Z). (1)cn p,E /11 =;= C1,sVn ,

L1~'P)/Qp+ 1,E(/1D ~ c1,svn(l),

where the t/J-norm is determined by the context in which K s is used. Hence
forth we drop the subscript s on ME. and Pp,E.(X), etc., when the meaning is
clear. Moreover, we use /11 instead of M(R) to denote the largest eigenvalue
of B.

The proof of the following theorem is given in Section 8.7.
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(8-3.36)

(8-3.38)

be considerably larger than its theoretical maximum value. The use of H
instead of R(s,p) prevents any exceptionally large value for (l - R(S,p») from
being used in the stopping test.

From (8-3.33),for the parameter change test, the present estimate ME for
PI is deemed to be adequate if

[
P (M) JF [(1 + rZP-Z)JFR(S,p) < Zp,E E == r __~_

Pzp-z,E(ME) 1 + rZP

where F( < 1) is the damping factor discussed previously in Chapter 5 and r
is defined by (4-3.21) and is

r = (l - Jl - MD/(l + Jl - M~). (8-3.37)

As in Chapters 5 and 6, inequality (8-3.36) implies that the convergence rate
obtained using ME is at least F times the maximum possible convergence
rate. This follows from the fact that when ME < PI' then

(P zp, E(ME)/PZp- z, E(ME)) < (PZP(Pl)/PZp- Z(Pl)),

where Pn(x) is the optimum Chebyshev polynomial (4-2.9). Thus inequality
(8-3.36) implies

R(S,p) < [ IPZp,E(ME)1 JF < [ PZP(Pl) JF
jPzp-z,E(ME)1 PZP -zCP1)'

from which the desired conclusion concerning the convergence rates follows.
The parameter change test used in Chapters 5 and 6 to determine the

"goodness" of ME is based on the comparison of average convergence rates
for p iterations. The test (8-3.36) is based on the comparison of convergence
rates just for iteration p and is likely to reflect the need to reestimate PI more
quickly than that of(6-3.21); i,e., for the same value ofF, the inequality (8-3.36)
would probably fail to be satisfied for a smaller value ofp than that for (6-3.21).
We use the test (8-3.36) for the CCSI method here since the pseudoresidual
vector 6~'P), which is needed to measure average convergence rates in
(6-3.21), is assumed not readily available.

We now describe a method which may be used to obtain new estimates for
Pl' Ifthe current estimate ME satisfies ME < pl,thenS(PZn,E(B)) = PZn ,E(Pl)'
From (8-3.18), we then have

116~,P)llsB < S( () _ _ TZP(W E(Pl))
116~,O)llsB - PZp,E B ) - P ZP,E(Pl) - TZ/wE(l)) ,

where wE(x) is defined by

(8-3,39)



where
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(8-3.41)o(S, p) _ o(n) _ U~(n+ I) _ u(n)
0B - 0B - B B'

where

p~+"') = [1 - !ML,r',
We chose the one Gauss-Seidel iteration path here since it is not always convenient to store the
$~'P) vector,

O~+l) = FBFRU~) + FBcR + CB' (8-3.42)

The O~+ I) in (8-3.42) corresponds to a Gauss-Seidel iteration and may be
easily obtained from the CCSI process (8-1.11) by setting p~+I) = p~+l) =
1.0. Thus ifit is decided that a new estimate M~ for J11 is needed at the end of
iteration n, a Gauss-Seidel iterationt is carried out on iteration (n + 1),
Ilb~'P)llsB = 11~~)llsB is computed, and then M~ is obtained from the Cheby
shev equation (8-3.40). A new Chebyshev polynomial using M~ is then started
on iteration (n + 2).

To obtain the solution M~ to (8-3.40), let

13 = (s,l) 11~~)llsB and 1 2r
P

)

- PB 11~~,O)llsB Q == TzP(I/M
E

) = 1 + rZP' (8-3.43

t We remark that this Gauss-Seidel iteration is not necessary if the $~'P) vector calculated
by (8-3.41) is stored, For in this case, the new estimate ME••• can be obtained after 11$~'P)lIsB is
computed, Then, using the stored $~' p) and U~) vectors, the generation of the new Chebyshev
polynomial can be started immediately on iteration (II + 1) by calculating

Thus as in Section 5.4, we may take the new estimate M~ for J11 to be the
largest real x which satisfies the Chebyshev equation

TziwE(X»/Tzp(wE(l» = Ilb~,P)llsB/llb~,O)llsB' (8-3.40)

If the ratio Ilb(S,P)llsB/llb(S,O)llsB is known, the new estimate M~ can be
obtained in closed form using the results of Theorem 5-4.1. We now show
how this ratio can be computed whenever a new estimate M~ is needed.

Since p~,I) = 1, it is obvious from (8-1.11) and (8-3.14) that

Ilb~,O)llsB = [1/p~,l)] 11~~,O)llsB'

Thus IIJ~' O)llsBis readily available, and the problem now is to obtain IIJ~,P)llsB'
Suppose the inequality (8-3.36) is not satisfied for R(S, P- I) and a new

estimate is sought for J11' We assume R(s,p-I) was computed on iteration n.
Thus U~) and ~~- I) == ~~' p-l) = U~-I) - U~) have been computed. The
residual vector J~) = J~'p) needed to obtain an estimate for J11 by using
(8-3.40) is by definition (8-3.14)
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IfB > Q, it then follows from Theorem 5-4.1 and Eq. (5-4.24) that the desired
solution M~ may be given by

where
M~ = (1/(1 + r»(X + rX- 1

), (8-3.44)

x = [t(B + JB2 - Q2)(1 + r2p)J1/2P (8-3.45)

and r = [1 - Jl - M~J/[1 + Jl - M~J. Moreover, again by Theorem
5-4.1, we have that

(8-3.46)

Note that the formula for M~ used here corresponds to the alternate expres
sion (5-4.24) and is valid when ME = °(=mE). Since the CCSI procedure
reduces to the Gauss-Seidel method when ME = 0, often it is convenient to
use ME = °as the initial guessfor fl.1'

For reasons analogous to those given in Section 6.3 concerning the validity
of (6-3,18), it is reasonable to assume, but with some caution, that inequality
(8-3.38) is also valid in the 2-norm. Thus as before, the 2-norm may be used
instead of the SB-norm in the calculation of M~; i.e., use Bgiven by

B == p~,1) IILl~+1)112/IILl~,O)112' (8-3.47)

Since (8-3.38) is not always valid in the 2-norm, the right inequality in (8-3.46)
is not always satisfied when (8-3.47) is used.

Remark. Other procedures also exist for estimating fl.1' For example,
instead of the" one Gauss-Seidel iteration" approach used above, the vector
b~'P) could be determined on each iteration using the recurrence relationt

b(s,O) _ 2 Ll(s, 0)

B - P~' 1) B

(8-3.48)

t To derive (8-3.48), we first use (8-1.11) and (8-3.14) to write

or equivalently

Also, it is easy to show that A~'P-1) = -p~,P)(FBUl(') + CB - U~) + p~,P)A~,p-l), Using the
equation for A~' p- 1) to eliminate (FB Ul(') + cB - U~) in the expression for A~' p), we obtain
(8-3.48). The authors wish to acknowledge helpful discussions with Dr. David R, Kincaid in
deriving the recurrence relation (8-3.48).
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Since ;5~. p) is now known for all p, the adaptive stopping and parameter
estimation procedures described in Chapters 5 and 6 may be used. The use
of (8-3.48) requires that the Llo vector be stored and that one additional
multiplication be performed.

An alternative method for estimating fli is to solve a Chebyshev type
equation defined in terms of the Ll~'P) vectors. Since p~.I) = 1 and 8~' I) =
FR 8~' 0), we have from (8-3.20),

(8-3.49)

Thus from (8-3.21)-(8-3.22),

(s.p+l) [ FF ]
Ll~'P) = p;~.1) Rp.E(FoFR) - ~ER Lp.E(FnFR) [I - FnFRr l Ll~·O).

(8-3.50)

But Sn(FofR)Si3 I is symmetric. Hence if ME < fll' we have by using (8-3.11)
that

IILl~·P)lls" 1 p~.P+I)

11
,\(s.O)11 ::;; 1 _ 2 (s.1) [P2P.E(fll) - flI P 2P+ I.E(fll)J. (8-3.51)
00 s" fli Po

As in Chapters 5 and 6, we then take the new estimate M~ to .be the largest
real x which satisfies the Chebyshev Llo-equationt

p~.l) IILl~·P)lls" 1
p~.P+I) IILl~.O)lls" = 1 _ x2 [P 2P • E(X) - XP 2P• E(X)J. (8-3.52)

Contrary to the Chebyshev equations of Chapters 5 and 6, a closed form
expression for the solution M~ to (8-3.52) does not seem possible. However,
some iterative solution procedure can be used. The bisection method has
been used for this purpose and has worked well for the few sample problems
tried. However, since the" one Gauss-Seidel" approach has worked well in
practice and since the cost is relatively minor, we have not investigated in
depth any iterative solution method for solving the Chebyshev Lln-equation.

An Overall Computational Algorithm

An overall algorithm based on the previous discussions is given below as
an informal program. The input required is summarized below.

, the stopping criterion number' used in (8-3.35).
ME the initial estimate for fll' the largest eigenvalue of B. ME must

satisfy 0 ::;; ME < 1. If nothing is known about fll' it is sufficient
to let ME = 0.0.

t For reasons analogous to those given in Chapler 6. the So-norm in (8-3.52) may be replaced
by the 2-norm.
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(8-3.54)

F the damping factor F used in the parameter change test (8-3.36).
The choice of F is discussed in Section 5.7. Typically, F should
satisfy 0.65 :$; F :$; 0.8.

UB the initial guess vector for uB.
d the strategy parameter defined by (6-3.19) used to determine the

minimum degree, p*, required for each Chebyshev polynomial
.. generated. Typically, d should satisfy 0.03 :$; d :$; 0.15.

The control variables and counters used are similar to those used in
Chapters 5 and 6. (See, for example, Section 6.4.) Suggested values of 1"., the
imposed upper bound for the sth estimate ME

s
' are given in (6-4.1). The

additional control variables Sand T are used to indicate when the ratio
R(s, p) of (8-3.32) lies outside a particular interval and are discussed below.

As in the previous algorithms, we use the underline, ,!!, to indicate more
clearly which variables are vectors. The iterates !I~) and U~) are obtained by
using (8-1.11). For remarks concerning the calculation of the matrix-vector
productsFR UBand F B UR' see Eqs. (8-2.6) and (8-2.7). IfDB is a block diagonal
matrix, it is not necessary to store the vector ~B' See the discussion given in
Section 5.6 for th.e Jacobi method.

No checking of any type is done until p = 3; i.e., until a Chebyshev poly
nomial of degree 8 has been generated. Note that a new estimate M~ for III is
computed only if PB = 1.0, and this occurs only if a Gauss-Seidel iteration
is being carried out. Also, note that the initial guess ME = 0 is treated as a
special case in Calculate New Estimate M~. If this case were not treated in
a special way, no convergence stopping test would be made until the eighth
iteration. Moreover, to compute the initial estimate M~, we utilized the fact
that limn-+CX) 11~~+I)II/II~~)11 = Ili for the Gauss-Seidel process.

To discuss the Sand T counters, let us first suppose that ME
s

> III for
some s. Then using assumptions and arguments similar to those given in
Section 6.7, we obtain the approximation

R(S,p) == IP2P.E(IlI)! T2p-i1/M E) cos 2p8 (8-3.53)
. IPz p-z, E(IlI)I Tzi 1/M E) cos 2(p - 1)8 ,

where 8 is given by (6-7.3) with W(IlI) = IltiME' Thus for this case, R(s,p) will
oscillate about [Tzp-il/ME)/Tzp(I/ME)] = [r(l + rZP - Z)]/[1 + rZP]. On
the other hand, if ME < Ill' we have for sufficiently large p that

TZp-il/ME) < R(s,p) ~ Pzp,E(IlI) < 1.
T2P(I/ME) . PZP - 2,E(IlI)

Thus if R(s, p) does not satisfy (8-3.54), the implication is that ME > Ill' If
R(s,p) ~ 1, the S counter is incremented but no stopping test is performed.
If the left inequality in (8-3.54) is not satisfied, the T counter is incremented
and the stopping test (8-3.35) is carried out but with R(s,P) replaced by its
"theoretical" minimum value, [r(l + r2P- Z)]/[l + rZP].
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Input: ((, ME' F,d, lIn)

(8-3.55)1 < 13/Q < 1/Q.

In the Parameter Change Test step, a nonzero product S * T is taken to
indicate that ME> Ill. When this happens, no new estimation of III is per
mitted. If S * T = 0 and if the parameter change test (8-3.36) indicates that
a new estimate for III is needed, the required Gauss-Seidel iteration is set up
merely by setting PR = Pn = 1.0 and returning to the Calculate New Iterate
step.

After the Gauss-Seidel iteration (implied by Pn = 1.0) is completed, the
new estimate M~ for III is obtained from (8-3.44). However, a new estimate
M~ is calculated only if 13 satisfies

,
I..-.--

n:= O;p:= -1; M~ :=ME ; s:= 0; lIR :=Q.

Next Iteration:

n := n+ 1; p := p + 1
If p = 0, then <Initialize for start of new polynomial)

This test is required to ensure that ME < M~ < 1. We have never seen a case
for which 13 and Qdid not satisfy (8-3.55). However, since there is no guarantee
concerning the value of 13/Q when the 2-norm is used, we include this test
merely as a precautionary measure.

We now discuss the steps we take should inequality (8-3.55) not be satisfied.
If (a) ME < III and if (b) 116~·P)112/115~,O)112 ~ IP 2p,E(lll)I, then we have that

13 ( 1 ) 116~,P)112. ( 1 ) (Ill)
Q == T2p ME IIg~,O)112 =;= T2p ME IP2p,E(lll) I= T2P ME > 1. (8-3.56)

Now if (13/Q) ::;; 1, then (8-3.56) is not valid which, in turn, implies that
assumption (a) and/or assumption (b) is not valid. We assume that ME ~ III
is the cause of (13/m ::;; 1 and instead of calculating a new estimate, we simply
set M~ = ME and continue. On the other hand, 13/Q ~ 1/Q = T2p(1/ME)

implies that III ~ 1 and that the iterative process is diverging. Should this
occur, we assume something is wrong and terminate the iterative process.

In Appendix B, we give a Fortran listing of a subroutine, called CCSI,
which implements Algorithm 8-3.1 with the exception of the Calculate New
Iterate portion. The CCSI subroutine is designed for use as a software/
package to provide the required acceleration parameters and to provide an
estimate for the iteration error for the cyclic Chebyshev polynomial method.

Algorithm 8-3.1. An adaptive procedure for the CCSI method using the
2-norm.
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Begin
s := S + 1; T := 0; S := 0;
IfM~ > .s then M~ = .s; else continue;
M E:= M~; PR:= 1.0; PB:= 2/(2 - MD;

r:= (1 - Jl - M~)/(1 + Jl - MD; p*:= 8;
If ME = 0 then s := S - 1; else p* := [log d/log r];
If p* < 8 then p* = 8; else continue;
End
else <Continue polynomial generation)
Begin
DELNO := DELNP; ORB := PB;
If PB > 1.0, then PR := 1/(1 - iM~PB); PB := I/O - iM~PR);

else continue;
End

Calculate New Iterate:

DR:= PR(FR!lB + ~R - DR) + DR
~B:= PB(FBDR + ~B - DB); DELNP:= I~BI12; DELNE:= II~BII/l;

!JB :=~B + DB; YDN:= IIDBII~

Calculate New Estimate ME:

Ifp < 3, then
Begin
If p == 0 then DELNPI :=DELNP; else continue;
Go to Next Iteration;
End
else If ME > 0 then continue; else Go to Initial G-S Iteration;

If PB = 1.0, then <Compute new estimate for J11)
Begin

Q := 2rP/[1 + r2p]. B := [ 2 ] DELNP .
, 2 - M~ DELNPI'

IfB < Q, then (Implies current estimate ME;;::: J11)
Begin
M~ :=ME; p := -1; Go to Next Iteration;
End
else continue;

If 13 < 1 then continue; else STOP <Possible divergence)

X:= [1{1 + r2P)(13 + J 132 - Q2)] 1/2p ;

M~:= (1/(1 + r))(X + rX- 1);
P ;= -1; Go to Next Iteration
End

183
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else continue;

Stopping Test:

[
2 - ORB] [DELNP] [1 + r

2P
-

2
] PB - 1

R := 2 _ PB DELNO; C:= r 1 + r2p ; {3:= ORB - 1 ;

H:= ({3)(R);
If R 2': 1, then

. Begin
S := S + 1; Go to Next Iteration ;
End
else
Begin
IfR 2': C then continue; else T:= T + 1; H:= ({3)(C);
End

DELNE .
If YUN ~ (1 - H), then pnnt final output and STOP <converged);

else continue;

Parameter Change Test:

Ifp < tp*, then Go to Next Iteration
else
Begin
IfS * T > 0, then Go to Next Iteration

else
Begin
If R ~ [cy, then Go to Next Iteration

else
Begin
n := n + 1; p := p + 1; PR := 1.0;
PB:= 1.0;
Go to Calculate New Iterate
End

End
End

Initial G-S Iteration:

DELNP .
R:= DELNO; IfR 2': 1.0, then Go to Next IteratIon; else ME:= JR;

DELNE .
If YUN ~ (1 - R), then pnnt final output and STOP <converged);

else p := -1 and Go to Next Iteration.
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Remark 1. A printout of the ratio R(S, p) ( = R) can be u~eful in appraising
the effectiveness of the adaptive procedure. If R(s, p) is a converging sequence
in p, the implication is that (8-3.31) is valid and, hence, that ME < Ill' IfR(S,p)
oscillates, the implication is that (8-3.53) is valid and, hence, that ME 2': Ill'

Remark 2. Another useful quantity to print is

~ -log R(s, p)c<s, p) - --,--,..,----,--:;;--;;:--,,--,----;;-=_:_
- -log(r(1 + r2p 2)/0 + r2p»' (8-3.57)

Using arguments similar to those given for C(s,p) in Remark 1 of Section 6.4,
cy,p) may be given the following interpretation: If ME < Ill' the rate of
convergence obtained for iteration n using ME is, at worst, only C(s,p) times
the optimum convergence rate for iteration n. IfME> Ill, C(s, p) will be greater
than unity and an increasing function of p for those values of p such that the
largest zero of P2P,E(X) is less than Ill' Once p is large enough so that the
largest zero of P 2p,E(X) becomes larger than Ill' C(s,p) will normally oscillate
in ·sign and will have no meaningful interpretation.

Also, analogous to Section 6.4, the parameter change test (8-3.36) will be
satisfied only if C(s,p) ~ F. Thus as before, the damping factor F may be
considered as a convergence criterion on the estimates ME in the sense that
ME is considered sufficiently close to III if the convergence rate for iteration n
using ME is at least F times the optimum convergence rate.

We note that C(s,p) reflects the convergence rate for iteration n, while
C(s, p) of Section 6.4 reflects the average convergence rate.

Remark 3. Since III may be known for some problems, an option should
be added to the procedure of Algorithm 8-3.1 such that the input estimate
ME> 0 is never changed. This can be easily done by avoiding the test on "1
and setting p* to a large number.

Remark 4. To ensure that inequality (8-3.46) is satisfied, i.e., that ME <
M~ ~ Ill' the quantity B used in (8-3.43) must be computed using the SB
norm. This can be accomplished by computing DELNP:= II~BllsB for all
iterations or only for those iterations used to determine E. The iteration when
p = 0 and the Gauss-Seidel iteration determine E, and both of these iterations
are characterized by PR = 1.0. Thus one way to modify Algorithm 3.1 such
that inequality (8-3.46) is satisfied and such that the computational cost is
not increased significantly is to compute DELNP:= II~BllsB when PR = 1.0
and DELNp:= II~RI12 otherwise. For additional remarks concerning the
calculation of II~BllsB' see the discussion given in Section 5.6 for the Jacobi
method.



for n ~ 1.

(8-3.60)

(8-3.58)

(8-3.59)

[
(s b(2n- 1) S b(2n- 1» 1 ]-1

(n) _ _ R R 'R R
PB - P2n - 1 - (S b(2n 2) S b(2n 2» pen) ,

BB 'BB oR

[
(s b(2n) S b(2n»O 1 ] - 1

(n+ 1) _ _ B B , B B
PR - P2n + 1 - 1 - (S b(2n 1) S b(2n 1» (n) .
oRR 'R R PB

In writing (8-3.60), we used (8-3.3); i.e., we used the fact that b~) = 0 for n
even and that b~) = 0 for n odd. The difficulty here is in determining the
b!fn-1) and b~n) vectors to use in (8-3.60). To compute b~n) using (8-3.59)
requires u!fn), which is not calculated in the ceo process (8-1.11). Similarly,
u~n-1) is not available for the calculation of blr-l). However, this difficulty
can be circumvented by deriving recurrence formulas for b!fn-1) and b~2n).

Let

t Recall that e5\?l = 0 because of the choice (8-3.1) for u(O).

TheCCO procedure is defined by (8-1.11) where, from (8-1.12) and (8-3.58),
p~1) = P1 = 1 and for n ~ 1

B. The CCG Procedure

Here ben) is defined by(7-4.8) and can be given in its redfblack partitioned form
as

The cyclic conjugate gradient (CCO) procedure can be used only when the
Jacobi conjugate gradient (J-CO) method (8-1.8) is such that 'Yn = 1 for all
n. With the Jacobi matrix B given by (8-1.5), we showed earlier in this section
that this condition on 'Yn is satisfied provided only that the initial guess vector
u(O) be given by (8-3.1) and that the symmetrization matrix W be given by
W = diag(SR' SB)' Here SR and SB are the Cholesky decomposition matrices
for DR and DB given by (8-2.2).

In this section, we assume that these reasonable choices for u(O) and Ware
used. Thus theJ-CGmethod can begive~by (8-1.8) with 'Yn+ 1 = 1 and where
P1 = 1 and for n ~ 2

186 8 SPECIAL METHODS FOR RED/BLACK PARTITIONINGS
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(8-3.61)

Using the three-term recurrence relation (8-3.4) for b(n) together with (8-3.3),
we obtain

O'~) = P~)FRO'~-1) + (1 - p~»O'~-l),

O'~) = p~)F B O'~) + (1 - p~»O'~ - 1).

Since O'~) = 0, it is.clear that (8-3.61) can be used to obtain O'~) and O'~) for all
n ~ 1 once O'~O) is determined. Thus with

N(n) = (S ~(n) S ~(n»"'R - Rv R' Rv R , N(n) = (S ~(n) S O'(n»
"'B - BVB, B B , (8-3.62)

the acceleration parameters (8-3.60) for n ~ 1 may be given by

[

a(n) 1 ]-1(n) _ R
PB - 1 - a~ - 1) p~) , [

(n) 1 ]-1(n+1)_ ()(B

PR - 1 - ()(~) p~) . (8-3.63)

The CCG process now can be carried out by using (8-1.11) with the P
parameters given by (8-3.63). However, such a procedure would require
matrix-vector multiplications involving FRand FB both in the calculation of
{U~), U~)} and in the calculation of {O'~), O'~)}. Fortunately, the matrix
vector multiplications in (8-1.11) can be avoided by using the following
expression for U\;');

U~) = p~)p~)0'~-1) + p(n)[U~-1) - U~- 2)J + U~- 2), (8-3.64)

where

p(n) = 1 + (p~)/p~-1»(1 _ p~»(1 -:~p~-l».

To obtain (8-3.64), consider the equations for U~-1), U~), and U~) defined
by (8-111) These three equations involve u(n-2) u(n-1) u(n-1) u(n) and• • ,B , R , B , R'

U~). The equation for U~) can be expressed in terms of only U~-1) and U~- 2)

by using the other two equations to eliminate U~-1) and U~). The expression
(8-3.64) then follows by utilizing the additional fact that

.':

~(n-1) _ F F u(n-1) + F c + c _ u(n-1)
VB - B R B B R B B' (8-3.65)

Thus the CCG procedure can be carried out by using (8-3.61) to obtain
O'~) and O'~), using (8-3.63) to obtain the p parameters, and using (8-3.64) to
obtain the iterates U~). Once the iterates U\;') have converged, the subvector
UR cqn be obtained easily by using (8-1.3), i.e., using UR = F RUB + CR'

An Overall Computational Algorithm
'.'

An overall algorithm for the CCG method is given below as an informal
program. The procedure used is based on Eqs. (8-3.61)-(8-3.64). However,
in order to avoid the matrix-vector multiplications required in the calculation
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Algorithm 8-3.2. A procedure for the cyclic conjugate gradient (CCG)
method.

(8-3.66)
S (J(n) - p(n)s F (J(n-lj + (1 _ p(n»s (J(n-1)RR-RRRB R RR'
S (J(n) - p(n)s F (J(n) + (1 _ p(n)s (J(n - 1)BB-BBBR B BB'

of (X~) and (X~), we compute SR (J~) and SB (J~) instead of (J~) and (J~); i.e., instead
of (8-3.61) we use

By doing this, the number of matrix-vector multiplications required for the
CCG procedure is the same as that required for the basic Jacobi method
(8-1.4).

For Algorithm 8-3.2, it is assumed that the redfblack matrix problem to be
solved is given by (8-1.2) and that, as in (8-1.3), FR = - DR 1H, FB =

- DB 1HT, CR= DR 1bR, and CB = DB 1bB • Further, it is assumed that DR and
DB are factored as in (8-2.2). The underline, 11, is used to indicate more clearly
which variables are vectors. The subscripts Rand B are used to indicate the
redfblack subvector partitioning. The notation SBO"B' for example, denotes a
vector which is equal to SBgB' --

Initialize:

U .- F u[aj + c . S ,... .- O· U[bj .- 0-R'- R-B R' RV R'-_'_Il ._-
SBO"B:= -(S~)-1(HTUR + 12B) - SB11~I; (XB:= (SBO"B' SBO"B);
PB := 1.0; PR:= 1.0; n:= O. -- --

Next Iteration:

n := n + 1; ORB := PB'

Calculate New Iterate:

gB:= SB 1(SBO"B); DELNE:= IlgBll p ;

SRO"R:= -PR(SD- 1HgB + (1 - PR)SRO"R; (XR:= (SRO"R' SRO"R);

PB:= [1 - (XR ~J-1; p:= 1 - ~ (1 - PR)(1 - ORB);
. (XB PR ORB

U~l:= PRPBgB + p[11~j - U~j] + U~l; YUN := IllJ~III~;
gR:= SR 1(SRO"R);
SBO"B := - PB(S~)-1H\JR + (1 - PB)SBO"B; (XB := (SBO"B' SBO"B);

[
1 J-1

PR:= 1 - :: PB ;

c:= a; a:= b; b:= c. (Relabeling to interchange lila) and u<b)
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(8-4.1)

Stopping Test:

Compute ME (if needed) from the 1;, matrix using bisection (see Section 7.5).
Ifn ~ 2, then

Begin
DELNE

If YUN ~ '(1 - ME)' then

Begin
U .- F ural + c .
-R'- R-B -R'

Print output and STOP (converged);
End
else continue;

End
else continue;

Go to Next Iteration.

8.4 NUMERICAL RESULTS

In this section we describe results of numerical experiments which were
designed to illustrate the effectiveness of the iterative solution procedures
given in this chapter. We discuss the behavior of only the CCSI and the
RS-CG acceleration procedures. Results for the CCG and the RS-SI methods
are not included here since the behavior of these methods can be expected to
be similar to that of the RS-CG and CCSI methods, respectively. In fact, as
discussed previously in Section 8.1, the UB subvector iterates of the CCG and
the RS-CG methods are identical provided that ul2 l for the CCG method is
given by (8-3.1). The UB subvector iterates of the CCSI procedure of Algorithm
8-3.1 will differ slightly from the UB iterates of the RS-SI procedure only
because we choose to do a Gauss-Seidel iteration instead of storing the 6B

vector whenever a n~w estimate M~ is computed.

Description of Test Problems

The test problems we consider arise from the finite-difference discretization
of the elliptic differential equation

o (OIJlt) 0 ( OIJlt)- C - + - c - + FIJIt = G
ox ox oy oy

defined in a rectangular region R and subject to the condition IJIt (olJltjon) = 0
on the boundary of R. Here olJltjon is the outward normal derivative of IJIt on
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the boundary. The material coefficients C > 0 and F s 0 are known piece
wise smooth functions ofx and y. This problem with Ul/ = 0 on the boundaries
was discussed previously in Section 1.6. The geometric domain and the mesh
subdivisions are given in Fig. 8-4.1.

The finite-difference discretization used is the normal 5-point formula.
(See, for example, Varga [1962J.) The resulting system of equations is written
in matrix form as

Au = b. (8-4.2)

IfF is not zero everywhere or if dlt = 0 on some part of the boundary, then A
is SPD.

For the numerical results given in this chapter and later in Chapter 9, we
use a (horizontal) line partitioning (see Sections 1.6 and 1.7) for the unknowns
and for the matrix A. Moreover, in this chapter, we always use a redjblack
ordering of the lines. From the discussion given in Section 1.7, it follows that
such an ordering of the unknowns produces a redjblack partitioning (8-1.1)
for A, where DR and DB are block diagonal matrices. Each diagonal sub
matrix Ai, i of DR and DB is a tridiagonal matrix whose order is either N - 2,
N - 1, or N depending on the boundary conditions imposed on the left and
right boundaries.

The specific problems we consider are defined by the data given in Table
8-4.1. The initial guess vectors used are defined in Table 8-4.2. The quantities
I, J, N, and M are defined in Fig. 8-4.1.

Results of Numerical Experiments

For the CCSI method, we used Algorithm 8-3.1 with d = 0.1, F = 0.7, and
an initial guess of 0.0 for ME' For the RS-CG method, we used Algorithm
7-6.2 as discussed in Section 8.2. For both methods, the oo-relative norm was

Xi-I xi

<'IXj

~YM .---.--------,--------f'-----+-----,
I I I I

--r-------..J---------l--T -- --
I ! I I
_~-------~----------L-~----

I I I I
I I I I

YJ h--+-~~~ __~_t_---- --- - +-,- ---
I I
I, I
I I
I I
I 1
I I
I I

- - - -----~- -1----
I I

Yj

Yj -I

Fig. 8-4.1. Geometric domain.
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Mesh data

42 0.08 14 18
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L
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21 21

21 21

1.0

1.0

42

42

M = N 8x = ~y I J

TABLE 8-4.1

Datafor Test Problems

Boundary conditions Material data
--

Problem Top Bottom Left Right Region 1 Region 2

C1 = 1.0 C2 =1.0
OlI = 0 OlI = 0 OlI = 0 OlI = 0 F 1 = 0.0 F 2 = 0.0

G1 = -9.0 G2 = -1.0

oOll oOll C1 = 1.0 C2 = 1.0
2 -=0 OlI = 0 -=0 OlI=O F 1 = 0.0 F 2 = 0.0

oy ox G1 = -1.0 G2 = -1.0

oOll oOll oOll = 0 oOll C1 = 1.0 C2 = 1.0
3 -=0 -=0 -=0 F 1 = -0.1 F 2 = -0.1

oy oy ox ox G1 = -0.1 G2 = -0.1

C1 = 0.10 C2 = 0.01
4 OlI = 0 OlI = 0 OlI = 0 OlI = 0 F 1 = -1.0 F 2 = -1.0

G1 = 0.0 G2 = -1.0

l
[
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~'

Guess C

u(O) is a vector whose
elements are random

numbers between °and 1

except

for {X1+ 1:::;; x :::;; XN
y, :::;; y :::;; Yl

L-.I

Guess B

Initial Guess Vectors

u(O) = 10

ulO) = 5

u(O) = °

u(O) = °

Guess A

I .---

(8-4.4)

(8-4.3)

used in the stopping test. With .11n
) = (.1(~»)i' the CCSI method was considered

converged (see Eq. (8-3.35) when

1 .1In)
EA == H max (n'+l) ~ C,

1 - i Ui

where H is defined as in Algorithm 8-3.1. With bIn) = (b~»)i' the RS-CG
method was considered converged (see Eq. (7-5.2)) when

1 bIn)
EA == 2 max (n'+l) ~ C·

1 - J.ll Ui

TABLE 8-4.3

Summaries of the Iterative Behavior for the RS-CG and the CCSI Methodsfor
Stopping Criterion of ( = 10- 5

Nonadapt. Adaptive CCSI
RS-CG CCSI
Iter. to Iter. to Iter. to Last est. Cis. p) at

Problem converge converge converge used forll 1 convergence

1 (Guess A) 47 67 80 0.994134 0.975
(0.994149)

2 (Guess A) 59 119 140 0.998525 0.941
(0.998533)

3 (Guess B) 89 323 344 0.999680 0.996
(Guess C) 78 256 293 0.999673 0.853

(0.999680)

4 (Guess A) 92 125 163 0.998170 1.018
(Guess C) 104 144 154 0.998241 (550

(0.998167)
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The iterative behavior of the CCSI and RS-CG methods for the problems
of Table 8-4.1 is summarized in Table 8-4.3. Both adaptive and optimal
nonadaptive procedures were used for the CCSI method. For the nonadaptive
CCSI procedure, the eigenvalue estimate used for J.l.l is given in parentheses.
A stopping criterion of ( = 10- 5 was used for all problems. The quantity
C(s. p) is defined by (8-3.57). Note that this quantity accurately reflected the
ratio of actual to optimum convergence rates and was indicative of how
closely the last estimate ME approximated J.l.l' For problem 4, C(s,p) was
greater than unity and monotonically increasing with p when convergence
occurred. This implied that the last estimate ME was greater than J.l.l and that
J.l.l > x*, where x* is the largest zero of P2p, E(X) (see discussion following
(8-3.57)). For problem 1, it is known (e.g., see Varga [1962]) that <J.l.l =

[cos n/41]/[2 - cos n/41] = 0.994149.
The typical behavior of R(n), defined by (8-3.32), for the adaptive CCSI

procedure is illustrated in Fig. 8-4.2. There, the graph of R(n) versus n is given
for problem 3 using vector guess B. The eigenvalue estimates which were
used are also given. Gauss-Seidel iterations were done on iterations 4, 9, 14,
20, 28, 40, 60, 75, and 113.

In Table 8-4.4, we give for problem 3 the number of iterations required for
convergence when determined by the approximate error measure EA defined
by (8-4.3)-(8-4.4) and when determined by the actual error measure ET ,

where

ET == max I(u!n) - u;)/u;! ::;; C.
;

(8-4.5)

Here UB = (u;) is the unique solution to (8-1.14). We remark that for problem 3,
UB is known and is unity everywhere. As was true for the simulated iteration
results given in Chapters 5 and 7, the approximate error measure EA closely
approximates the true error for the adaptive Chebyshev procedure, but
considerably overestimates the true error for the nonadaptive Chebyshev
and the conjugate gradient procedures.

The behavior of the actual and estimated errors for the CCSI and RS-CG
methods is more clearly indicated by the graphs given in Figs. 8-4.3-8-4.5. In
these figures, graphs of log) oEA and IOglOET versus n are given for problem 3
using Guess C. Due mainly to oscillations in R(n), the estimated error for the
nonadaptive CCSI procedure fluctuated considerably. To simplify the graph
in Fig. 8-4.4, the estimated error is not given for all iterations. Actual error
estimates are indicated by an x. Any iteration for which an x is not given, the
estimated error for that iteration is above the dotted line.

As indicated in Fig. 8-4.5, the use ofthe difference vector, ~~) == u~) - U~-l)

can give a reasonable lower bound for the RS-CG iteration error. The
difficulty with using ~~), however, is in determining how much II~~)II under
estimates Ile~)II. A stopping test which would more accurately measure the
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Fig. 8-4.2. Graph of R(n) versus n for problem 3.
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TABLE 8-4.4

Number of Iterations· Required by the CCSI and RS-CG Methods
to Satisfy EA :s; ( and ET :s; (

( = 0.1 (= 0.01 ( = 10- 5

Method n(ET ) n(EA ) n(ET ) n(EA) n(ET ) n(E )

RS-CG 28 51 40 56 68 7

CCSI 90 92 138 140 292 29
(adaptive)

CCSI 54 70 98 120 235 25
(nonadaptive)

a Problem 3 using Guess C.

195

iteration error vector for the optimal nonadaptive CCSI procedur possibly
could be developed using the relationship (5-7.24). However, ifficulties
could arise in the .use of such a test if the nonadaptive procedur were not
optimal; i.e., if the fixed estimate ME used were not sufficiently cl se to /11'

The problems of Table 8-4.1 were also solved using 11.1~' p) lisa i steadt of
11.1~,P)112 in the CCSI procedure of Algorithm 8-3.1. It was foun that the
iterative behavior of the CCSI iterations is basically independent f whether
the 2- or SB-norm is used to compute II.1g,P)II. For the problems c nsidered,
the ratio of iterations required for convergence for the two cases v ried from
0.95 to 1.05.

Except for problem 4, the number of unknowns N for the problems con
sidered here is small. The iterative behavior of the CCSI metho depends
strongly on the valuet of S(B) and only weakly on the size of t e matrix
problem. However, from Chapter 7, the iterative behavior of th RS-CG
method depends on the distribution of all eigenvalues of FBFR a d on the
size N of the matrix problem when N is small. Thus if, N is incre sed while
keeping S(B) fixed, the iterations required for the RS-CG method probably
would increase, while the iterations required for the CCSI method probably
would remain the same. For the test problems considered here, however,
there is no reason to believe that the ratio of RS-CG iteration to CCSI
iterations would change significantly with increased N. This follow since, for

t The matrix S8 is defined by (8-2.2)..
t Roughly, the number of iterations required by the CCSI method is roportional

to 1;)1 - S(B).
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8.5 ARITHMETIC AND STORAGE REQUIREMENTS

TABLE 8-4.5

Number oj Iterations Required by the CCSI and RS-CG MethodsJor Problem 1"

199

Problem RS-CG
CCSI

Nonadapt. Adapt. RS-CG
CCSI

Nonadapt. Adapt.

1 (Guess A)
M = 41
N = 41

1 (Guess A)
M= 82
N = 82

1 (Guess A)
M = 164
N = 164

31

64

126

34

65

132

47

96

168

44

92

167

54

108

226

68

141

276

a With Mesh Grids of 41 x 41,82 x 82 and 164 x 164.

the problems of Table 8-4.1, any increase in N generally causes an accom
panying increase in SeE). To illustrate this, problem 1 was rerun with the
mesh increments halved and then halved again; i.e., problem 1 was rerun
first with a 82 x 82 mesh grid and then with a 164 x 164 mesh grid. The
results are given in Table 8-4.5. Note that halving the mesh increments
roughly doubled the number of iterations required by both the CCSI and
RS-CG methods.

8.5 ARITHMETIC AND STORAGE REQUIREMENTS

Thus far we have compared the RS-CG and CCSI methods relative to the
number ofiterations required for convergence. However, the cost per iteration
also must be considered in the evaluation of any solution method. This we
now do for the test problems considered in this section. We assume the
matrix problem to be solved is of order N and is expressed in the form (8-1.2).
We also assume that each of the DR and DB submatrices is of order N /2 and
that each has been factored as in (8-2.2).

Both methods have the following common requirements:t

storage: H, SR' SB' bR, bB {5N words}

arithmetic: Matrix-vector multiplications by DR 1H and DB 1HT (8-5.1)
{( 7; 2N), (*; 4N), (+; 3N)}.

t See Section 10.2.
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TABLE 8-5.1

Overhead Arithmetic alld Storaye Requiremelltsfor the CCSI
alld RS-CG Methods

Arithmetic
Storage

Method Vectors (order Nj2) * +

CCSI YR,1!n I-!N 3-!N

RS-CG Wu, Wu</> 3N 6N
WO, Wo</>, we

The quantities enclosed in parenthesis are the requirements for the 5-point
discretization of the elliptic problem (8-4.1). Beyond these common require
ments, additional arithmetic and storage are needed to carry out the respec
tive iteration procedures. Based on Algorithms 7-6.2 and 8-3.1, these addi
tional (or overhead) requirements are summarized in Table 8-5.1. The
notation used in Table 8-5.1, and in what follows is defined in the appropriate
algorithm. For the CCSI method, we assume that only temporary storage is
required for the (~)i subvectors.t For the RS-CG method, we assume that
only one common vector storage array is needed for the storage of the Q, QR'
and we vectors. The overhead arithmetic for the CCSI method includes the
multiplications by the acceleration parameters, the calculation of II~BI12' and
the additions required for the source vectors QR and QB' For the RS-CG
method, the overhead arithmetic includes the calculations required to obtain
the WUr and WOr vectors and IIWurll~ and IIWorll~. The calculations re
quired for the stopping quantities DELNE and YUN are not included. The
arithmetic requirements for the RS-CG method given in Table 8-5.1 minimize
the number of multiplications required. Other combinations of the * and +
operations are possible. We remark that the RS-CG proct:dure also may be
carried out, with roughly the same overhead requirements, using the classical
conjugate gradient formulation (7-4.5) (see, e.g., Chandra [1978].)

Relative to the CCSI method, the RS-CG method requires 4N more
arithmetic operations per iteration and requires the storage of some extra
vectors. The importance of these differences can be measured only in relation
ship to the common requirements (8-5.1). For example, if the problem size is
such that disk bulk storage is needed, then the additional storage require
ments and computational complexity of the RS-CG method must be
considered·t

t See the discussion on the Jacobi method given in Section 5.6.
t Difficulties connected with data flow are discussed in Section 10.2.
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For the problem here for which the 5-point discretization formula is used,
the CCSI method requires 7!N multiplicationst and 6!N additions per
iteration, while the RS-CG method requires 9N multiplications and 9N
additions. Ifthe calculation time for a multiplication is 1.25 times that for an
addition. then the arithmetic work per iteration for the RS-CG method would
be approximately 1.25 times that required for the CCSI method. The extra
cost for the RS-CG method becomes less important as the amount ofcommon
arithmetic increases. For example, the ratio ofarithmetic work corresponding
to a 9-point discretization formula would be considerably less than the value
1.25 given above for the 5-point formula.

For both methods, the normalization procedure given by Cuthill and Varga
[1959J may be used to eliminate the 2N divisions (or the related multipli
cations) in (8-5.1). To describe this normalization procedure, which is carried
out prior to the start of the iterative process, we first define the diagonal
matrices ARand ABby

AR == diag(SR)' AB == diag(SB)'

where SR and SB are defined by (8-2.2). Letting

(8-5.2)

UR = ARuR,

bR= ARbR,

UB = ABuB,

bB = ABuB,
(8-5.3)

(8-5.4)

we can express the matrix equation (8-1.2) in the form

[S~~R _!- J[URJ = [~RJ,
H SBSB uB bB

where SR == SR A; 1, Sn == Sn Ail 1
, and fj = A; 1H Ail 1

. The normalized system
(8-5.4) now can be solved using either the CCSI or the RS-CG method. Note
that the SR and SB matrices have unit diagonal elements, which eliminates
2N divisions (or multiplications) in the iterative solution procedure. Once
convergence has been achieved, URand UB may be obtained easily from uR
and Un by using (8-5.3).

8.6 COMBINED (HYBRID) CHEBYSHEV AND CONJUGATE
GRADIENT ITERAnONS

A combined Chebyshev-conjugate gradient procedure has been suggested
by some (see, e.g., Engeli et al. [1959J or Axelsson [1977J) as a possible way
to reduce computational cost.

t We assume the 2N divisions in (8-5.1) are replaced by 2N multiplications. This can be done
by replacing each division (a/s,;) by the multiplication (arii;), where p" = 1/Sii and each such
fJu is computed prior to the start of the iterative process.
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To illustrate the idea involved, consider the solution of the matrix problem
(8-1.3) by the RS-CG method. Let u!J°) be some initial guess vector for the
black unknowns and let e~O) be the associated initial error vector. As in
(8-3.27), elf) may be expanded in terms of the eigenvectors of FBFR as

~ -eB = C1 VB(l) + czvB(2) + '" + Cf~VB(N), (8-6.1)

where N is the order of FB FR' As before, we assume the eigenvector vB(i) is
associated with the eigenvalue Ai of FB FR and that the Ai are ordered as in
(8-3.26), i.e., 0 S AN S ... S ..1. 1 = (S(B))Z. If Cj = 0 for i ;;::: 1*, the RS-CG
method (in the ahsence of rounding errors) will converge in at most 1*
iterations.t Thus if a guess vector ulf) can be found such that 1* is small, the
RS-CG method will converge quickly. The strategy behind the combined
procedure is to generate such a guess vector for the conjugate gradient
method using the less costly Chebyshev iterations.

For the combined procedure applied to the matrix problem (8-1.3), one
first iterates using the CCSI method with ME < S(B). After a sufficient
number of Chebyshev iterations, the RS-:-CG iterations are started. Since
ME < S(B), it follows from (8-3.24), (8-3.27), and (8-3.29) that the error vector
of the last CCSI iteration will be dominated by those eigenvectors of F BF R

associated with eigenvalues Ai > M~. Thus the initial error vector for the
RS-CG method approximately satisfies

ehO) ~ c1vB(l) + ... + CI_vB(l*), (8-6.2)

where AI- > M~ ;;::: AI- + l' If 1* is small, only a few RS-CG iterations should
be required for convergence.

The data given in Table 8-6.1 illustrates that, indeed,a "smooth"t initial
guess vector does enhance convergence of the conjugate gradient method.
There, we give the number of RS-CG iterations required to solve problem 4
of Section 8.4 using guess vectors A, C, and D. Guess vectors A and Care
defined by Table 8-4.2, while D was generated by starting with guess A and
then doing 49 Gauss-Seidel iterations before starting the RS-CG procedure.
Note that for guess D, the eigenvector coefficient Ci in (8-6.1) associated with
the eigenvalue Ai is (Ai)49 times the corresponding Cj associated with guess A.
Thus guess D is "smoother" than A. Since the elements of guess C were
generated randomly, this guess vector is not likely to be smooth.

The combined Gauss-Seidel, RS-CG procedure is a polynomial method.
Hence because of the polynomial minimization property of the conjugate

t This follows from the polynomial minimization property of the conjugate gradient method.
See Chapter 7.

t Here, the term "smooth" implies any guess vector whose associated error vector expansion
(8-6.1) is dominated by those eigenvectors associated with the larger eigenvalues of the iteration
matrix.
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TABLE 8-6.1

Iterations Required for Different Guess
Vectors

RS-CG method
iterations

Problem 4 ., = 10- 2 , = 10- 5

Guess D 34 69

Guess A 58 92

Guess C 76 104

203

gradient method, the total number of iterations required by the combined
procedure is not likely to be less than that for the RS-CG procedure alone.
However, since the cost of each Gauss-Seidel iteration is only 0.6 times that
for a RS-CG iteration, the computational cost of the combined procedure
could be less. This is not the case for the example given above. Here, the cost
for the combined procedure with' = 10- 5 roughly was equivalent to 99
RS-CG iterations, which is slightly greater than the 92 iterations required
by the RS-CG method alone. The cost effectiveness of the combined pro
cedure was improved only slightly when the guess vector for the RS-CG
method was generated using the CCSI, instead of the Gauss-Seidel, method.
These disappointing results probably are due to the fact that some of the
eigenvector terms associated with the smaller eigenvalues in (8-6.1) may be
amplified significantly by the conjugate gradient process. The data given
below illustrates this behavior.

With ehO) given by (8-6.1), it follows from (3-2.5) and Theorem 3-2.1 that
the error vector for the RS-CG method may be written as

e~) = Qn(FBFRki?) = C1Qn(A1)VB(1) + Cz QnCAz)vB(2)

+ ... + cNQn(AN)vB(N), (8-6.3)

where the polynomial Qn(x) is defined by the recurrence relation (3-2.6), with
the parameters Pn+ 1 and Yn+ 1 determined by the RS-CG procedure. Unlike
the corresponding polynomial for the CCSI procedure, max IQn(x) I for
AN ::;; x ::;; ..1. 1 need not be bounded by unity. The data of Table 8-6.2 gives
some indication of the behavior of Qn(x) for the three polynomial sequences
{QnCx)} corresponding to the guess vectors A, C, and D for problem 4. In
Table 8-6.2, we give QnCx) evaluated at selected values of x. The value x =

0.99634 corresponds to ..1.1 = S(FBFR). For guess D, note the exceptionally
large values of Qn(x) at x = 0.05. Thus if vBO*) is an eigenvector of FBFR with
eigenvalue Ai> ::§= 0.05, the contribution of vBO*) to e~) can become significant



TABLE 8-6.2

Values of the Polynomial Q.(x)for the RS-CG Method

Problem 4 x Ql(X) QII(X) Q21(X) Q31 (x) Q61(X)

Guess D 0.99634 0.74 x 10° 0.62 X 10- 2 0.43 X 10- 4 -0.38 X 10- 4 -0.13 X 10- 4

0.9 -0.61 x 101 -0.73 x 10° -0.17 x 10° 0.21 X 10- 1 0.23 X 10- 4

0.05 -0.67 x 102 0.11 X 1012 -0.88 X 10 1o -0.33 X 109 -0.41 X 106

Guess A 0.9 -0.18 x 101 -0.11 x 10° -0.48 x 10- I -0.16 X 10- 1 0.25 X 10- 3

0.1 -0.25 x 102 -0.26 X 101 -0.22 X 101 -0.57 x 10° -0.30 X 10- 3

GuessC 0.9 0.89 x 10° 0.89 X 10- 1 0.35 X 10- 1 0.29 X 10- 2 -0.11 X 10- 4

0.1 0.71 x 10- 2 0.14 X 10- 3 -0.35 X 10- 3 0.20 X 10- 3 0.63 X 10- 6

r-

r
[
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even though Ci* is very small. The calculations were performed on a computer
with a 13-digit mantissa.

Other types of combined or hybrid procedures also have been used. For
example, O'Leary [1975J used a combined conjugate gradient-SOR pro
cedure in which the initial conjugate gradient iterations were used as a means
to obtain an estimate for the optimal SOR acceleration parameter Wb' The
estimates for Wb were based on the estimates for S(B) which can be obtained
at little cost from the conjugate gradient iteration data (see Section 7.5).

8.7 PROOFS

In this section we prove Theorem 3.1 and derive the relationships (8-3.33)
(8-3.34) given previously in Section 8.3.

Proof of Theorem 8-3.1

With the eigenvalues of FBFRgiven by (8-3.26), it follows from Definition
6-2.1 thatthe sequence {Rp , E(Y)} is FBFR-uniformly convergent ifRp ,E(A1) #0
and if

for all Y E [AR, At].
p--+oo

'1,.
,I

From (8-2.4) and (8-3.11),

R p,E(A1) = R p,E(J1f) = P 2p,E(J11),

where P 2P,E(X) is given by (5-2.7) with -mE = ME' Thus Rp ,E(A1) > 0 since
ME < J11 implies that P2p, E(J11) > 0: As the nonzero eigenvalues of FBFR are
just the squares of the nonzero eigenvalues of B, it follows from (8-1.6) that
the Cl: convergence factors (6-2.8) associated with the polynomials R p , E(Y) can
be given by

\.

(8-7.2)lim Cl:(2p) = 0,
p--+ 00

R (y)
Cl:(2p) == max p, E

"N,;;y';;"t R p , E(A 1)

_ max P2p,E(X) I = maxo';;X';;ltt IT2p(w(x)) I (8-7.1)
o,;; x,;; It, P 2p, E(J11) T2p(w(J1r))'

where w(x) = x/ME' Using arguments similar to those given in the proof of
Theorem 6-2.4, we can show that

Cl:(2p) < T2P(w*) and
- T2p(w(J11))
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where w* = 1 if J.lt < ME and w* = w(J.lt) if J.lt ;:::: ME' Thus the sequence
{Rp,E(Y)} is FBFR-uniformly convergent.

To prove the desired result for the sequence {Qp, E(Y)}' we first show that
the polynomial Qp+l,E(Y) may be expressed as

,

Qp+l,E(X2) = P2p,E(X) - P2P +2,E(X), (8-7.3)

From the three-term recurrence relation (4-2.1) and the definition ofP2p, E(X),
it follows that

T2P+2(~E)P2P+2'E(X)= 2(~JT2P+l(~Jp2P+l'E(X)

- T2P(~Jp2P'E(X). (8-7.4)

Moreover, from (8-1.12) and (4-3.4),

(p+1) _ ~ T2P + 1(1/ME)
PB - .

ME T2P +zC1/M E)

Substituting for p\r+ ll[xP2p+ 1, E(X)] in (8-3.23) by using the above relations,
we may express Qp+ 1, E(X 2) in the form

Q ( 2) _ ( (p+1) _ T2P(1/ME)) () P ( )
p+l,E X - PB T

2p
+zC1/M

E
) P2p,E x - 2p+2,E x,

Equation (8-7.3) now follows since, from (4-3.4) and (4-2.1), p\f+ll also
satisfies

p\f+1) = 1 + T2i 1/M E) .
T2p+2(1/ME)

Thus from (8-7,3), we have that

, ( 2) [P2p+ 2. E(J.l1)]Qp+1,E(11.1) = Qp+1,E J.l1 = P2p,E(J.l1) 1 - P () > 0
2p,EJ.ll

and that

(8-7.5)

(8-7,6)

where rx(2p) is given by (8-7.1). (In (8-7.6), we used the fact that IP2p+ 2, E(J.ll)lf
jP2p, E(J.l1) I ~ J.ll provided 0 < ME < J.ll') Hence it follows from (8-7.2) that
the sequence {Qp,E(Y)} is also FBFR-uniformly convergent. •



- -'-'

8.7 PROOFS

Equation (8-3.33)

207

(8-7.7)

If ME < 111 and if p is sufficiently large, from (8-3.31) and (8-7.3), we have

IILl~,P)11 ...:... P2p,E(111) 1\(P)(111)

IILl~' p- 1) II -;- P2p- 2, E(111) 1\(p- 1)(111)'

where

(8-7.8)

Thus with

_ 1\(P-l)(II) IILl(S,P)II
R(s, p) = rl B 2 (8 7 9)

- 1\(P)(111) II Ll~' p 1) II / - •

we have from (8-7.7) that

R.(s,p) ~ P2P,E(111)/P2p-2,E(111)' (8-7.10)

The difficulty with the use of R.(s, p) is that the ratio 1\(p- 1)(111)/1\(P)(111) is not
known since it is a function of 111' However, we show that R(s,p) defined by
(8-3.32) is a good approximation to R.(s,p) in most cases.

If ME < 111' then NPl(111) is a positive, monotone increasing, convergent
sequence of p. Moreover, it is easy to show that

1\(P-l)(111) . NP-l)(111)
0< 1\(P)(111) < 1, and l~rr:, 1\(P)(111) = 1. (8-7.11)

It is obvious that [1\(P-l)(ME)/1\(P)(ME)] also satisfies (8-7.11) and is a good
approximation to [NP- 1)(111)/1\(P)(111)] provided ME is reasonably close to
111 and/or p is not small. Thus, since

1\(P)(ME) = 1 - T2p(1/ME) = 2 - plf+l)
T2p +2(l/ME) , '

we have R(S,p) ~ R.(s,p) and (8-3.33) then follows from (8-7.10).

Equation (8-3.34)

Eliminating c1,s vB(1) in (8-3.29)-(8-3.30) and using (8-3.11) and (8-7.3),
we obtain for sufficiently large p that

R (11 2 ) Ll(s, p)
-(s,p) ...:... p,E r1 Ll(S,p) _ B (8-7,12)
8B -;-Qp+l,E(I1i) B -1-r(p+l)(111)'

where PP+l)(111) == P2p+2,E(111)/P2p,E(111)' Using (8-3.33), we have e~'P) ~
Ll~,P)/[1 ~ R(S,P+l)]. However, it is not convenient to use R(s,p+l) in the
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estimation of 111:'p) since fI~'P+ I) would be required. To overcome this
difficulty, we use an approximation to r(p+ I)(111) expressed in terms of R(s, P),

To obtain this approximation, we first express r(p+ 1)(/11) as

rep + 1)(111) = [rep +1)(/11 )/r(p)(IlI)] r(p)(/II)' (8-7.13)

Analogolls to the behavior of the A!P)(IlI) functions, we have that
limp~oo(r(p+1)(111 )/r(p)(/II)) = 1 and that the ratio r(p+ I)(ME)/r(p)(ME)
closely approximates r(p+I)(IlI)/r(p)(PI) if ME is close to III and/or p is not
small. Using this approximation for the ratio in (8-7.13) together with the
fact that r(p+ I)(ME) = pif+ I) - 1, we obtain

r (p+ 1)( .) -'- pif+ I) - 1
III -;- (p) 1 r(p)(llI)'

Pn -

But from (8-3.33), r(p)(PI) ~ R(s,p). The substitution of (8-7.14) into (8-7.12)
then gives (8-3.34).



CHAPTER

9

Adaptive Procedures

for the Successive

'Overrelaxation Method

9.1 INTRODUCTION

The successive overrelaxation (SOR) method, first introduced in Section
2.3, is one of the more efficient and one of the more widely used iterative
methods for solving the problem

Au = b (9-1.1)

when the matrix A is symmetric and positive definite (SPD) and is consis
tently ordered. The consistently ordered property (defined in Section 9.2)
depends on the partitioning which is imposed on A. We show later that allY
matrix which is partitioned into the redfblack form (8-1.1) is consistently
ordered. (The converse is not true). For the case when A is partitioned into a
redfblack form, the SOR, RS-SI,and CCSI methods have the same optimal
asymptotic convergence rates, but the RS-SI and CCSI methods have
larger average convergence rates (Golub and Varga [1961J). However,
sometimes it is not convenient to use a redfblack partitioning. In this case,
if A is consistently ordered and if optimum iteration parameters are used,
then the asymptotic convergence rate for the SOR method is twice as large



as that for the Chebyshev acceleration of the Jacobi method given in Chapters
5 and 6.t Analogous to the Chebyshev methods, the SOR method requires
the use of an iteration parameter w which must be properly chosen in order
to obtain the greatest rate of convergence. Part of the popularity enjoyed by
the SOR method stems from its simplicity of application and from its
familiarity in the engineering community.

In Section 9.2, we introduce the important concept of matrices which
have Property d and matrices which are consistently ordered. These pro
perties are defined relative to the block partitioning imposed on the matrix
problem (9-1.1) and are necessary for the adaptive determination of the
optimum SOR iteration parameter. Section 9.3 contains a brief review of
the basic properties of the SOR method.

Like the Chebyshev procedures given in Chapter 6, the SOR adaptive
procedures which we give are based on the convergence ofthe SOR difference
vector to an eigenvector of the associated SOR iteration matrix. In Section
9.4, we discuss the convergence properties of the secondary iterative process
defined by the sequence of SOR difference vectors. The basic adaptive
parameter estimation and stopping procedures are then developed in Section
9.5.

In Section 9.6, we give an overall computational algorithm which includes
adaptive procedures for estimating the parameter wand for terminating the
iterative process. For the algorithm given, it is assumed that the coefficient
matrix A is SPD, and is consistently ordered relative to the block parti
tioning imposed. In Section 9.7, we give a computational algorithm which is
applicable when the coefficient matrix A is partitioned in the special red/black
form. This algorithm utilizes the Rayleigh quotient to obtain estimates for
the SOR parameter w. A useful property of the SOR algorithm given is
that no w estimate can exceed its optimum value. Section 9.8 contains
results of numerical experiments. Comments on the relative merits of certain
partitionings and certain iterative solution procedures are given in Section
9.9.

The algorithms given in this chapter can be utilized by knowledgeable
users of the SOR method without reading all of the preceding material.
For example, the use of Algorithm 9-6.1 requires only a familiarity with the
concept of a consistent ordering for the coefficient matrix. If desired, the
reader may go directly to the section in which the algorithm is given and then
refer back to the previous material only if more information is needed.

210
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t Similar, but not as precise, statements can be made concerning the relative convergence
rates of the CG and SO R methods.
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9.2 CONSISTENTLY ORDERED MATRICES
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9.2 CONSISTENTLY ORDERED MATRICES AND
RELATED MATRICES I

I

In this section we define and give examples ofconsistently ordered matrices
and matrices which have Property d. I

Let the N x N matrix A be partitioned into the form I

A = [At ... A~,q],
Aq,l Aq,q I

where Ai~j is an ni x nj submatrix and n1 + ... + nq = N. I

.Definition 9-2.1 The q x q block matrix A of (9-2.1) isl said to have
Property dif there exists two disjoint nonempty subsets $R and SB of
{1, 2, ... , q} such that SR u SB = {1, 2, ... ,q} and such that id Ai,j i= °and
i i= j, then i E SR and j E SB or i E SB and j E SR' I

Definition 9-2.2. The q x q block matrix A of (9-2.1) is sai~ to be consis
tently ordered if for some t there exist disjoint nonempty sub~ets S1, .•• ,St
of {l, 2, ... ,q} such that U:= 1 Si = {1, ... , q} and such that iflAi.j i= °with
i i= j and Sk is the subset containing i, then j E Sk+ 1. if j > i and j E Sk-1 if

. j < i. I

Note that the Property d and consistently ordered propertiFs are defined
relative to an imposed partitioning for A. By letting SR = {~i: i odd} and
SB = {Si: i even}, it follows that any matrix which is consistently ordered
also has Property d. The converse is not always true. HoweveJ, if the matrix
A has Property d relative to a particular partitioning then Iby a suitable
permutation (reordering) of the given block rows and corresRonding block
columns of A we can obtain a consistently ordered matrix. (SJe, e.g., Young
[1971].) I

It follows easily from the above definitions that any matrix which is
I

partitioned into the red/black form (8-1.1) has Property d and is consistently
ordered. Conversely, as we show later, any matrix A which h~s Property d
relative to a given partitioning can be cast into a red/blac~ form (8-1.1),

I

where DR and DB are block diagonal matrices whose diagonal blocks are
consistent with those of the initial partitioning. I

If the diagonal submatrices Ai, i of A are nonsingular, as is the case when A
is SPD, then Property d is equivalent to the 2-cyclic prop:erty given by
Varga [1962]. The class of matrices with Property d was introduced by

I

Young [1950, 1954J for point partitionings and later generalized to block
• I

t By A;,j #- 0, it is meant that at least one element of the submatrix A;,j is n~nzero,
I



Examples of Matrices Which Have Property d and Are Consistently
Ordered

We first show that any block tridiagonal matrix has Property .xi and is
consistantly ordered. Let

partitionings by Arms, et. ai. [1956J. As we shall see in Section 9.3, the
consistent ordering property is important for the efficient use of the SOR
method. For additional discussion on these properties, see Varga [1962J
and Young [1971J.
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A 1,1 A 1,z

AZ,1 Az,z A Z,3 0
A= (9-2.2)

0 Aq- 1,q

Aq,q-1 Aq,q

where for convenience we assume q is eVen. Frequently, the easiest way to
determine if a particular partitioning results in a matrix which has Property
.xi and is consistently ordered is by construction of the subsets given in
Definitions 9-2.1 and 9-2.2.t With SR = {l, 3, ... , q - I} and SB =

{2, 4, ... ,q}, it is obvious that the tridiagonal matrix A of (9-2.2) has Property
.xi. Moreover, the subsets S1 = {l}, Sz = {2}, ... , Sq = {q} satisfy the
conditions necessary for A also to be consistently ordered.

We now consider a partitioning for which the matrix A has Property .xi
but is not consistently ordered. Let

A 1,1 Al,Z 0 A 1,4

A Z,1 Az,z A Z,3 0
(9-2.3)A=

0 A 3 ,z A 3 ,3 A 3 ,4

A 4 ,1 0 A 4 ,3 A 4 ,4

We show by construction that the matrix A of (9-2.3) has Property .xi.
Let 1 ESR'

First block row: Since 1 E SR'~ 2 and 4 must be in SB' Thus the first
block row requires that SR = {I, ?} and SB = {2, 4, ?}.

Second block row: Since 2 ESB, 1 and 3 must be in SR' Thus we have
SR = {I, 3} and SB = {2, 4}. Since SR u SB = {I, 2, 3, 4}, the SR and SB

t We remark that other procedures exist for determining whether or not a matrix has Property
.<1 and is consistently ordered. Young [197\], for example, gives one such procedure in the form
of an algorithm.

t By the notation 1E SR' we mean that the subset SR contains the number one.
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subsets are complete and all that remains is to verify that the necessary
conditions are satisfied for the remaining two rows.

Third block row: Since 3 E SR, 2 and 4 must be in SB, which they are.
Fourth block row: Since 4 E SB, 1 and 3 must be in SR, which they are.

Thus the matrix A of (9-2.3) has Property d.
We now show by contradiction that the partitioning (9-2.3) is not consis

tently ordered. Assume the subsets S1, .• , ,St satisfy the necessary condition
for A to be consistently ordered. Thus 1 must be in some subset, say Sr'

First block row: Since 1 ES" 2 and 4 must be in Sr+1' Thus we have
Sr = {1, ?}, Sr+1 = {2,4, ?}.

Second block row: Since 2 ESr+ 1,1 must be in S" which it is, and 3 must
be in Sr+2' Thus we must have Sr = {1}, Sr+1 = {2, 4}, and Sr+2 = {3}.

Third block row: Since 3 ESr+ 2,2 must be in Sr+ 1, which it is. However,
4 must be in Sr+ 3, which is a contradiction· that the subsets be disjoint
since 4 is already in Sr+1'

Thus (9-2.3) is not a consistently ordered partitioning. The reader should
convince himself that a consistent ordering can be obtained either by
permuting block rows 1 and 2 and the corresponding block columns 1 and 2
or by permuting block rows 2 and 3 and the corresponding block columns
2 and 3.

We now show that if a matrix A has Property d relative to a particular
partitioning, then by a suitable permutation of the given block rows and
corresponding block columns of A we can obtain a red/black partitioning
of the form (8-1.1), where DR and DB are block diagonal matrices whose
diagonal blocks are a permutation of the diagonal submatrices of the original
partitioning. Let the partitioned matrix A of (9-2.1) have Property d and
let the subsets SR and SB of {1, 2, ... ,q} be given as in Definition 9-2.1. The
desired redjblack form for A can now easily be obtained through the use
of the subsets SR and SB' To do this, simply interchange block rows (and
corresponding block columns) such that if i E SR and TE SB, then block row i
comes before block row l:t For example, consider the block tridiagonal
matrix A of (9-2.2) where SR = {1, 3, ... , q - 1} and SB = {2, 4, ... , q}.
Permuting block rows (and columns) such that block rows of SR come
before those of SB, we obtain the red/black form

(9-2.4)

t In solving the matrix problem Au = b, similar block interchanges must be made on the rows
of band u. Thus in effect, we are changing the ordering for the partitioned unknown vector u to
obtain a red/black partition of the coefficient matrix. See the examples given in Section 1.7.
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where

AI,I A22

0
,

0A 3 ,3 A4 ,4
DR = , DB =

0
Aq-l,q-l

0
Aq,q

and

rA", 0]- rAu
A2 ,3

OJH = A 3 '2. A 3'4. K= A4 ,3 A4 ,5

o '. . 0

Note that DR and DB are block diagonal matrices whose diagonal blocks
are determined by the diagonal submatrices of the original tridiagonal
matrix (9-2.2). Thus the DR and DB matrices will be "easily invertible"
(see Section 1.5) whenever the diagonal blocks Ai, i of the original parti
tioning (9-2.2) are "easily invertible."

A similar permutation of rows (and corresponding columns) based on the
SR and SB subsets for the matrix A of (9-2.3) gives the red/black form (9-2.4),
where, for example,

D = [All 0 ]
R 0 A '

3,3

9.3 THE SOR METHOD

In this section, notation is defined and known properties of the SOR
method are given.

Let the N x N matrix problem (9-1.1) be partitioned into the form

= . , (9-3.1)

Aq,l Aq,2 Aq,q Uq Fq

where the Ui and F i represent column matrices of appropriate sizes. The
diagonal submatrix Ai,i is ni x ni and nonsingular, where nl + n2 + ...
+ nq = N. Relative to the partitioning (9-3.1), theSOR method is defined by

A . .u\n+ 1) = w{- i~lA- .u<.n+ 1) - ~ A- .u(n) + p.} + (1 - w)A . .u\n)
I, I I i..J I, J J L.J I, J J I I, It'

j=l j=i+l

(9-3.2)
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for i = 1, ... , q. In matrix form, the SOR procedure (9-3.2) may be expressed
as

(9-3.3)

where D is the diagonal block matrix of (2-3.11) and CL , Cu are the strictly
lower and upper triangular matrices, respectively, defined by (2-3.11).
The vector urn) is defined by (2-3.16). In (9-3.2) and (9-3.3), the real number W

is called the SOR relaxation parameter. If W = 1, the SOR method reduces
to the Gauss-Seidel method discussed in Section 2.3.

It is easy to show that the SOR error vector s(n+ 1) == U(n+ 1) - u satisfies

s(n+ 1) =.p s(n)w , (9-3.4)

where u is the true solution of (9-1.1) and .Pw is the SOR iteration matrix
given by (2-3.36). From (2-2.4), a necessary and sufficient condition for the
convergence of the SOR method is that S(.Pw) < 1. Kahan [1958J has
shown that S(.Pw) ~ IW - 11, with equality possible only if all eigenvalues
of .Pw have modulus Iw - 11. Thus a necessary condition for the convergence
of the SOR method is that 0 < w < 2. Further, if A is symmetric and if
the block diagonal matrix D is positive definite, then the SOR method
converges if and only if 0 < w < 2 and A is positive definite (see, e.g., Varga
[1962J).

In what follows, an optimum value of w, which we denote by W b, is defined
to be any W which minimizes S(.Pw)' The main difficulty in the use of the
SOR method is the determination of such an W b• When the matrix A is
consistently ordered, Wb is unique and may be expressed as a function of
the spectral radius of the Jacobi iteration matrix associated with (9-3.1). IfA
is not consistently ordered, however, a prescription for selecting W b usually
is not available.

Let B = D- 1(CL + Cu) be the Jacobi iteration matrix associated with
(9-3.1). For the adaptive procedures given in this chapter, it is assumed
that

(1) the partitioning for A is such that A is consistently ordered with
respect to the partitioning imposed, and that

(2) (I - B) is similar to a SPD matrix; i.e., the associated Jacobi method
is symmetrizable (see Definition 2-2.1).

Assumption (2) is sufficient to guarantee the convergence ofthe SOR method,
while assumption (1) is sufficient to ensure the availability of a precise
formula for W b• Note that these assumptions are satisfied if A is a consistently
ordered positive definite matrix.

In what follows, let {,ui}f= 1 be the set of N eigenvalues for the N x N
matrix B and let v(i) be an eigenvector associated with ,ui' Since the Jacobi



- fll < - fl2 ::::;; ... ::::;; - fl. < 0 = ... = 0 < fl. ::::;; ... ::::;; fl2 < fll < 1.
(9-3.5)

are eigenvalues of ftJCJ)' (See, e.g., Young [1971J.) The remaining N - 2s
eigenvalues of ftJ ro are equal to 1 - w. Using (9-3.6), it can be shown (see,
for example, Young [1971J) that

c

(9-3.7)

(9-3.6)

(9-3.8)

if 0 < W ::::;; W b , and

if wb ::::;; W < 2.

A:t ,1:- = [Wflj ± JW2
fl7 - 4(w - I)J2

" I 2 .
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{[

Wfll + JW2 flI - 4(w - I)J2,
S(ftJro) = 2

w-l ,

and that

From (9-3.8), it is easy to show that S(ftJro) > S(ftJrob) for W i= Wb' Thus
there is a unique value of w, namely Wb given by (9-3.7), which minimizes
S(ftJro)' The relationships (9-3.7) and (9-3.8) will be used to determine the
adequacy of an approximation W for Wb' and for obtaining a new estimate
for W b, if needed. From (9-3.7), it is obvious that 1 ::::;; W b < 2. Thus hence
forth, W is assumed to be in the range 1 ::::;; W < 2.

In order to simplify the notation used in subsequent sections, in (9-3.5)
we have assumed that fll > fl2' As shown in Section 6.2, there is no loss of
generality in this assumption.

Let the set of eigenvalues for ftJ ro be given by {A'i}f= 1 and let y(i) be an
eigenvector associated with Aj ; i.e., ftJ roy(i) = Aiy(i). When A is consistently
ordered, there exists a functional relationship between the eigenvalues of B
and those of ftJ roo As in (9-3.5), let the positive eigenvalues of B be denoted
by fl1> fl2,"" fl.· If W i= 0, then for each flj, i = 1, ... , S, the two numbers

216

method is symmetrizable, it follows from Theorem 2-2.1 that the set of
eigenvectors {v(i)}f= 1 may be chosen to be a basis for the associated vector
space EN and that the eigenvalues of B are real and are less than unity.
Moreover, since A is consistently ordered, it follows (Young [1971J) that
the eigenvalues of B occur in ± pairs. Thus, the eigenvalues {fli}f= 1 may be
ordered as
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OTHER A,

( c)

Fig. 9-3.1. Typical eigenvalue maps for the SOR iteration matrix when w S Wbo

(a) 2/(1 + )1 - JlD < W < 2/(1 + )1 - JlD, (b) w = 2/(1 + )1 - JlD, (c) W = Wb =

2/(1 +~).

The relation (9-3.6) also gives information concerning the distribution of
eigenvalues of 2 w. After perhaps a small amount of algebraic manipulation,
we conclude from (9-3.6) and (9-3.7) the following information:

(a) For 1 < co < 2, 2 w has a repeated eigenvalue equal to (co - 1) if

and only if co = 2/(1 + Jl - Ji1) for some i. We note that co = 2/
(l + Jl - Ji1) implies that co 2 Jil - 4(co - 1) = O.
(b) If co ~ COb' all eigenvalues of 2 w lie on a circle of radius (co - 1).
If co> COb, no eigenvalues of 2 ware real except when some Jii = 0 and then
Ai = -(co - 1) is a real eigenvalue of 2 w. If co = COb' then ,.1.7 = ,.1.1 =
COb - 1 is a repeated real eigenvalue of 2 Wb (see Fig. 9-3.1c).
(c) If 1 < co < COb' the eigenvalues of 2 w lie on a circle of radius co - 1
and on the real line segment [,.1.1, ,.1.7]. The number of positive eigenvalues
of 2 w greater than (co - 1) equals the number of positive eigenvalues
of 2 w less than co - 1. Moreover, from (a) given above, 2 w has a repeated
eigenvalue equalto (co - 1) if and only if co = 2/(1 + Jl - Jil) for some i
(see Figs. 9-3.la and 9-3.1b).



t For a discussion on principal vectors, see Section 1.3.

For the SOR adaptive procedure, we also will need information concerning
eigenvectors of .2",. Primarily, we will want to form a basis for the N
dimensional vector space EN in terms of the eigenvectors of .2", and supple
mented by principal vectorst if needed. Fortunately, for the consistently
ordered case, a relationship between the eigenvectors of .2", and those of B
exists, and this can be used to determine those eigenvectors of .2'" which
are linearly independent.

From (9-3.5), the Jacobi matrix B has s positive eigenvalues, s negative
eigenvalues, and N - 2s zero eigenvalues. Let v(i), i = 1, 2, ... ,s be the s
linearly independent eigenvectors of B corresponding to the s positive
eigenvalues of B and let v(i), i = 2s + 1, ... , N be the N - 2s linearly
independent eigenvectors corresponding to the N - 2s zero eigenvalues
of B. The following theorem relates the eigenvectors of .2'" to those of B.

Theorem 9-3.1 Let the matrix A of (9-3.1) be consistently ordered and let
w > 1. For each f.li' i = 1, ... ,s, (A,t, An of (9-3.6) are two eigenvalues
of.2", and

(a) if f.lfW2 - 4(w - 1) =1= 0, the eigenvectors of .2", corresponding
to (At, An may be expressed by y+(i) = E([AtJ 1/2)V(i) and y-(i) =
E([A;-r/2)v(i), where E(x) is a diagonal matrix whose diagonal elements
are certain powers of x.

(b) if f.lfW2 - 4(w - 1) = 0, y+(i) = E([AtJl/2)1{(i) is an eigenvector
of .2", corresponding to At = Ai and p(i) = (2/[AtJl/2)F([AtJl/2)V(i) is
the associated principal vector of grade 2 associatedt with the repeated
eigenvalue At = A;-. If E/x) is the jth diagonal element of E(x), then F
is a diagonal matrix whose jth element is dE/x)/dx.

The remaining N - 2s eigenvalues of .2", are equal to (1 - w) with the
associated eigenvectors y(i) = E([1 - wJ1/2)V(i), i = 2s + 1, ... , N. Further,
the N vectors y+(i), y-(i), p(i), y(i) defined above are linearly independent
and, hence, form a basis for the associated vector space EN.

Proof For a proof of this theorem, see Young [1950J or Ref. 13 in
Hageman and Kellogg [1968].

Thus if f.lfW2 - 4(w - 1) =1= °for all i (as is the case for the example
given in Fig. 9-3.1a), the eigenvectors of .2", include a basis for the N-dimen
sional vector space. However, if [f.lfW2 - 4(w - 1)J = °for some i (as is
the case for the examples given in Figs. 9-3.1b and 9-3.1c), then the eigen
vectors of .2'" must be supplemented by the associated principal vectors
in order to form a basis. If f.lfW2 - 4(w - 1) = 0, then the eigenvector
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y+ (i) of 2 w with eigenvalue A.t and the associated principal vector p(i)
satisfy (see Section 1.3)

(9-3.9)

The diagonal matrix E(x) used to obtain eigenvectors of 2 w from those
of B is a function ofthe so-called "ordering vector" (see Young [1971J) which
exists for any consistent ordering. Since the explicit form of E(x) will be used
only for problems with a red/black partitioning, no general discussion of .
E(x) will be given. The matrix E(x) may easily be defined for the redjblack
or general tridiagonal partitioning cases. If the matrix A of (9-3.1) is the
block tridiagonal matrix of (9-2.2), then E(x) may be given by

11 0
E(x) =

xlz (9-3.10)
0

q- 11x q

(9-3.11)

A 1,Z],
A z, z

E(x) = [101 0 ]xlz .

9.4 EIGENVECTOR CONVERGENCE OF THE SOR
DIFFERENCE VECTOR

where I j is the identity matrix of the same order as Aj,j' If A is partitioned
in the special redjblack form

A=[Al,l
A Z,l

then (9-3.10) reduces to

Let the difference vector for the SOR method of (9-3.4) be defined byt

~(n) == u(n) _ u(n+ 1) = - [2wu(n) + k - u(n)J

and let the error vector be defined, as before, by

(9-4.1)

s(n) == u(n) - ii. (9-4.2)

t The vector 6,(n) defined by (9-4.1) is the negative of the more conventional definition of
"difference" vector. Since we will be concerned only with the norm of tl.1h), the sign is immaterial.
We also note that the difference vector (9-4.1) is identical, except for sign, to the pseudoresidual
vector "In) associated with the SOR method.



It is easy to show that the error and difference vectors for the SOR method
satisfy

We assume throughout this section that the eigenvalues of the associated
Jacobi matrix B are given by (9-3.5) and that 1 < co < COb' Thus without
loss of generality, the eigenvalues of 2 ro may be ordered (see Figs. 9-3.1a
and 9-3.1b) as

0< AN S ... < IApl = ... = IAg + 1 1SAg S'" S A2 < Al < 1, (9-4.4)

where, for i = g + 1, ... , p, Ai satisfies 1Ad = co - 1 but Ai =1= co ~ 1. As
before, we let y(i) denote an eigenvector of 2 ro associated with Ai' We now
consider the two cases: (1) Ag > 1Ag+ Ii = co - 1 and (2) Ag = I Ag + Ii = co - 1.
For the first case, the set of eigenvectors for 2 ro includes a basis for the
associated vector space. The first case is illustrated by the eigenvalue dis
tribution given in Fig. 9-3.1a. For the second case, the set of eigenvectors
of 2 ro must be supplemented by a principal vector to form a basis. The
second case is illustrated by the eigenvalue distribution given in Fig. 9-3.1 b.

(9-4.3)

6(") = ('0 6("-1) = 2" 6(0)
oZro (I)'

~(") = 2 ~("-1) = 2" ~(O) and
ro ro'
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Case 1: Ag > IAg + 1 1= co --'- 1

Since no eigenvalue of 2 ro equals (co - 1) for this case, we have that
p}co2

- 4(co - 1) =1= 0 for all i. Hence from Theorem 9-3.1, the set of eigen
vectors {yO)} for 2 ro includes a basis for EN. Thus we can write 6(0) in the
formt

N

6(0) = cly(l) + LCiYO)·
i=2 (9-4.5)

Multiplying (9-4.5) by (I - 2 ro) and using (9-4.3), we can express ~(O) in
the related form

N

~(O) = d1y(l) + L diy(i),
i=2

(9-4.6)

t We assume throughout this section that Cl # O. There is no real loss of generality in this
assumption. However, if c, = Cz = ... = Ck = 0 and Ck+' # 0, then the assumption that
W < W h in the theorems which follow should be interpreted as meaning W < Wh' where Wh =

2/(1 + JI - {tt+,)·
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(9-4.7)

where di = (1 - Ai)ci' As in Chapter 6, the contamination factor K asso
ciated with the initial difference vector is defined by

K = [t21IdiY(i)II",J/lld1Y(l)II""

where the norm ljJ is determined by the context in which K is used. Recall
that the contamination factor K gives a measure of how closely ~(O) approx
imates the eigenvector y(l) with eigenvalue ..1.1' If K = 0, then ~(O) (and
also 8(0» is an eigenvector of .:t'w'

Wenowhave

Theorem 9-4.1. If 1 < W < W b and if [flfw2
- 4(w - l)J f= 0 for all i,

then for sufficiently large n and for any vector norm, we have that

(9-4.8)

(9-4.9)

In addition,

(9-4.10)

where

\:,
;I
("1

1

.".,

(9-4.11)

Proof See Section 9.10.

Case 2: ..1.9 = 1..1.9 + 1 1 = W - 1

We now consider the case where the set of eigenvectors for .:t'w does
not include a basis. From Theorem 9-3.1, this occurs when W is such that
W - 1 = iflfw2 for some i. When this condition happens, w - 1 is a repeated
eigenvalue of .:t'w; Le., ..1.9 = ..1.9- 1 = W - 1 in (9-4.4). Moreover, a principal
vector is associated with the repeated eigenvalue w - 1 of .:t'roo Since we are
assuming w < W b in this section, W - 1 = ifl~ w2 is the largestt eigenvalue
of .:t'w for which a principal vector can be associated. For reasons which
will become obvious later, this is the worst case for our purposes. For this

t If OJ is such that w - 1 = *1l~OJ2, then OJ = Wh, which violates the assumption that W < Wh'



Multiplying (9-4.12) by I - It'ro and using (9-4.3) together with the fact
that It'rop(2) = A.2P(2) + y(3), we can express ~(O) in the related form

where d; = (1 - A.;)c;.
For this case, we define the contamination factor to be

. K' = [11c2Y(3)II", + Ild2 p(2)11", + it3 lid; y(i) II ",JIIld1y(l)II", .. (9-4.14)

We now have

Theorem 9-4.2. If 1 < w < W b and if ,u~ w2
- 4(w - 1) = 0, then for n

sufficiently large and for any vector norm, we have that

(9-4.16)

(9-4.15)

(9-4.12)

(9-4.13)

r '
l--.i

, - ,
L--...

N

e(O) = Cly(l) + c2P(2) + c3y(3) + I c;y(i).
;=4

N

~(O) = d1y(l) + d2P(2) - c2y(3) + I diy(i),
;=3

9 THE SUCCESSIVE OVERRELAXATION METHOD222

"worst" case (Le., w - 1 = i,u~(2), it follows from Fig. 9-3.1b that the
ordering (9-4.4) for the eigenvalues of It'ro can be written ast

0< A.N < IA.N-Ii = ... = 1,141 = ,13 = ,12 < ,11 < 1,

where ,12 = w - 1 and where A.i # w - 1 for i 2:: 4. Since [,ulw2 
4(w - 1)] # °for i = 1 and for i 2:: 4, it follows from Theorem 9-3.1 that a
basis for EN can be given by the set of vectors {y(I), p(2), y(3), ... , y(N)},
where y(i) denotes an eigenvector of It'ro associated with the eigenvalue
A.i and where p(2) is a principal vector of It'ro associated with the repeated
eigenvalue ,12 = ,13' In terms of this basis. we can express e(O) in the form

Moreover,

(9-4.17)

t Here, we implicitly assume that 113 # 112 in (9-3.5). For reasons similar to those given in
Section 6.2, there is no loss of generality in this assumption.
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(9-4.18)fJn = (A2)nK , + n(A2)n-1(~)lld2y(3)II.
Al Al Al Ild1y(1)11

Proof See Section 9.10.

If 1 < W < Wb' then 1(,12/,11)1 < 1 and limn.... oo nl(A2IA1)ln-1 = O. Thus
for both Case 1 and Case 2 conditions, we deduce from Theorems 9-4.1
and 9-4.2 that for any vector norm

(9-4.19)
n.... oo

(9-4.20)
n .... 00

The relationships (9-4.19) and (9-4.20) serve as a basis for the parameter
estimation and stopping procedures developed in the next section.

The behavior of the sequences {an} and {fJn} gives a good indication of
the rates at which the ratios Ile(n)II/II~(n)11 and 11~(n)II/II~(n-1)11 converge to
1/(1 - AI) and AI' respectively. If 1 < W < Wb' both sequences {an} and
{fJn} converge to zero at a rate governed by 1,12/,11 In for Case 1 conditions,
but at a slower rate governed by n[IA2IA 1IJn-1 for Case 2 conditions. As
the estimate W approaches Wb -, 1,12/,111 approaches 1 -. Thus the ratios
of (9-4.19) and (9-4.20) will converge slowly to Al and 1/(1 - AI) whenever W

closely approximates Wb' Even for this case, however, the use of 1I1l(n)111
IWn- 1)1I and IWn)ll/(l - AI) as approximations to Al and Ile(n)ll, respectively,
are reasonable whenever the contamination factor K or K' is small.

9.5 SOR ADAPTIVE PARAMETER AND
STOPPING PROCEDURES

To clearly indicate the dependence on the W used, notation similar to
that given previously for successive Chebyshev polynomial generation will
be used. We let

it

J
1...]1.1

\

n
q

p=n-q

denote the SOR iteration matrix currently being used,
where the subscript s on W implies this is the sth estimate
for w.

denote the current iteration step.
denote the last iteration on which the estimate W 5 - 1 was

used. For the initial estimate where s = 1, we let q = O.
denote the number of iterations since W was last changed.t

t For example, if w" was first used to compute u(n), then q = n - 1. The value of p corre
sponding to iteration n is then p = 1.



As in Section 9.4, we can obtain from (9-5.3) the related expansion for
~(S,O):

From the above definitions and from (9-4.3), we have e(n) = e(p+q) =
Sf~" e(q). To clearly indicate the relationship between n, P, and w., we express
e(n) = e(p+q) as e(s,p). Thus we have

Using the subscript s or superscript (s) to indicate a dependence on w.,
we let {,1,IS)}f= 1 denote the set of eigenvalues for Sfco" and let Ys(i) denote an
eigenvector of SfCOs corresponding to the eigenvalue ,1,~"). We assume that the
eigenvalues ,1,~S) are ordered as in (9-4.4).

With the basic assumption that W s < Wb' the adaptive w estimation
procedure given in this section is designed to handle the worst circumstance
for the Case 2 condition discussed in Section 9.4. Recall that, for our pur
poses, the worst Case 2 condition is when (ws - 1) = ¥f.l~w;) and that
for this occurrence, the matrix Sfco" has a principal vector of grade two
associated with the repeated eigenvalue ,1,~) = ,1,~). We denote this principal
vector by p.(2). From the discussion given in Section 9.4, a basis for EN
can be given by the set of vectors {y.(1), Ps(2), Ys(3), ... , y.(N)}. In terms of
this set, we may express the vector e(S,O) in the expanded form

i.

(9-5.3)

(9-5.2)

(9-5.1)

I
'-----'

N

e(s,O) = c~)Ys(1) + c~)p.(2) + Lc!S)y.(i).
i=3
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e(n) == e(s, p) = [(SfcoYJe(S, 0) = [(SfcoJPJe(q).

Similarly, we write ~(n) = ~(p+q) as ~(s,p). Thus ~(s,O) = ~(q) and

~(n) == ~(s,p) = [(SfcoYJ~(S,O) = [(SfcoYJ~(q).

N

~(S, 0) = d~)Ys(1) + d~)Ps(2) - c~)y.(3) + LdIS)Ys(i),
'i=3

(9-5.4)

(9-5.5)

where dIS) = (1 - ,1,~S»)clS).

From (9-4.14), the contamination factor associated with ~(s, 0) is

K' = Ilc~)y.(3)11", + Ild~)Ps(2)11", + 2::f=3 IIdlS)Ys(i)II",
S Ild~)y.(1)11", .

Numerical results indicate that the contamination factors K~ generally
decrease with s when the corresponding p(S) is sufficiently large. However,
since the set of eigenvectors for Sfco.• vary with s, it is difficult to prove that
this always must be true. This fact coupled with the additional complications
that the set of eigenvectors for Sfco" need not include a basis and that some
eigenvalues of Sf co., are complex make any adaptive procedure for the SOR
method more difficult than that given previously for the Chebyshev pro
cedures.
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Equation (9-3.8) and the results of Theorem 9-4.2 serve as a basis for the
SOR adaptive procedure to be given. Three important ingredients of the
adaptive procedure are (a) the test to determine if a new approximation W

for W b is needed, (b) the method used to obtain a new estimate for w, and
(c) the criteria used to determine when the iteration error is sufficiently
small. However, because of the complications given above, the procedures
we will use for (a)-(c) are not valid for all iterations. Thus additional tests
are needed to indicate those iterations for which the procedures used for
(a)-(c) are likely to be valid. The tests we use for this purpose, which we call
strategy sufficient conditions, are discussed below. We remark that the
adaptive procedure given here differs from those given by Carre [1961J
and Kulsrud [1961J primarily because of the strategy sufficient conditions
imposed. Numerical results (e.g., see Ref. 7 in Hageman and Porsching
[1975J) clearly indicate that some tests of this nature are needed.

Parameter Change Test

The largest possible (or optimum) convergence rate for the SOR method
is that obtained when W = W b and is -log S(£'",,) = -log(wb - 1). The
asymptotic convergence rate using W s is -log S(£'",.J The estimate W s is
assumed to be satisfactory if the convergence rate using W s is greater than
F times the optimum rate, where F < 1. Thus W s is satisfactory if

or equivalently if

-logS(£'",J ~ F[ -log(wb - I)J (9-5.6)

(9-5.8)

S(£'",J s (wb - It· (9-5.7)

If W s < Wb' then the inequality S(£'",J s (ws - It implies that (9-5.7)
and (9-5.6) are also satisfied. Also, ifws < W b and if p is sufficiently large,
then from (9-4.19) we have approximately that

II L\(S,p) II .
11L\(S,P-l)11 =;: Al = S(£'",J.

Thus letting

II L\(S,P) II
lZ(S,p) - z

= IWs,p-l)llz' (9-5.9)

we take OJs to be a satisfactory estimate for W b if

lZ(s, p) s (ws - It (9-5.1 0)

'0\s before, we refer to F as the damping factor. Typically, F is chosen to lie in
the interval [0.65,0.8].



If W s S Wb' then from (9-3.8), /l1 satisfies

S(..<l'ro.) = H[ws/l 1 + Jw2/li - 4(ws - 1)J}2. (9-5.11)

Using (9-5.8) to approximate S(..<l'ro), we take as the new estimate /l'1 for
/l1' the largest real x which satisfies the SOR equation

H[wsx + Jw;x2 - 4(ws - 1)JV = R(s,p). (9-5.12)

Given /l'to the new estimate w' for Wb is then obtained by

W' = 2/[1 + J1 - (/l'1)2J.

Note that the solution /l~ to (9-5.12) is simply

/l'1 = [R(S,P) + W s - 1J/ws[R(S,p)r/2. (9-5.14)

(9-5.13)

Obtaining a New Estimate for Wb
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Iteration Stopping Test

If W s < Wb and if p is sufficiently large, then from (9-4.20) we have approx
imately that

(9-5.15)
1 .

Ile(S,P)ll p ~ 1 _ Alll~(S'P)llp,

where II· lip is any vector norm. If ii is the solution to (9-1.1), then using
(9-5.8) to approximate A1 and using Ilu(n+ 1)11~ to approximate Iliill~, we
obt~in the approximation

Ile(S, p) II p -'- 1 II~(s, p) II p
Ilull~ ~ 1 - R(s.p) Ilu(n+ 1)11,,'

Thus for the iteration termination test, we uset

(9-5.16)

(9-5.17)
1 IWS,P)llp

1 - H Ilu(n+ 1)11~ s (,

where ( is stopping criterion number and where

H == max[ws - 1, R(S,P)J. (9-5.18)

If R(S,p) z 1, no test for convergence is made.
The quantity H instead of R(s,p) is used in (9-5.17) as a precautionary

step in case W s Z W h • IfW s Z W h , we show in the next section that the quantity

tFor a discussion concerning the fJ- and I)-norms, see the comments given following Eq.
(5-4.32).
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R(s,pl normally will oscillate about (cos - 1). Thus on some iterations,
(1 - R(S,Pl) may be considerably larger than [1 - S(.P",JJ. The use of H
instead of R(s,pl prevents any exceptionally large value of (1 - R(S,Pl) from
being used in the stopping test.

Strategy Sufficient Conditions

The approximations used in the above tests and the approximations
used in the equations for computing the new estimate co' are reasonable
provided COs < COb and provided p is sufficiently large. One of the more
difficult problems associated with the SOR adaptive procedure is to deter
mine conditions which ensure that p is sufficiently large. For the discussion
which follows, we continue to assume that COs satisfies the Case 2 condition
of COs - 1 = tldco; = A2·

We first examine the behavior of R(s,p) = 11~(S'P)112/11~(S,p-llI12 in more
detail. With ~(S, 0) given by (9-5.4), we show later in Section 9.10 that ~(S,P)

can be expressed (see Eq. (9-10.10) in the form

~(S,Pl = AidYlYs(1) + p(A2)P-ld~)Ys(2)

N

+ A~[d~)psC2) - c~)ysC3)J + I AfysCi)·
i=3

(9-5.19)

Because of the PA~-l term, 11~(S,P)112 may be an increasing function of p
initially. Thus the ratio R(s,p) may be greater than unity for small p. For
A2 (= COs - 1) close to unity, a typical graph of R(s,p) versus p is given in
Fig. 9-5.1. The first iteration, P, for which R(s, p) is less than unity can be as
large as (cos - 1)/(2 - cos), This is the value of p which maximizes p(cos - l)P-l.

'----,,'----------~'-----p
P

Fig. 9-5.1. Typical behavior for RI,.pl.



To compensate for this possible behavior, we will require that p and R(s,p)
satisfy certain conditions before permitting a new estimate for W b to be
calculated. The conditions we impose are that

(1) p must be greater than p*, where p* is the smallest integer greater
than 5 which satisfies

Here PSP and RSP are strategy parameters. Numerical results indicate
that the values PSP = 0.5 and RSP = 0.0001 .are appropriate.t Condition
(1) is imposed so that R(s, p) is well into its decreasing tail (see Fig. 9-5.1).
Condition (2) may be considered as a type of convergence test on R(s,p).
It prevents a new W estimate from being computed while R(s, p) is still changing
significantly. Most often, it is the test (9-5.21) which dictates when a new OJ

is to be computed. The significance of the test (9-5.21) is discussed in more
detail in Section 9.10.

In an attempt to ensure that W s < Wb, upper bounds are imposed on the
W S ' If the strategy parameters 'Os satisfy

p*(WS - 1)P' -1 :$ PSP,

L

(9-5.21)

(9-5.20)
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and that
(2) R(S, p) must satisfy

(-lO)RSP :$ (R(s,P-l) - R(S,P») :$ RSP.

228

'0 1 = 1.6,
'0 5 = 1.975,

'0 2 = 1.8,
'0 6 = 1.985,

'03 = 1.90,
'0 7 = 1.990,

'04 = 1.95,
'08 = 1.995,

and
'Os = 1.995 for s 2 8, (9-5.22)

then W s is required to satisfy W s :$ 'Os'

9.6 AN OVERALL COMPUTATIONAL ALGORITHM

In this section we describe a computational procedure for the SOR method
based on the above discussion. The overall algorithm is given below as an
informal program. We assume that the matrix problem to be solved is
partitioned in the form (9-3.1) and that the coefficient matrix A is consis
tently ordered relative to the partitioning imposed (see Section 9.2). To
ensure convergence of the SOR process, it is also assumed that A is SPD or

t Alternative suggested values to use for RSP are given in (9-10.24).
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that the Jacobi method associated with the matrix problem (9-3.1) is sym
metrizabl~ (see Definition 2-2.1).

The following input is required.

, the stopping criterion number' used in (9-5.17).
W the initial estimate for W b . For Algorithm 9-6.1, W must satisfy

1.0 ~ W < 2.0, If Wb is not known, it is usually best to let
W = 1.0 or some value close to 1.0.

P the damping factor used in the parameter change test (9-5.10).
. Typically, P should satisfy 0.65 ~ F ~ 0.8.

PSP, RSP strategy parameters used for the tests (9-5.20) and (9-5.21).
VSuggested values are PSP = 0.5 and RSP = 0.0001.

.\!r the initial guess vector.

The control variables and counters used are

11 counter for the current iteration step.
p counter for the number of iterations using the current value of w.
s counter for the number of times W is changed.

's upper bound for the sth estimate W s for W b • Suggested values for
's are given in (9-5.22).

p* required number of iterations using the current value of W before
the parameter change test is made. p* is given by (9-5.20).

P required number of iterations using the current value of W before
any convergence testing is done. p is given by (9-6.2) and is
discussed later.

S counter used to determine if possibly W s ;::: W b .

The underline, .\!, is used to indicate more clearly which variables are
vectors. At the beginning of iteration 11, .\!r is the vector iterate u(n-l). At
the end of iteration 11, !!r is the vector iterate u(n). The ith block of unknowns
in the partitioned vector !!r is denoted by (!!r)i' iTote that the ith block of
unknowns, (!!r)i, in!!r is updated as soon as the improved values are available.
Since the subvectors .\!T and (~)i are used only to obtain (.\!r)i, only 2ii
words of temporary storage is required for the .\!T and (~)i subvectors. Here,
n = max 1 $i$q 11;, where l1i is the order of the (.\!r)i block of unknowns.

For a discussion on the solution of the subsystem Ai. i(!!T)i = y;, where
Yi is known, see Sections 2.3 and 5.6. -
- If the input value for W equals 1.0, an initial estimate for w is obtained
by doing four Gauss-Seidelt iterations initially. It can be shown that
limn_co[lld(n)112/1Id(n-l)112] = f.1f for the Gauss-Seidel process. Thus at the

t Recall that the SOR method reduces to the Gauss-Seidel method when ()) = 1.0.



completion of the Gauss-Seidel iterations we obtain an estimate for Wb

using the formula

Algorithm 9-6.1. An adaptive procedure for the SOR method.

Input: «(.J 05, P, PSP, RSP, Yr)- ~,

r 1
L...--..J

(9-6.1)

I
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L-..J
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Initialize:

n:= 0; p:= -1; w':= w; s:= 0; R:= 1.0; DELNP:= 1.0.

Next Iteration:

n:=n + 1;p:=p + 1;DELNO:=DELNP;
If p = 0, then <Initialize for use of new w estimate>

Begin
S := 0; S := S + 1; P:= 3; p* := 6; w := w';
Ifw' > "Cs then w:= "Cs ; else continue;
If(w - 1)/(2 - w) > pthen p:= (w - 1)/(2 - w); else continue;
Ifp*(w - 1y*-1 > PSP then p*:= p* + 1and repeatIf(this line);
. else continue;
If w = 1.0 then

Begin
p:= 2; p* := 3; s := S - 1;
End
else continue;

End
else continue;

J Calculate New Iterate:

Do (1), (2), and (3) for i = 1,2, ... , q

\ r

i-I q

(1) Solve for UT where A- .U~T = - '\' A· ,(ur)' - '\' A· .(ur)· + F·
- , 1,1_ "-' I,) - J f...J I,) - J -I

-' j=1 j=i+l
(-1> '"). <Vi

(2) "(~)i :=W[(Yr)i - l,h]

(3)S'11 (Yr)i := (Yr)i - (~);
End of D(P SI<t j I'

,).. -

Remark: While doing the above Do Loop, also compute

DELNP:= 1I~112; DELNE:= 11~llp; and YUN:= IIYrll~.
f,
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Stopping Test:

RO:= R; R:= DELNP/DELNO; H:= R;
If p < p then Go to Next Iteration; else continue; ~

If R ~ 1.0 then Go to Next Iteration; else continue;
If R :::; w ~ 1, then

Begin
H := w - 1; S := S + 1;
End
else continue;

IfDELNEjYUN :::; (I - H), then print final output and STOP (converged);
else continue;

Parameter Change Test:

Ifp < p* then Go to Next Iteration; else continue;
IfS > 0 then Go to Next Iteration; else continue;
Ifw = 1, then

Begin
w':= 2/[1 + J1 - R];
p:= -1
Go to Next Iteration
End
else continue;

If R < (w - It fhen Go to Next Iteration; else continue;
DELR := (RO - R)
If( -10.0) * (RSP) :::; DELR :::; RSP then continue;

else
Begin
If s > 2 then Go to Next Iteration;

else continue;
If R < (w - 1)0.1 then Go to

Next Iteration;
else continue;

End
,u':= [R + w -J]/[wJR] ;w' := 2/[1 + J1 - (,u')2];p:= -1;
Go to Next Iteration.

When a new estimate for w is used, no convergence testing is done until
piterations have been done, and no parameter change testing is done until p*
iterations are done. As discussed previously, p* is the smallest integer
greater than 5 which satisfies (9-5.20). The value used for p is

p = max[3, (ws - 1)/(2 - w s)]. (9-6.2)



L
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The parameter p is used primarily to avoid any use of R(s,p) for small p when
its behavior is sometimes erratic. Note that the value (ws - 1)/(2 - ws) for p
approximates the point p in Fig. 9-5.1, where R(s, p) first becomes less than
unity.

The adaptive parameter estimation procedures developed in Section 9.5
are based on the assumption that each estimate W s is less than Wb' However,
it may happen that some estimate W s turns out to be greater than Wb' We
show below that whenever W s > Wb' then the ratio R(s,p) defined by (9~5.9)

is likely to exhibit an oscillatory behavior about the value W s - 1. The
counter S is used in the algorithm to detect this occurrence. When a new
estimate W s is first used, the counter S is set to zero. Then, in the Stopping Test
portion of the algorithm, the counter S is incremented by one whenever,
for p ~ p, R(s,p) is less than W

s
- 1.

If OJs > OJb' all eigenvalues Aj of 2 OJs lie on a circle of radius OJs - 1 and
can be expressed as Aj = (OJs - 1)ei8j • Note that ej =I- 0 for all j since no
eigenvalue of 2 w can equal (OJs - 1) when OJs > OJb• For this case, from
Eqs. (9-10.2) and (9-10.3) given in Section 9.10, e(s,p) andi1(s,p) may be expressed
as

and

(9-6.4)

From (9-6.4), it is obvious that the ratio R(s,P) will show oscillations about
OJs - 1. For any such oscillations, the S counter in the adaptive procedure
will be nonzero for sufficiently large p. Thus S =I- 0 is used as a signal that
OJs is probably greater than OJb• When this occurs, no new estimation of OJ is
permitted; i.e., OJs is used until convergence is achieved. Moreover, we
continue to use (9-5.17) for the iteration stopping test. Even though the
assumptions used in the development of(9-5.17) are not valid when OJs ~ OJb'

the numerical results given in Section 9.8 indicate that this stopping test is
reasonably accurate even when OJs ~ OJb•

In Appendix C, we give a Fortran listing of a subroutine, called SOR,
which impleinepts Algorithm 9-6.1 with the exception of the Calculate New
Iterate portiomtrhe SOR subroutine is designed for use as a software package
to provide the required acceleration parameters and to provide an estimate
of the iteration error for the SOR method.

Remark 1. Printing the ratio R(s,p) = 11i1(S,P)112/11i1(S,P-l)112 can be useful
in appraising the effectiveness of the adaptive procedure. For example,
if R(s,P) is a converging sequence, the implication is that OJs < OJb' If R(s,p)

oscillates about OJs - 1, the implication is that W s > OJb•
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Another useful quantity to print is

c(S,p) = [-log R(S,P)J/[ -log(ws - l)J,

I

~
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(9-6.5)

which, for p sufficiently large, is the approximation for the ratio of actual
to optimum convergence rates for iteration n. From (9-5.6)-(9-5.10), (J)

will be changed only if C(s, p) < F.

Remark 2. Since W b may be known for some problems, an option should
be added to the procedure of Algorithm 9-6.1 to permit the input w to be
used for all iterations. This can be done easily by avoiding the test on "1
and setting p* to a large number.

Remark 3. Reid [1966J suggested that the Rayleigh quotient with respect
to the Jacobi iteration matrix B be used to approximate Ill' Using the notation
of Eq. (9-3.3), the Rayleigh quotient (see Section 1.3) with respect to B
satisfies

(v, (CL + Cu)v)/(v, Dv) Sill (9-6.6)

with equality if v = v(1), the eigenvector of B associated with Ill' Reid [1966J
suggested that the relationship (see Theorem 9-3.1) between the eigenvectors
of 2 ro and those of B be used to get an estimate for v(l) and then use this
estimate in (9-6.6) to obtain a lower bound for Ill' If W s < W b and if p is
sufficiently large, l1(s,p) may be taken as an estimate for y.(l). Thus from
Theorem 9-3.1,

(9-6.7)

is then an estimate for v(1). In (9-6.7), Ai is approximated by R(s,P). However,
numerical results using the Rayleigh quotient (9-6.6) have been somewhat
disappointing for the general consistent ordering case. (For example, see
Hageman and Porsching [1975, Ref. 7].) The reason for this is believed
due to the fact that the matrix £-1(fi"f) and, hence, the approximation
v(S,P) depend strongly on the estimate for Ai for the general consistent
ordering case. However, for problems with red/black partitionings, the use
of a Rayleigh quotient approximation is often very effective. We discuss
this application in the next section.

The use of the Rayleigh quotient (9-6.6) requires some additional calcula- .
tions and, possibly, some additional storage. Its main advantage is that the
resulting W estimate is guaranteed to be less than W b .
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9.7 THE SOR METHOD FOR PROBLEMS WITH
RED/BLACK PARTITIONINGS

DRuW+ 1)= w[ -Hu~) + bR] + (1 - w)DRuWl

DBU~+l)= w[-HT uW+ 1) + bB] + (l - W)DBU~).

We assume that the difference and error vectors are partitioned in a red/black
form consistent with (9-7.2). The notation of Section 9.5 is used to indicate
successive w estimates; i.e., Ll(n) is expressed by Ll(n) == Ll(s,p).

Let B, !l'1' and !l'"'s denote, respectively, the Jacobi, Gauss-Seidel, and
SOR iteration matrices associated with the partitioning (9-7.1). If W s < wb,

each of these iteration matrices has a positive eigenvalue which is equal to
its spectral radius. Letting v(l), z(l), and y(l) denote eigenvectors of B,
!l'1' and !l''" , respectively, corresponding to the eigenvalues S(B), S(!l'l)

s

and S(!l'",), we may write the respective eigenequations for B, !l'1' and
!l'"'s in the forms

t Because of larger average convergence rates, the RS-SI and CCSI methods of Chapter 8
are slightly more efficient than the SOR method for red/black partitioned problems. Thus if
possible, the RS-SI or CCSI method, rather than the SOR method, should be used for the
special matrix problem (9-7.1).

We assume that the coefficient matrix in (9-7.1) is SPD. The adaptive para
meter procedure used in this special algorithm utilizes a Rayleigh quotient.
Because of this, any w estimate obtained is guaranteed to be less than Wb'

We show that the Rayleigh quotient is effective for the problem (9-7.1)
primarily because of the simple relationships which exist between the
eigenvectors of the SOR, the Gauss-Seidel, and the Jacobi iteration ma
trices.t

The SOR method associated with (9-7.1) can be written as

234

In this section, we describe a special SOR algorithm to solve matrix
problems which are partitioned in the red/black form
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Using the partitioned forms (8-1.5) and (9-7.6) for Band Y 1, respectively,
we have by direct calculation that zR(l) and zB(1) can be given by zR(l) =
vR(l) and zB(l) = [S(Y1)]1/2vB(1). Moreover, from Theorem 9-3.1, the
eigenvector y(l) of Y W

s
and the eigenvector v(l) of B satisfy y(l) =

E([S(YwJ]1 /2)V(1), where E(x) is given by (9-3.11) for the red/black parti
tioned problem. Thus the eigenvectors v(l), z(l), and y(l) of B, Y 10 and
Y W

s
' respectively, can be chosen to satisfy

or equivalently, since eigenvectors may be multiplied by an arbitrary non
zero constant, the eigenvectors of B, Y 1, and Y w can be chosen to satisfy

s

(9-7.4)

Thus the black subvector part for both the v(l) and z(1) eigenvectors has
the same shape as YB( 1).

If W s < W b , we show later in Section 9.10 (see Lemmas 9-10.1 and 9-10.2)
that limp -+ oo {L~(s.P)/[S(Y wJ]P} = y(l), where y(1) is an eigenvector of Y W

s

corresponding to the eigenvalue S(YwJ Thus for sufficiently large p, we
have approximately that

(9-7.5)

We now use the fact that .1~.P) approximates ZB(1) to define a Rayleigh
quotient which bounds S(Y1)'

The Gauss-Seidel iteration matrix associated with the partitioning
(9-7.1) is

(9-7.6)

Thus the nonzero eigenvalues of Y 1 are the same as those for DB 1HTDi 1H.
Moreover, from (9-7.3), (DB 1HTDi 1H)ZB(1) = S(Yl)ZB(1). The matrix
DB 1HTDi 1H is similar to the symmetric matrix DB 1/2HTDi 1HDB1/2• With
respect to this symmetric matrix, the Rayleigh quotient (see (1-3.5» for any
nonzero vector w satisfies

(w (D-1/2HTD-IHD-1/2)W)
'B R B < S(Y )

(w, w) - 1
(9-7.7)
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or equivalentlyt

(Ii(S,P) (HTD-1H)Ii(S,P»)
B' R B < S(ff )

(Ii (5, p) D Ii(5, P») - 1 ,B , B B
(9-7.8)

with equality if Ii~'p) = ZB(l). Thus if 1i~'P) closely approximates ZB(l), the
Rayleigh quotient (9-7.8) will give an accurate estimate for S(ff1) = S2(B).
Note that the Rayleigh quotient (9-7.8) is not dependent on estimates for
S(ffro) as is the case for a general consistent ordering (see Eqs. (9-6.6)
(9-6.7)).

If the matrices DR and DB have been factored (see Section 2.3) as

and (9-7.9) .

(9-7.10)

then (9-7.8) can be expressed in the computationally simpler form

([(SD- 1HIi~,P)J, [(SD-1HIi~,P)J) < S
([SBIi~,P)J, [SBIi~,P)J) - (ff 1)'

If 1i~'P) is stored, the vectors (SD-1HIi~'P) and SBIi~'P) can be computed by
slightly modifying the computational process of (9-7.2). The major dis
advantage in the use of (9-7.10) is that the 1i~'P) vector must be stored. We
now present a Rayleigh quotient procedure which does not require storage
of the 1i~'P) vector but does require that two Gauss-Seidel iterations be
done every time a new estimate for OJ is to be calculated.

If Ii(0) and Ii (1) are the difference vectors (9-4.1) for two Gauss-Seidel
iterations, then since Ii(l) = ff 11i(0) we have

(9-7.11)

(9-7.12)

Thus, using (9-7.9) we have that the ratio

11 1i(1)11 2 (1i(0) (HTD- 1HD- 1HTD- 1H)Ii(O»)B So B , R B R B

II Ii(0) 11 2 = (Ii(0) D Ii(0») ,B So B, B B

is equivalent (see Eqs. (9-7.7) and (9-7.8)) to the Rayleigh quotient with
respect to the symmetric matrix [(S~)-lHTDR1HD B1HTDR1H(SB)-lJ,
which is similar to (DB 1HTDR 1H)2. Thus

(9-7.13)

with equality if iiI?) = ZB(l). The only cost in using (9-7.13), in addition to
the Gauss-Seidel iterations, is that the SB vector norm must be used. Note
that the Rayleigh quotient (9-7.7) is applied to D~/2H TDR 1H D~/2, while
that of (9-7.13) is applied to (D~/2H TDR 1H D~/2)2.

t Replace II' in (9-7.7) by D~/2~~.p).
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An adaptive procedure utilizing the Rayleigh quotient (9-7.13) is given in
Algorithm 9-7.1. This procedure differs from that given in Algorithm 9-6.1
in the following ways:

(1) The control parameter g has been added. g i= 0 implies the two
Gauss-Seidel iterations to compute (9-7.13) are being done.

(2) The norm "~Ir)"SB is computed if w = 1.0.
(3) Since any estimate w' must satisfy w' ::; w b , the upper bounds "s

imposed previously and the control word S have been removed.

The adaptive procedure of Algorithm 9-6.1 also may be used when the
coefficient matrix A 'is partitioned in a red/black form. However, to utilize
the special eigenvector relationship (9-7.4) most fully, "~~' P)112 rather than
"~(S,P)"2 should be used in the adaptive parameter procedure.

For Algorithm 9-7.1, we assume that the matrix problem to be solved is
partitioned into the red/black form

Al 1 A 1,l+1 A 1 ,q U1 F1,
0 U2 F2 \

\
0 AI,I AI, 1+ 1 AI,q UI FI

'I

i
-----------------------~--- ~----------------------------- = , (9-7.14) J,,

;\Al+ 1, 1 A 1+ 1 I i A I + 1,1+1 0 U1+ 1 F1+ 1, :

A q,1 Aq,l
t

0 Aq,q Uq Fq;
where I> 1 and q ~ 2. Moreover, we assume each diagonal submatrix
Ai,i has been factored (see Sections 2.3 and 5.6) as

where Si is an upper triangular matrix. I!lthe DR and DB submatrices in (9-7.1)
are not of the block diagonal form given in (9-7.14), suitable adjustments
must be made in the Calculate New Iterate portion of the algorithm.

Algorithm 9-7.1. An adaptive procedure for problems with red/black
partitionings.

Input: ((, w, F, PSP, RSP, Yr)

Initialize: Same as Algorithm 9-6.1.

Next Iteration: Same as Algorithm· 9-6.1 except replace S:= 0 by g:= 0
when p = O.



Calculate New Iterate:

Do steps (1)-(3) for i = 1, ... , I

q

(1) Solve for UT where A· ·UT = - " A· .(ur)· + F·-, 1,1_ L. 1,)- J _1

j=l+ 1

(2) (~)i'= W[(Yr)i - YTJ
(3) Wr)i'= (Yr)i - (~)i

End of Do.
II ~B II .= 0.0
Do steps (4)-(6) for i = I + 1, ... , q

r '
~

, '
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I

(4) Solve for UT where A· ,UT = - " A· .(ur )· + F·- , I, I - L. 1, J - J - 1

j= 1

(5) (~)i'= W[(Yr)i - YTJ
If W = 1.0 then II~BII .= II~BII + (Si(~);' Si(~)i);

else II~BII := II~BII + «~)i' (~)i)
(6) (Yr)i'=(Yr)i - (~)i;

End of Do.
DELNP := [11~Bllr/2

Remark. While doing the above Do loop (or loops), also compute the
appropriate quantities DELNE.= 11~llp and YUN:= IIYrll~ for use in the
convergence test.

Stopping Test:

RO:= R;R.= DELNP/DELNO;H:= R;
If P < Pthen Go to Next Iteration; else continue;
If R ;;:: 1.0 then Go to Next Iteration; else continue;
If g = 1 then p*:= p and Go to Parameter Change Test; else continue;
If R ~ W - 1 then H .= W - 1; else continue;
IfDELNEjYUN ~ (1 - H) then print final output and STOP (converged);
else continue;

Parameter Change Test:

If p < p* then Go to Next Iteration; else continue;
Ifw = 1 then

Begin
w':=2/[1 + J1- R];p'= -1;
Go to Next Iteration;
End
else continue;

If R < (w - 1t then Go to Next Iteration; else continue;
DELR.=RO - R
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If ( -10.0)(RSP) ::::;; DELR ::::;; RSP then continue;
else
Begin
If s > 2 then Go to Next Iteration;

else continue;
If R < (w - 1)0.1 then Go to

Next Iteration;
else continue;

End
w := 1.0; g := 1; p := 0; p := 1; p* := 1; n := n + 1; .
Go to Calculate New Iterate

9.8 NUMERICAL RESULTS

In this section we describe results of numerical experiments which were
designed to illustrate the effectiveness of the adaptive procedures discussed
in this chapter. To do this, three computer programs were written to solve
the two-dimensional elliptic test problems described previously in Section
8.4. The three programs and the solution procedures utilized are

SORNO Uses the one-line SOR iteration method with a natural
ordering (see Sections 1.6 and 1.7) of the mesh lines. The adaptive procedure
used is that given in Algorithm 9-6.1.

SORRB Uses the one-line SOR iteration method with a red/black
ordering (see Sections 1.6 and 1.7) of the mesh lines. The adaptive procedure
used is that given in Algorithm 9-6.1 except that DELNP:= IILl~,P)112 is
used instead ofDELNP := IWs, p) 112 .

SOR.RB/RQ Uses the one-line SOR iteration method with a red/black
ordering of the mesh lines. The adaptive procedure used is that given iQ
Algorithm 9-7.1.

The basic difference between th~ SOR.NO and SOR.RB programs is the
line ordering used. In addition, to utilize the special eigenvector relationship
(9-7.4) valid for problems with a red/black partitioning, the SOR.RB program
uses IILl~,P)112 rather than IILl(S,P)112 in the adaptive parameter procedure.
The SOR.RB and SORRB/RQ programs differ only in the fact that the
SOR.RB/RQ program utilizes the Rayleigh quotient (9-7.13) in the estima
tion of Wb' Only for the SORRB/RQ program is it known mathematically
that any estimate W must satisfy W ::::;; wb •

For all three programs, the stopping test used was (9-5.17) using the
relative error norm. That is, with ujn) == (U(n»)i and' = 10- 6, the problem



TABLE 9-8.1
Summaries of the Line SOR Iterative Behavior for the Test Problems ofSection 8.4

Nonadaptive Adaptive

SOR.NO SOR.RB SOR.NO SOR.RB SOR.RB/RQ
-

Value Value Last Last Last
for 'for estimate Cs,p) at estimate Cs,p) at estimate Cs,p) at

Problem Iter. fixed w Iter. fixed w Iter. for w convergence Iter. for w convergence Iter. for w convergence

I (Guess A) 92 1.8050 89 1.8050 118 1.7988 0.752 103 1.8052 0.927 101 1.8033 0.856
2 (Guess A) 168 1.8976 156 1.8976 169 1.9000 - 174 1.8976 0.978 178 1.8971 0.920
3 (Guess B) 370 1.9507 364 1.9507 419 1.9527 - 452 1.9500 0.835 445 1.9506 0.939

(Guess C) 336 1.9507 322 1.9507 392 1.9500 0.842 385 1.9500 0.833
4 (Guess A) 187 1.8859 150 1.8859 189 1.8880 - 192 1.8862 0.955 191 1.8857 0.927

(Guess C) 201 1.8859 161 1.8859 254 1.8759 0.597 211 1.8857 0.926 214 1.8859 0.935
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was considered converged when

241

(9-8.1)

-

where H is defined by (9-5.18). For all problems, the strategy parameter
values used were F = 0.75, PSP = 0.5, and RSP = 0.0001. The initial
estimate for w was_Cll.\Y1lY§_.tl!kenJobe 1.0.

Table-§-=s.fcoirtains summaries of the iterative behavior for each of the
three programs in solving the test problems of Table 8-4.1. The guess vectors
used are defined in Table 8-4.2. The "Iter" column gives the iterations
requited to satisfy (9-8.1) with' = 10- 6. The values of wand Cts•p) (defined
by (9-6.5» when convergence was achieved are given in columns headed by
"Last estimate for w" and "Cts,P) value," respectively. A blank entry for Cts,p)

indicates that the values for C(S,P) have an oscillatory behavior. The best
estimates for the spectral radius of the Jacobi iteration matrix B and the
optimum acceleration factor W b for each problem are given in Table 9-8.2.
Table 9-8.2 also gives the number of iterations required for convergence
and the value of Ct1,p) at convergence when a fixed w = 1.8 was used. In
Table 9-8.2, guess A was used for problems 2 and 4, while guess C was used
for problem 3.

Concerning the behavior of these problems, we make the following
observations:

1. For most problems, the ratio Cts,p) of actual to optimum convergence
rate at convergence was considerably greater than the F factor of 0.75. For
the SOR.NO program, the Cts,p) factor at convergence for problem 4 was
considerably less than 0.75. This was caused by the fact that Rts,p) was less
than (w - 1) on one iteration. Recall from Section 9.6 that Rts,P) < W b is
used as a signal to indicate that w 2:: W b and that no new estimation of w is
permitted when this occurs.

TABLE 9-8.2 .j
Additional Iteration Data

Best Estimate W = 1.8 Fixed

Problem ForS(B) For Wb Iter Co.p )

I 0.994149 1.805022
2 0.998533 1.897284 495 0.126
3 0.999680 1.950664 1164 0.026
4 0.998167 1.885878 420 0.161

\
r~

I
\

1



Fig. 9-8.1. Graph of R(n) versus n for problem 3 using the SOR.RB/RQ program.
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Fig. 9-8.2. Graph of R(n) versus n for problem 3 using the SOR. NO program.
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Fig. 9-8.3. Graphs of log ET and log EA versus /I for problem 3 using the adaptive SOR
procedure.--, true error ET ; ---, estimated error EA ; x, iteration at which new estimate
for w is used.
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L

2. The SOR.NO program slightly overestimated W b for three of the four
problems. However, note that this improved convergence and verified the
well-known fact that it is beneficial to slightly overestimate Wb.

3. Relative to the two different line orderings, the behavior of the adap
tive process generally is more consistent for problems with a red/black
partitioning. Moreover, with W = W b fixed, the iterations required for
convergence using a red/black line ordering is consistently less than that
when the natural line ordering is used.

4. For the problems considered here, there appears to be little difference
between the procedures used in the SOR.RB and SOR.RB/RQ programs.
The advantage of the SOR.RB/RQ procedure is that the sequence of esti
mates {w'} generated is guaranteed to converge to Wb. The disadvantage of
the Rayleigh quotient procedure is that the SB-norm of ~B is required for
some iterations.

Graphs ofR(n) versus iterations are given in Figs. 9-8.1 and 9-8.2 for problem
3. The graph of Fig. 9-8.1 was obtained using the SOR.RB/RQ program and
illustrates the behavior of R(n) when the W used is always less than Wb. The
graph of Fig. 9-8.2 was obtained using the SOR.NO program and illustrates
the behavior of R(II) when the W used becomes larger than Wb. .

For problem 3, the solution uis known and is unity everywhere. Thus for
this problem we may compare the actual error

ET == max I[uln + 1) - uJ/iid, (9-8.2)
i

with the estimate given by (9-8.1). The graphs of Figs. 9-8.3 and 9-8.4 give an
indication of the behavior of the actual error and the estimated error as a
function of the iteration n. The data for Fig. 9-8.3 was obtained from the
SOR.RB program, while that for Fig. 9~8.4 was obtained from the SOR.NO
program. Guess B was used for both programs. The graphs of Fig. 9-8.3 clearly
indicate that the estimated error is not very accurate for small n. In order for
the estimated error to accurately measure the actual error at convergence, the
stopping criteria number' must be sufficiently small. Generally, , should be
less than 0.05 or 0.01.

9.9 ON THE RELATIVE MERITS OF CERTAIN
PARTITIONINGS AND CERTAIN ITERATIVE PROCEDURES

In this and previous chapters, we have discussed convergence rates and
have described computational algorithms for various iterative procedures.
The reader faced with solving an actual problem must decide which solution
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scheme is "best" suited for his particular application. Because of the many
nonmathematical factors involved in the use of iterative methods and because
of the diversity of problems to be solved, no one iterative procedure is best
for all situations. From a practical point of view, the best solution method
is one that accomplishes the job with a minimum total cost. The cost here
includes computer cost and the man-hour cost to develop and program the
solution scheme. If only a small amount of computer time is involved, the
solution method selected should be one that works well, not necessarily
the best, and one that can be implemented easily. However, for large scientific
problems which saturate or nearly saturate the capabilities of the available
computer, details of implementation become much more important. For
example, we show in Chapter 10 that the computer times required to solve
a particular problem can vary by as much as a factor of eight for different
implementations of the iterative method applied. For large scale scientific
computations, the most effective iterative procedures often are those which
converge at a reasonable rate (not necessarily the fastest rate) and which
can be especially tailored to the architectural features of the computer at
hand.

Among the important computer characteristics which must be considered
in the selection and implementation of an iterative procedure are those
involving memory capacity, computation rate of the arithmetic unites),
structure (serial, parallel, pipelined, etc.) of the arithmetic unites), and data
transfer rate from secondary storage devices (tape, disk, etc.). Advanced
scientific computers today are capable of executing in excess of 20 million
floating point operations per second. However, only those algorithms
which" fit" the architecture of the computer and are carefully implemented
will execute with high arithmetic efficiency. (See, for example, Buzbee et ai.
[1977Jand Pfeifer [1963J). Since a detailed discussion of computer archi
tectures transcends the material given in this book, we will discuss only
general implementation aspects. The remarks we make in this section and
later in Chapter 10 concerning execution e(ficiencies of certain iterative
procedures should be taken as observations, some of which may not be
valid for all computer architectures.

From the above discussion, it is apparent that the selection and application
of iterative procedures to large scale scientific problems is an art as well as
a science. Because of this, we can offer the reader only a feeling for what can
be done, what he can expect, and what he should look for in the utilization of
certain iteration procedures. In Chapters 10 and 11, we do this by discussing
specific examples. In this section, we discuss the significance of the imposed
partitioning on the utilizations of certain iterative procedures.

Suppose that we seek to solve the matrix equation Au = b, where A is a

--
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We first discuss relative merits of the SOR, Chebyshev, and CG procedures
applied to the Jacobi method under varying assumptions concerning the
partitioning (9-9.1). Later, we will discuss other, perhaps less obvious, ways
in which the imposed partitioning can affect the behavior of certain iterative
procedures. .

Since the matrix A is SPD, the Jacobi matrix is symmetrizable for any
partitioning· imposed on A, Thus without additional assumptions, the
Chebyshev and CG methods of Chapters 5-7 may be used to accelerate
the Jacobi method corresponding to (9-9.1). (As before, we denote these two
acceleration methods by J-SI and J-CG). However, for the more effective
polynomial acceleration methods of Chapter 8, we require that the parti
tioning for A be redfblack. For the SOR procedures described in this chapter,
we require that A be consistently ordered relative to the partitioning imposed.
We discuss the red/black case first.

A=

sparse SPD matrix, which is partitioned in the form

(9-9.1)
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Solution Methods for the Red/Black Partitioning Cas~

For problems of this type, the RS-CG (or equivalently the CCG) method
and the CCSI (or equivalently the RS-SI) method should be considered
as the principal candidates for a solution scheme.t

The choice between the RS-CG method and the CCSI method is not
always apparent. The decision as to which procedure is more appropriate
can be made by weighing the positive (and negative) features of each method
relative to problem(s) to be solved. Important features of both methods are
summarized below. .

(a) The RS-CG method converges faster, sometimes significantly faster,
than the CCSI method.

(b) The iteration parameters for the RS-CG method are generated
automatically during the iteration process while the optimum parameters
for the CCSI method are functions of the spectral radius, S(B), of the Jacobi
matrix B.

t As noted previously, for problems with a red/black partitioning, the SOR method is
slightly less effective than the CCSI method; their asymptotic convergence rates are the same
but the CCSI method has the larger average convergence rate.
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(c) The CCSI method requires less storage and less work per iteration
than the RS-CG method. Moreover, for the CCSI method, unlike the
RS~CG method, it is possible to skip the computation of the pseudoresidual
vector and its norm for many iterations.

(d) The iteration error can be measured accurately in any norm when the
adaptive CCSI procedure is used. Procedures for accurately measuring the
iteration error remain unknown for the RS-CG and optimal nonadaptive
CCSI methods.

(e) The use of a symmetrization matrix W can be avoided in the CCSI
procedure whereas W (or at least WTW) must be used in the RS-CG pro
cedure.

(f) Unlike the RS-CG method, the iteration parameters for iteration
n + 1 of the CCSI procedure can be computed before the completion of
iteration n. (This feature is required in the implementation of the "con
current" iteration procedure described later in Section 10.2).

Items (a) and (b) are positive features of the RS-CG method, while items
(c)-(f) are positive features of the CCSI method. The positive features of the
RS-CG method usually overshadow those of the CCSI method if the use of a
symmetrization matrix W is computationally convenient and if data flow
from secondary storage devices is not an important consideration. If either
of these conditions is not valid, the positive features of the CCSI method
increase in importance. Reasons for this are given later in Section 10.2 and
Chapter 11.

L

Solution Methods for the Consistently Ordered (but Not
Red/Black) Case

Sometimes programming and data alignment considerations make it
more convenient to use a partitioning which is consistently ordered but not
red/black. For this case, the principal choice is between the SOR method
and the J-CG method. The J-SI method is not included here since the SOR
method not only converges twice as fast as the J-SI method but also requires
less storage and less work per iteration.

The SOR method is likely to be superior to the J-CG method for most
problems of this type. This follows by reinterpreting items (a)-(f) given
above. With the SOR and J-CG methods replacing the CCSI and RS-CG
methods, respectively, items (c)-(f) remain valid and are positive features
of the SOR method. However, since the ratio of J-CG to SOR convergence
rates for this case is known only to be greater than one-half, item (a) need not
be valid.



Here the principal choice is between the J-SI method and the J-CG
method. The SOR method may also be used; however, the usefulness of the
SOR method is limited for problems with a general partitioning because of
uncertainties concerning its convergence rate and because of uncertainties
concerning a precise prescription for the optimum relaxation factor.

The choice between the J-CG and J-SI methods should be made after
considering the positive (or negative) features of each method. Features
(a)-(f) given above and the comments made there concerning the CCSI
and RS-CG methods also are valid, respectively, for the J-SI and J-CG
methods. The J-SI method here, however, has the additional negative
feature that the smallest eigenvalue m(B) of the iteration matrix B is required
as well as the largest eigenvalue M(B).

9 THE SUCCESSIVE OVERRELAXATION METHOD

Solution Methods for the General Partitioning Case
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Other Partitioning Aspects

Thus far we have discussed relative merits of certain iterative procedures,
given a partitioning. Now, we wish to comment briefly on the relative
merits of certain partitionings, given a problem.

Convergence Rates as a Function of Partitioning

To illustrate the sensitivity of convergence rates to the partitIOning
imposed, we again consider the solution of the matrix problem Au = b
which results from a discretization of the elliptic differential Eq. (8-4.1)
over the rectangular mesh subdivision of Fig. 8-4.1. Here, however, we
assume the discretization is based on a 9-point stencil instead of the 5-point
stencil used previously (see Fig. 10-2.1). We assume only that the 9-point
discretization formula used is such that the resulting coefficient matrix A
is SPD. The structure of the nonzero elements of the matrix A corresponding
to a natural ordering of the unknowns (see Section 1.6) is illustrated in
Fig. 9-9.1. It is easy to show that the coefficient matrix A for the 9-point
discretization case has Property d relative to a line partitioning but not
relative to a point partitioning. We now wish to examine the convergence
rates of certain Chebyshev acceleration procedures as a function of these
two partitionings.

We denote the Jacobi iteration matrices corresponding to the point and
line partitionings, respectively, by BP and BL

• Also, as before, we let m(B)
and M(B) denote, respectively, the algebraically smallest and largest eigen
values of a Jacobi iteration matrix RIn what follows, we assume that M(BP

)
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Fig. 9-9.1. Coefficient matrix A produced by a 9-point discretization stencil for the mes!:
grid shown.

and M(BL
) are close to unity. Thus for 15(> 0) small and for xLb(> 0) small,

we can write

and (9-9.2)

Here, the parameter XL depends on the specific problem being solved and is
normally greater than unity. As A has Property d relative to a line parti
tioning, we have from (9-3.5) thaOn(BL) = - M(BL

) = -1 + xLb. For the
point partitioning case, utilizing the structure of the nonzero elements of
BPand using the fact that A is SPD, we can showt that m(BP) > - 3. Thus
we can write

and (9-9.3)

where A> O.
From (4-2.22), the asymptotic convergence rate for the Chebyshev

acceleration method applied to BP is Roo(PiBP» = -! log f, where f is
defined by (4-2.19). Since M(BP

) = 1 - 15, where 15 is small, it follows (see
(4-4.11» that approximately Roo(Pn(BP» ~ 2[b/{1 + 15 - m(BP»]1/2. Sim
ilarly, for the Chebyshev acceleration method applied to BL

, we have that
Roo(Pn(BL» ~ 2[xLb/{1 + xLb - m(BL»r/2. Thus substituting m(BP) and
m(BL

) from (9-9.3) into these expressions, we have approximately that

Roo(Pn(BL»/Roo(Pn(BP» ~ {xL[!(4 + 15 - A)]}1/2. (9-9.4)

In addition, if a redjblack line partitioning is used, the CCSI method may
be appliedt to BL

• Letting Roo(CCSI(BL» denote the asymptotic convergence

t We omit a formal proof.
t Since A does not have Property '.91 relative to a point partitioning, it is not possible to

obtain a red/black partitioning (8-1.1), where DR and DB are diagonal matrices. Thus the CCSI
method cannot be utilized for the point partitioning case.



rate of the CCSI method, we have from Chapter 8 that Roo(CCSI(BL
)) =

2R oo(PnCBL
)), which when combined with (9-9.4) gives
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Assuming that A as well as 1> are small, we see from (9-9.5) that the best
Chebyshev procedure for a line partitioning converges roughly 2(2xL)1/2
times faster than the best Chebyshev procedure for a point partitioning.
Note that a significant part of this improvement is due to the fact that
eigenvalue domain for BL is smaller than that for BP• We remark that the
problem dependent parameter XL frequently lies in the interval [1,4].

The evaluation of any solution procedure must also include considerations
concerning the computational cost per iteration. For the example given
above, the cost per iteration for the CCSI procedure utilizing the (Property
d) line partitioning is no greater than that for the Chebyshev procedure
utilizing the (non-Property d) point partitioning. We note, however, that
this need not be the case for other problems. See, e.g., Section 10.3.

Similar, but not as precise, remarks can be made for the corresponding
CG methods applied to BL and BP and for the corresponding SOR procedures
based on the line and point partitionings.

Considerations in Choosing a Partitioning with Property .91

In the above example, we illustrated the sensitivity of convergence rates
relative to partitionings with and without Property .91 and showed that
iterative procedures which utilize partitionings with Property .91 generally
have the more favorable convergence rates. Often, many feasible parti
tionings exist for which the coefficient matrix A has Property .91; moreover,
each of these partitionings possibly can lead to a different convergence
rate for the iterative method under consideration. The one-line methods
used in Sections 8.4 and 9.8 were obtained by partitioning the unknowns
by single horizontal lines. However, other partitionings could have been
used; for example, we obtain a coefficient matrix with Property .91 if the
unknowns are partitioned by 1successive horizontal lines or by 1successive
vertical lines. Usually, the number of iterations required for convergence
decreases as the block size increases. Unfortunately, in passing to larger
blocks, the cost per iteration increases also.

To illustrate this, consider the numerical solution of Poisson's equation
(1-7.1) in a square region with a uniform mesh of size h. We assume, as in
Section 8.4, that the discretization is based on the normal 5-point formula.
If, as before, we let Roo(CCSI(BIL

)) denote the asymptotic convergence rate
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of the CCSI method for the [-line partitioning problem, Parter [1961J
has shown for [ ~ 1 that

Roo(CCSI(B(l+ 1)L))/Roo (CCSI(B1L)) ~ [(l + 1)/1]1/2, h --+ O. (9-9.6)

For this model problem, we have that the asymptotic convergence rate of
the one-line CCSI method is roughly v1 times that for the two-line method
which in turn is A times that for the three-line method. However, the
computational cost per iteration for the three-line CCSI method is 1.28
times that for the two-line method which in turn is 1.2 times that for the
one-line CCSI method.t Thus considering only computational requirements
and convergence rates, the computer time required to solve this model
problem is minimized for [ = 2.

In some problems, geometrical and material properties result in a situation
where the coefficients in the discretization formula are much larger in one
direction. than those in other directions. In this situation, the orientation
of a partitioning in the direction of the large coefficients is particularly
effective.t The reason for this is that, for such a partitioning, the large
coefficients enter into the diagonal submatrices Ai, i of A, while the weak
coefficients enter into the off-diagonal submatrices of A. More details
concerning this subject can be found in Wachspress [1966J and in Nakamura
[1977 Ref. 1, p. 137].

9.10 PROOFS OF THEOREMS AND DISCUSSION OF THE
STRATEGY CONDITION (9-5.21)

In this section we first give proofs of Theorems 9-4.1 and 9-4.2. We then
discuss the significance of the strategy test (9-5.21) and give alternative sug
gested values to use for the associated parameter RSP.

Proof of Theorem 9-4.1

We first show

Lemma 9-10.1. If 1 < W < Wb and if f..ltw2 - 4(w - 1) 1= 0 for all i, then

(9-10.1)

t We assume the Cuthill-Varga normalization procedure described in Section 8.5 is used to
eliminate the required divisions.

:j: For example, if the coefficients N.,j and S•. j in the discretization formula (1-6.4) are larger
than the E i•j and Wi•j coefficients, then a partitioning by vertical mesh lines should be used.
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and

il(") = A1{d1Y(1) + G:rt2 (~J"diy(i)}.
where di = (l - Ai)Ci'

Proofof Lemma. From (9-4.3) and (9-4.5), we have

and

LJ

(9-10.2)

(9-10.3)

(9-10.4)

Equation (9-10.1) follows by substituting A'iC1y(1) from (9-10.4) into (9-10.3).
Equation (9-10.2) follows directly from (9-4.3) and (9-4.6). This completes
the proof of Lemma 9-10.1.

Turning now to the proof of Theorem 9-4.1, we have from (9-10.1) that

11
8(")11 < IW")II [1 + IA21"L:f=2I A;/A21"IA1 - Ad· Ilciy(i) II]

- 1- A] IW") II ' .

and from (9-10.2) that

IW") II ~ A'i{lld1Y(1)11 - ~2 ",f ~i "1IdiY(i)II}.
1\.1 1=2 1\.2

(9-10.5)

(9-10.6)

For n sufficiently large, it follows from the definition (9-4.7) of K that
L:f=2I A;/A21"IA1- Ad ·llciy(i)11 < Klld1y(1)11 and from (9-10.6) that Ilil(")II ~
A'illd1y(1)11[1 -IA2/A11"K] > O. Using these inequalities in (9-10.5), we
obtain the upper bound given in (9-4.8). The lower bound given in (9-4.8)
follows similarly by writing 118(")11 as

II (")11 > IW")II [1 _IA21" L:f=2I A;/A21"IA1 - Ad, Ilciy(i) II] (9-107)
8 - 1 ~ A

1
IW")II ..

The inequalities of (9-4.10) follow easily from (9-10.2) since for n sufficiently
large we have

[1 - ~:"K] Ild1y(l)IIA'i S IW")II S A'i Ild 1y(1)11 [1 + ~:"K1 •
(9-10.8)
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Proof of Theorem 9-4.2
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We first show

Lemma 9-10.2. If 1 < W < W b and if [Il~ W
Z

- 4(W - I)J = 0, then

e(n) = 1 ~nAl -1 ~ Al { nAZ- 1(A I - Az)czy(3)

+ AZ[ -czy(3) + (AI - Az)czp(2) + it3 GJn(AI - A;)CiY(i)]}

(9-10.9)

and

i1(n) = A'id1y(l) + n(Azt- 1dzy(3)

+ AZ{dzP(2) - czy(3) + J3 G~rdiy(i)} (9-10.10)

where di = (l - Ai)Ci'

ProofofLemma. From (9-3.9),(9-4.3), and (9-4.12), we have

e(n) = A'iCly(l) + nAz- 1czy(3) + {AZCZP(2) + it/iCiY(i)} (9-10.11)

and
i1(n) = A'i(l - Al)cly(l) + nAz- 1(l - Az)Czy(3) - Azczy(3)

+ {A2(l - Az)czp(2) + it/HI - Ai)CiY(i)}- (9-10.12)

Substituting for A'iCIy(l) in (9-10.11) from (9-10.12), we obtain (9-10.9). The
expression (9-10.10) for i1(n) follows directly from (9-4.5), (9-4.6), and (9-10.12),
which completes the proof of Lemma 9-10.2.

We now turn to the proof of Theorem 9-4.2. Since Ci = di/(1 - Ai)' from
(9-10.9) we have

(1 - Al)lle(n)1I (~) IWn
)II (~) {nAz-l(~l ~::}ldZY(3)11 + Azlld1Y(l)IIK}

(9-10.13)

The inequalities of (9-4.15) then follow by dividing (9-10.13) by IWn)11 and
noting that

IW
n

) II ~ A'illdlY(1)II{1 - [nG:r- 1UJ 'i,~:~g;,',1 + G:rKJ}-
(9-10.14)



The inequalities of (9-4.17) follow from (9-10.14) and

11.1(n)11 ~ A'illdlY(1)11{1 +[n(A2)n-l(~) Ild2 y(3)11 + (A2)nKJ}. •
Al Al Ild1y(1)11 Al

(9-10.15)
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L-J r ,
~ L-J

Significance of the StrategyTest (9-5.21)

For our discussion here, we use the notation of Section 9.5 and assume
that the eigenvalues of B and of !l'"'s are given by (9-3.5) and (9-4.4), res
pectively. We let fl'l be the estimate (9-5.14) for fll obtained using R(s,p) and
let w' be the associated estimate (9-5.1.3) for Wb' For notational convenience,
we let 5 == 5(!l'"'), R == R(s,p), and

.1R == R(s,p-l) - R(s,p). (9-10.16)

If I", is the number of iterations required for convergence using w, then
for fll and fl~ close to unity, the ratio (I",F"'b) approximately satisfies (see
Hageman and Kellogg [1968]).

(9-10.17)

where

(9-10.18)

Intuitive arguments will now be given to show that a relationship exists
between (j and the strategy parameter RSP used in (9-5.21). We continue
to assume that fll and fl~ are close to unity.

Since fl'l is close to unity, from (9-5.13) we have approximately that
(1 - fl~) ~ i(2 - W')2. Using this approximation together with 5 from
(9-5.11) and fl'l from (9-5.14), we have

Ifll - fl'll == 8 15 - RI { 1 + JRS - W s } (9-10.19)
1 - fl'l . (2 - W')2 wsJRS[JR + JS] .

If Ws < Wb' the eigenvalue error 15 - R I may be approximated by (see,
e.g., Hageman and Kellogg [1966]).

15 - RI ~ I(jRI/(1 - ii), (9-10.20)

where ii = I A2 1/5, Here A2 is the second largest eigenvalue of !l' '" given by
(9-4.4). From Fig. 9-3.1, it is clear that (ws - 1)/5 ~ ii < 1 swhenever
1 ~ Ws < Wb' Thus 0 < 1 - if ~ (1 + 5 - ws)/5 and we may write

1 - (j = a[(l + 5 - ws)/SJ, (9-10.21)



, ,

L.-...J

9.10 PROOFS OF THEOREMS

cr, a

1.0

-cr

-x-a X
I

X
I

X
I

X I

X" I
.... wb

O
X...__X _

X-X-X_Ws
1.0 W 2.0

Fig. 9-/0./. Typical behavior of (j and ex versus w,.

257

where 0 < ex .::; 1. With OJ == 2/(1 + J 1 - flD, the behaviort of (j and ex
versus W s is indicated by the graphs of Fig. 9-10.1. Note that ex = 1 for
OJ .::; W s < wh . Substituting (9-10.21) and (9-10.20) into (9-10.19), we have
approximately that

Iflt - /l't I . [ 85 (1 + JRS - Ws)J IflR I
1 - fl't 7 wsJRS(JR + jS) 1 + 5 - W s ex(2 - W')2'

(9-10.22)

The expression in brackets is about 2.0. Thus if test (9-5.21) is satisfied, the
~ in (9-10.17) is approximately equal to [1/(2 - w')J[2RSP/exJl /2.

On the other hand, if (9-10.17) is to be satisfied for a fixed t5, then RSP
should approximately satisfy

RSP ~ iex(2 - W')2 V (9-10.23)

Thus in order to satisfy (9-10.17) for a fixed ~, RSP should be a function of
(2 - wY when flt and /l't are close to unity. For the test problems given in
Section 9.8, RSP w"" taken to be

RSP
__. {O.OOOI if ws '::; 1.9

(9-10.24)
(0.01)(2 ~ ws)2 if Ws > 1.9.

The expression (0.01)(2 - w s? in (9-10.24) corresponds to choosing ~ = 0.2,
ex = 0.5, and using W s in place of w'. To account for the fact that ex = 0.5 is

t From (9-3.6), it is clear that (j = [J12!1ld 2 when w, = I. As w, increases from unity to OJ, 0'
decreases from [J12!J1IJl to I(w - Il!S(.!f'fill]. The value of (j then increases to unity as w, increases
from OJ to Wb'
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inadequate for most problems when OJs is considerably less than OJb' RSP in
(9-10.24) is fixed at 0.0001 when OJs ~ 1.9.

If OJs ~ OJb' the convergence rate of u(n) to ii is considerably smaIler than
the optimum rate. Moreover, since (j is usuaIly close to unity for this case,
the convergence rate of R(s,p) to S(SfwJ also is small. This implies that a
significant number of iterations, which are converging at a slow rate, may be
required before (9-5.21) is satisfied and OJs is changed. We try to avoid this
pitfall in Algorithms 9-6.1 and 9-7.1 by bypassing the test (9-5.21) whenever
the following two conditions are satisfied: (1) s ~ 2 and (2) the ratio of actual
to optimum convergence rates is less than 0.1 ; Le., when R(s, p) ;;::: (OJs - 1)0'1.



CHAPTER

10
The Use of Iterative Methods

in the Solution of Partial
Differential Equations

10.1 INTRODUCTION

Most of the large sparse systems which are solved by iterative methods
arise from discretizations of partial differential equations. In the previous
chapters we have discussed convergence properties of various iterative
methods and have given algorithms for estimating acceleration parameters
and for terminating each iterative process. These aspects, based on mathe
matical properties of the method considered, are essential for the efficient use
of iterative methods. However, since the total computer time depends on
the work required per iteration as well as the number of iterations, it is clear
that factors other than those associated with the iterative convergence rate
need to be considered. In this chapter we discuss other problem aspects, such
as mesh structure and discretization stencils, which affect the efficiency of
iterative methods in the solution of multidimensional boundary-value
problems. Our goal is to present an overview and to give a general flavor for
some of the factors which affect solution costs. Since the best numerical
procedures depend on many factors, no hard and fast recommendations will
be given. We merely seek to illustrate some of the factors which affect the
efficiencies of certain iterative solution methods.

259
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Given a physical problem, one first needs a mathematical model whose
solution in some sense approximates the solution of the physical problem.
Next, a numerical model of the mathematical problem is needed. The solution
to the numerical model only approximates the mathematical model solution,
but should be such that the error in this approximation theoretically can be
made arbitrarily small. The final step is to solve the numerical model. Again,
because ofthe solution method a,nd the finite word length ofdigital computers,
the computer solution only approximates the solution to the numerical
model. Given the numerical solution T, the engineer or scientist must consider
the question: Does T adequately represent the solution of the physical prob
lem? Since complete theoretical results usually are not available for general
practical problems, the answer to this difficult and important question can
only be answered by carefully designed numerical and physical experiments.
Thus a computer program must be constructed for generating the numerical
solution before any answer to this question can be obtained. However, many
factors need to be considered in the design of such a program.

To illustrate some of these factors, we consider the problem of determining
the temperature distribution in a conducting solid. A general mathematical
model for this problem can be expressed as

where I' is the spatial vector (x, y, z), Vthe spatial gradient vector, t time, T the
unknown temperature distribution, p the specific heat, k the thermal con
ductivity, and g the heat source. We assume appropriate initial and boundary
conditions are given. At a point I' on the boundary S of the geometric domain
D, the temperature satisfies one of the following conditions:

(l) T(r, t) = fer, t), where fer, t) is a known function, or
(2) - k(r, t, T) aT(r, t)/an = her, t, T) [T(r, T) - To(r, t)]p(r), where h is

the film coefficient, To is the sink temperature, per) z 0, and aT/an is the
derivative of T in the direction of the outward normal to S.

Before progressing to the next step ofdetermining the numerical model, one
needs to be more specific concerning the generality of the mathematical
model. For example, how many spatial dimensions are needed? What type of
boundary conditions are required? Can the thermal conductivity k be as
sumed to vary just with time and space? Is only the steady-state solution
desired?

Obviously, olle would like to solve the most general problem which is
practically possible. The practicality criterion must be based on cost, which
can be divided into the following categories: (a) initial mathematical and

(10-1.1)
aT(r, t)

per, t) at = v.k(r, t, T)VT(r, t) + g(r, t),
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programming development cost and (b) computer solution cost. We will
discuss only computer solution cost. Usually, the more flexible and general
the program is, the greater are its solution costs. Thus in order to keep solution
costs reasonable, one is often forced to make compromises concerning the
flexibility and generality of the program. In order to make these compromises,
one must decide whether a particular feature or generality is worth the cost,
i.e., one must weigh generality value versus cost. The value of a particular
generality is a function of the problem or class of problems to be solved, and,
thus, the final judgement concerning value versus cost usually should rest with
the engineer wishing a solution to a physical problem or class of problems. In
order to make this judgement, however, one needs to obtain some estimate
for the cost. For example, what is the cost for solving a three-dimensional
problem? What is the cost for solving a two-dimensional problem?

Three basic parts of a computer program to solve a boundary-value prob
lem are the mesh generation, the discretization, and the solution of the matrix
problem. The mesh generation and the discretization parts basically deter
mine the accuracy or value of the numerical solution, while the matrix
solution part determines most of the computer solution cost. Unfortunately,
the three parts are not independent of each other. Increased generality in
the mesh generation and discretization parts can significantly increase the
matrix solution cost. Thus solution cost can only be given as a function of the
mesh decomposition and discretization methods under consideration.

The factors which most affect matrix solution costs are

(1) Total arithmetic operations required,
(2) Storage requirements, and
(3) Overhead due to data transmission and to logical opera- (10-1.2)

tions associated with the implementation of the solution
method.

The relative importance of these factors is, of course, a strong function of the
computer at hand and the type and size of problems one is trying to solve.
The most efficient solution procedures usually are those which minimize
storage and arithmetic requirements. However, recent advances in computer
technology have been such that logical operations and data transmission
cannot be neglected.

We will not attempt to analyze the general nonlinear model given by
(10-1.1). Instead, we will discuss iterative solution costs relative to the more
modest lineart mathematical model in two and three space dimensions.

t That is, we assume the thermal conductivity k, is not a function of temperature and the
exponent p(r) in boundary condition (2) is either 0 or 1.
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L

(10-2.2)

i = 1, ... , N,

AI: = g.

N

I aijl:j = g;,
j=l

or equivalently in matrix form

(3) Choose a suitable direct or iterative method to obtain the solution to
the matrix problem.

In step (2), I: represents the numerical approximation for T and we always
assume A is a large sparse, positive definite matrix.

For the mesh generation part, the types of mesh elements which we con
sider are rectangles, quadrilaterals (or triangles), and curved four-sided
elements (see Fig. 10-2.1). Another important aspect of the mesh procedure is
the way the mesh elements are put together or what we call the global mesh
structure. The types of global mesh structures considered will be given later.

For the discretization procedure, we assume that each I: j can be associated
with a point of a mesh element and that the coupling aij i= 0 only if I: i and I: j

are associated with points of the same element.t If aij i= 0, we say node i is
coupled to node j. We consider 3-, 4-, and 9-node couplings for rectangular
elements, 4- and 9-node couplings for quadrilaterals, and 9-node couplings
for curved elements.t If I:p is the unknown associated with element point P,

t This assumption insures that A is a sparse matrix.
t For reasons of simplicity, we consider only four-sided elements here. However, most of

what is said in this chapter is also valid for triangular and general three-sided elements.

In this section we consider the numerical solution of the time-independent,
two-dimensional problem

_~ (kOT) _~ (k OT) + yT = g (10-2.1)
ox ox oy oy

in a bounded connected region R with boundary S. Here k > 0, y ~ 0, and g
are material properties of the specific problem to be solved and are assumed
to be only piecewise smooth functions ofx and y.

The general steps needed to solve this problem numerically are

(1) Choose a suitable mesh subdivision of the geometric domain.
(2) Choose a procedure-called discretization-whereby an approximate

solution to the problem (10-2.1) can be represented as the solution to the
system of equations
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MESH ELEMENT TYPE

D
RECTANGLE

QUADRILATERAL

CURVED

5-PT STENCI L

P

9-PT STENCIL

P

25 -PT STENCIL

• •
P• •

Fig. 10-2.1. Types of mesh elements and discretization stencils.

we indicate thej's such that apj i= 0 by a stencil. Examples of 5-,9-, and 25
point stencils for the various mesh elements are given in Fig. 10-2.1. We assume
only that the coefficient matrix A resulting from either the 5-,9-, or 25-point
discretization formula is SPD.

For the mesh generation procedure, we say the global mesh structure is
regular if the geometric domain is subdivided into a p x q mesh element
array; i.e., the domain is divided by q rows with p elements per row. See
Fig. 10-2.2. A regular mesh structure implies that the discretization equations
and unknowns may be ordered such that the nonzero entries of the matrix A
lie in a predictable pattern. For example, if a 5-point stencil is used for the
mesh element array of Fig. 1O-2.2a, the unknowns and equations may be
ordered such that aij i= 0 only if Ii - j I= 0, 1, or p. Thus in the solution process,
no directory is needed to determine the nonzero elements of A. We say the
global mesh structure is semiregular if the geometric domain is subdivided
into a row and column mesh element array but with a variable number of
mesh elements per row. See Figs. 10-2.3 and 1O-2.4b. To determine the non
zero elements in A for semiregular mesh structures, some information con
cerning the row element structure is needed. However, no general directory is
required. A global mesh structure which is neither regular nor semiregular is
said to be helter-skelter. A helter-skelter mesh structure implies that the non
zero entries of A may be scattered rather haphazardly throughout the matrix
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..

( b)

p2

(0)

Fig. 10-2.2. Examples of regular global mesh structures.

Fig. 10-2.3. Examples of semiregular global mesh structures.
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Fig. 10-2.4. Examples of helter-skelter and semiregular global mesh structures. (a) helter
skelter global structure. (b) semiregular global structure.

Thus some type of directory is needed almost at every point i to determine the
j's such that aij =1= O.

A helter-skelter mesh subdivision is useful in accommodating the mesh
to an irregular geometric domain. Semiregular mesh subdivisions may also
be used for irregular domains but usually require more elements. See Fig.
1O-2.4b. For regular and semiregular mesh structures, any element point is
common to at most four mesh elements. For example, the configuration given
in Fig. 10-2.5, where element point P is common to six elements is possible
only for a helter-skelter mesh structure.

F~". 10-2.5. 13-point discretization stencil which may result from a helter-skelter global
mesh structure.
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A Basic Problem /

To establish a basic problem which can be used for comparison purposes,
we first consider the solution of (10-2.1) in a square region R with T = 0 on
the boundary. We assume that the regular mesh structure given in Fig. 10-2.6
is imposed on R and that the standard 5-point discretization formula is used.t
We now wish to consider the iterative solutiont of this problem using a line
partitioning of the unknowns.

Let 1i denote the column vector whose elements are the unknowns on line i
of Fig. 10-2.6. Using a red/black ordering for the line unknowns,§ we can
express the matrix equation (10-2.2) in the partitioned form

Tz Gz
T4 G4

---- = ---- (10-2.3)
T1 G1

,

T3 G3

oo
, T
1 At ,2
,,,,

___Q L. __9 _
Al,Z o! Al,l 0
A1,3 A3,4 i A3,3

:
0'" i 0

where the elements of the submatrix Ai,i are the couplings of the unknowns
from line i to those on linej. Because of matrix symmetry, Ai,i = AI;. The
CCSI method (see Chapter 8) relative to the partitioning (10-2.3) can then be
given by

Tln+ 1) = P~+ O[T'\" + 1) - TIn)] + TIn), (10-2.4a)

where

Ai,i1"ln+1)= - A;r_1,iTln~1 - A;,;+1TI~1 + Gi , i = 2,4, ... ,

and
Tln+ 1) = P(Bn+1)[1"(n+ 1) _ TIn)] + T(n)

1 I I I , (1O-2.4b)

Here P~+ 1) and pC; + 1) are the Chebyshev parameters defined by (8-3.7).

where

A . . T~ln+ 1) = AT T(n+1) A T:(n+ll + G
1,1 1 - i-l,i i-I - i.i+l i+l b i = 1,3, ....

t The test problems used in Sections 8.4 and 9.8 are similar to the basic problem considered
here.

t Direct methods can also be used to solve the system of equations resulting from discretiza
tions of multidimensional, boundary-value problems. Many efficient direct methods exist (Reid
[1977]. George [1973], and Irons [1970]) and should be considered as a possible solution method.
Among the factors to be considered in deciding between direct and iterative methods are "storage"
and "work," i.e. number of arithmetic operations. For many problems, there is a "crossover
point" in the number of unknowns above which a "good" iterative method becomes more cost
effective than a "good" direct method.

*For convenience later, here we have taken Ti to be a red line of unknowns if i is even.
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P2

TN =pp

Tp+1

TI T2 T p

o
o

LINE I

LINE P

LINE 2

Fig. 10-2.6. Regular rectangular mesh subdivision.

Each iteration of the CCSI method requires solutions to the subsystems

A . . t!n+ 1) = y.
l,l 1 l' i = 1, ... , p, (10-2.5)

where Yi is known. Since most of the arithmetic cost per iteration is involved
in the formulation of the Yi vectors and in the solution of the subsystems
(10-2.5), it is important that these calculations be done efficiently. For the
problem considered here, each Ai. i is a positive definite tridiagonal matrix so
that the subsystems (l0-2.5) can be solved efficiently, for example, using the
Cholesky decomposition procedure described in Section 2.3.

We now wish to discuss in some detail the implementation, relative to cost,
of the CCSI method. Since the cost of evaluating the required Chebyshev
parameters has been discussed previously in Section 8.5, we ignore this
aspect in this chapter. Much of what we say concerning the computational
aspects of the CCSI method applies equally well to the SOR, RS-SI, RS-CG,
and CCG methods since these methods and the CCSI method differ primarily
in the way the acceleration parameters are calculated.

We first determine the storage requirements. From Section 2.3, the tri
diagonal system (10-2.5) can be solved by factoring each Ai i as Ai i = SiSi
and then solving for' tln + 1) by using (2-3.25) and (2-3.26). He~e Si is ~n upper
bidiagonal matrix, which has at most two nonzero elements per row. We
assume that the SiSi decomposition of Ai, i is done prior to the start of the
iterative process and that the nonzero elements ofSil rather than the elements
of Ai, il are stored. Each Ai, i+ 1 matrix has at most one nonzero element per
row. IfN is the order of the matrix A, then the storage requirements '1 for the
CCSI method are 3N words for the Si and Ai, i+ 1 matricest and 2N words for

t The nonzero elements of AT- I.; are easily obtained from A; _ I.;'
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We measure the arithmetic operations 0 by the total number of multi
plications and divisionst required to solve the problem. We express 0 as

(10-2.7)

(10-2.6)11 = 5N.

where F is the number of multiplications and divisions required per iteration,
fa is the number of iterations required to reduce the iteration error by 0.1,
and rx is the number of significant digits (to the base 10) required of the
solution. Forming the Yi vectors and solving for fIn) in (10-2.5) requires a total
of 4N multiplications and 2N divisions. Thus with the p(n+ 1) multiplication
in (10-2.4), we have F = 7N. (As noted previously in Section 8.5, 11 can be
reduced to 4N and F to 5N by using the change of variable method suggested
by Cuthill and Varga [1959].) For most physical problems of interest, rx will
lie in the range from 2 to 6. The fa factor in (10-2.7) is determined by the rate of
convergence of the CCSI method, which in general depends on the mesh
element sizet as well as the physical data of the problem. Thus 0 is often
difficult to predict since it depends on fa , which is usually unknown.

For the problem considered here, it is reasonable to assume that the
spectral radius, M(BL

), of the Jacobi iteration matrix BL associated with the
line partitioning (10-2.3) can be expressed approximately in the form§

the T(n) and g vectors. Thus

(10-2.8)

Here p is defined in Fig. 10-2.6 and w is a variable which 'depends on the
physical data of the problem but is independent of p. We assume that
(w/(p + 1))2 is small. (The variable w usually lies in the interval [0.1, 20J).
Using the approximation (10-2.8) for M(BL

), we can express (see Section 9.9)
the asymptotic convergence rate, RC()(CCSI(BL)), of the CCSI method in the

t For reasons of simplicity, we combine the multiplication and division operations here. As
noted in Section 8.5, most divisions may be replaced by a multiplication, if desired. Since an
addition is usually associated with each multiplication, the number of additions required is
about the same as the number of multiplications.

:j: For some physical problems, the CCSI convergence rate does not depend significantly
on mesh element size. We shall discuss two such problems in the next chapter.

S For the model problem (i.e., Eq. (10-2.1) with k = 1 and constant 'I) in the unit square, it
can be shown (see, e.g., Varga [1962]) that

M(BL) = . cos(n/(p + I» :, 1 _ (n
2 + '(12)

2-cos(nl(p + 1» + '11(2(P + 1)2) . (p + 1)2
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approximate form: Rco(CCSI(BL
)) ~ 2.j2(w/(p + 1)). Now, from (2-2.12),

fa. = (log 1O)/Rco(CCSI(BL
)). Thus fa. may be approximated roughly by

fa. ~ 1~~0 (p : 1) ~ 8(~). (10-2.9)

Since F = 7N = 7p2, we have approximately that

(10-2.10)

The estimates (10-2.6) and (10-2.10) give some indication of the storage and
arithmetic factors which affect solution costs. The remaining factor listed in
(10-1.2), overhead due to data transmission and logical operations, is more
difficult to measure but is as important as the other factors. Modern com
puters have reached a point where logical operations and data transmission
may be more time consuming than that required for the arithmetic operations.

We indicate overhead costs by what we call arithmetic efficiency, which
is defined by

. h ffi _ Time to perform multiplications, divisions, and additions
Ant . E c. = . I' . .Total matnx so utIOn tIme

We include additions here since additions and multiplications require about
the same time on some computers. However, the numerator does not include
"fetch" and"store" operations.

To estimate overhead costs, we calculate the arithmetic efficiency for three
programs written for the CDC-7600 computer to solve the matrix problem
(10-2.3) by using the line CCSI method. The computer configuration used was
roughly that given in Fig. 10-2.7.

Program A was compiled with the CDC FORTRAN IV RUN compiler.
The storage and arithmetic requirements are as given above; i.e., 5N
words of storage and 5N multiplication, 2N divisions, and 6N additions per
iteration are required.

DISK BULK STORAGE

LARGE FAST MEMORY

Fig. 10-2.7. CDC-7600 computer configuration. Each disk has 2.0 x 107 words of storage
and a streaming transfer rate of 5 x 10- 6 sec/word. Multiply time = 1.37 x 10- 7 sec: add
time = 1.10 x 10- 7 sec.
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Program B was also compiled using the RUN compiler but with some parts
of the program written in machine assembly language.t The Cuthill-Varga
change of variable method (See Section 8.5) is used to eliminate the 2N
divisions and to reduce storage. Thus 4N words of storage, 5N multiplica
tions, and 6N additions per iterationt are required.

In addition to the machine language programming and the Cuthill-Varga
method used in Program B, Program C utilizes a concurrent iteration pro
cedure§ (e.g., see Pfeifer [1963J) which enables much of disk data transfer
time for large problems to be covered by central processor calculations. The
concurrent iteration precedure will be described later.

The overhead efficiencies for these programs are indicated by the data
given in Table 10-2.1. For problem 1, p = 100, N = 104

, and all data is stored
in fast memory. For problem 2, p = 240, N = 5.76 x 104, and all data is
stored in disk bulk storage. II The time given in the table is for 100 iterations
and does not include any adaptive parameter or stopping calculations since
these calculations were purposely bypassed. For Program A, the division time
was assumed to be 5.48 x 10- 7 sec.

For problem 1, the matrix solution time for Program A was about eight
times that for Program B. The elimination of the 2N divisions in Program B
produced a factor of two improvement and the use of machine language
programming another factor offour. The difference in solution times between
Program B and Program C is due to the additional overhead connected with
the implementation of the concurrent iteration procedure.

For problem 2, one disk was used to read the previous iterate, Tn, one disk
to write the result of the current iterate, T n+ 1, and the remaining two disks
were used to store the matrix coefficients and the vector g. Thus for all three
programs, at least one disk required the storage of 2N words. The transfer
time for these words, which usually must be moved to the central processor
every iteration, is (5 x 10- 6)(11.52 x 104

) = 0.576 sec. Thus for this case,
each iteration will require at least 0.576 sec.

t Machine language programming is done to utilize the parallel or independent function
units on the CDC-7600 which enables one to fetch, multiply, and store at the maximum central
processor speed.

t The initialization and storage costs of the change of variable method are minor and are
ignored here.

§ The use of concurrent iterations apparently was first suggested in the late 1950s by S. W.
Dunwell of the IBM Corporation.

II For Programs Band C, the storage required for problem 2 is 4N or 2.3 x lOs words which
would seem to fit in large fast memory. However, because of additional storage requirements
of these programs, disk bulk storage was used.
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TABLE 10-2.1

Arithmetic Efficiencesfor Three Programs to Solve the Basic Problem."

Problem 1: p. = 100, N = 10,000 Problem 2: p = 240, N = 57,600

Time (Sec) Time (Sec)

Matrix Arithmetic Matrix Arithmetic
*,"';-, + solution efficiency *."';-, + solution efficiency

Program A 2.44 14.5 0.17 14.05 87.0 0.16
Program B 1.345 1.68 0.80 7.75 59.6 0.13
Program C 1.345 2.634 0.51 7.75 12.47 0.62

" The matrix solution time indicated is for 100 iterations of the line CCSI method.

For Program A, the central processor time required per iterationt for
problem 2 is about 0.8 sec. Thus the disk transfer time is covered by central
processor calculations and the arithmetic efficiency is not reduced even
though disk storage is used. For the more efficient Program B, however, the
central processor time per iteration is about 0.097 sec. Thus the slower disk
transfer rate will determine the calculation time. This is reflected in the large
reduction of the arithmetic efficiency for Program B when disk storage is
required. The concurrent iteration procedure used in Program C permits
calculations to be basically carried out at the faster central processor speed
independent of the type of storage used.

Now, we wish to illustrate the concurrent iteration procedure for the CCSI
method (10-2.4). We assume the indexing of lines is as given in Fig. 10-2.6.
Let the data for the first 12 lines, for example, be in large fast memory.
Using this data, we can calculate iterate 1 for the red lines 2, 4, ... , 12 and for
the black lines 1, 3, ... , 11. Now iterate 2 can be calculated for red lines
2,4, ... , 10 and for the black lines 1,3, ... ,9. Using only the data for the
first 12 lines, we can continue this process to obtain finally iterate 6 for lines
1 and 2, iterate 5 for lines 3 and 4, etc. After this "triangle" of iterates (see
Fig. 10-2.8) is completed, the data for lines 1 and 2 are replaced in fast
memory by that for lines 13 and 14. We then can calculate iterate 1 for lines
13 and 14, iterate 2 for lines 11 and 12, ... , and iterate 6 for lines 3 and 4. The
data for lines 3 and 4 are then replaced by that for lines 15 and 16, and we can
calculate one additional iteration for lines5-16. Continuing this process over
all lines, we do six concurrent iterations while moving the coefficient data from

t Since the central processor time for problem 1 is basically the matrix solution time, an
estimate of the central processor time per point per iteration can be obtained from the data of
problem 1.
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Fig. /0-2.8. Concurrent iterations. (a) Concurrent CCSI iterations. (b) Concurrent SOR
iterations.

t For the problems of Table 10-2.1, Program C is five to seven times fater than Program A
but the differences in computer time are relatively small. Thus Program C would have to be used
more than a few times in order for the savings in computer cost to offset the greater initial pro
gramming cost of Program C. However, for more general problems (such as three-dimensional
or time-dependent problems) where solution times are in minutes or hours, a factor of5 reduction
in solution cost becomes significant almost immediately.

L
,
,

"---

14 v'
13 v'
12 v'
II v'
10 2 ,/

9 2 ,/

8 2 3 v'
7 2 3 .; 7 .;

6 2 3 4 v' 6 1 .;

5 2 34'; 5 1 2 .;

4 2 345 v' 4 1 2 3 .;

3 2345'/ 3 1 2 3 4 .;

2 2 345 6 2 1 2345';

LINES 1 23456 LINES I I 2 3 4 5 6

ITERATIONS ITERATIONS

( 0) ( b)

I
"---

disk to large fast memory only once. Moreover, if buffering capabilities -are
available, much of the time required to transfer this data from disk can be
covered by central processor calculations (Pfeifer [1963]). For example, while
calculating iterate 1for lines 13 and 14, ... ,and iterate 6 for lines 3 and 4 in the
above, we can transfer the data for lines 15 and 16 from disk to a buffered area
in fast memory. Thus all (or almost all) of the data for lines 15 and 16 will be
available in fast memory when needed. Treating the data transfer for other
lines similarly, we can cover most of the disk data transfer time by central
processor calculations.

In general, data for 2(C + 1) lines must be stored in fast memory in order
to do C concurrent CCSI iterations with data buffering. We remark that
concurrent SOR iterations also may be carried out. In fact, data for only
C + 1 lines is required in fast memory in order to do C concurrent iterations
of the SOR method when a natural line ordering is used. The case C = 6 is
illustrated in Fig. 10-2.8. Since the values for the conjugate gradient parameters
'Yn+ 1 and Pn+ 1 (see (7-4.9)) depend on results obtained from iteration n, the
direct utilization of the concurrent iteration procedure for the conjugate
gradient method is not possible.

From the data of Table 10-2.1, it is clear that overhead costs can be signifi
cant,t and that effort made to minimize data tra,nsfer and logical operations
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can have a large payoff. We remark that the arithmetic efficiency improve
ments obtained in Programs Band C relied heavily on the regular mesh
structure of the problems. If the precise location of the nonzero elements in
the coefficient matrix could not be assumed in the programming of the
solution method, an arithmetic efficiency greater than 0.1 would be difficult
to achieve.t

Problems Using 9- and 25-Point Stencils

We now consider iterative solution costs when the more general 9- or 25
point stencil of Fig. 10-2.1 is used in the discretization of (10-2.1). We continue
to assume that the regular mesh structure of Fig. 10-2.6 is imposed on the
solution region and that T = 0 on the boundary.

F or the 9-point discretization problem, using the same line partitioning and
the same line ordering as for the 5"point problem, we again obtain the red/
black partitioned form (10-2.3). For this case, both the diagonal submatrix
Ai, i and the off-diagonal submatrix Ai, i + 1 are tridiagonal.

For discretization procedures which yield 25-point stencils, some pre
liminary remarks are needed before solution aspects for this problem can be
discussed. The 25-point stencil given in Fig. 10-2.1 is applicable for any
unknown t"p associated with an element point P, which is common to four mesh
elements. However, when P is common to fewer than four elements, a stencil
with fewer points will result. This follows from our previous assumption (see
discussion following (10-2.2)) that the unknowns t"p and t"j are coupled only
if P and j are points of the same element. Stencils for t"p when P is common to
one mesh element and when P is common to two mesh elements are illustrated
in Fig. 10-2.9.

Strang and Fix [1973J note that the unknowns t"p associated with element
points interior to mesh elements can be eliminated at little cost prior to the
start of the solution process. This early elimination of unknowns, which is
known as static condensation, also simplifies the stencils for the remaining
unknowns. For example, the 25-point stencil of Fig. 10-2.1, after static con
densation, reduces to a stencil with only 21 points (see Fig. 10-2.9). In what
follows, we ignore the small cost involved in this early elimination of un
knowns.

In order to obtain a convenient red/black partition for problems which
utilize the 21-point stencil, we partition the unknowns by "mesh element
lines": Let Ii denote the column vector whose elements are the unknowns on
the" element-line" i given in Fig. 1O-2.10.t Such a partitioning leads, as before.

tFor example, the effectiveness of machine language programming would be significantly
reduced for this case.

t Note that "element-line" p + I is a special case.



Fig. /0-2.9. Discretization stencils for <p. (a) Element point Pcommon to one mesh element.
(b) Element point P common to two mesh elements. (c) Element point P common to four
elements after static condensation.
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to a matrix equation of the form (10-2.3), but now the diagonal submatrices
Ai, i have a half-bandwidtht of four instead of one as before. Thus solutions
for the subsystems Ai, i 1; = Yi will be more costly to obtain for the 21-point
stencil case. Each row of the off-diagonal submatrices Ai, i+ 1 has, Qn the
average, 6.5 nonzero elements.

In Table 10-2.2, estimates for the multiplication and storage requirements
of the block CCSI solution method are given for the various stencils which
may be used in the discretization of (10-2.1). The last row of the table gives the
requirements for the 21-point case assuming that the solution region has been
subdivided into only tv x tv mesh elements. Note that the arithmetic
requirements for this case are roughly the same as those for the five- and
nine-point cases when a V x V mesh subdivision is used. The ratios of the
multiplication and storage requirements for the 9- and 25-point problems to
the requirements of the 5-point problem are given in Table 10-2.3. We have
assumed that the rate of convergence for the block CCSI method is inde
pendent of the discretization formula used. Numerical experience (Abu
Shumays and Hageman [1975J) indicates that this is true for problems for
which the 5- and 9-point stencils are used, but we have no data concerning
the truth of this for the 25-point case.

The value of the 25-point stencil lies in two areas:

(1) Use with curved mesh elements to describe problem geometry if
curved boundaries are involved.

(2) Use as a higher orderdiscretization formula ifthe solution is sufficiently
smooth.

Ifan accurate description of the geometric domain is important, then one is
forced to pay the price in solution costs. However, if rather gross approxi
mations are used to model other parts of the physical problem, then some

t The matrix H = (hi) is said to have a half-bandwidth ofb if hi•j = 0 whenever Ij - il> b.
{
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ELEMENT-LINE P+ I ~_

ELEMENT-LINE Pt

Fig. 10-2.10. An "element-line" partitioning for a 21-point discretization approximation.

thought should be given as to the worth of an accurate description of the
geometric domain.

The value of the 25-point stencil as a higher order discretization formula is
often an open question. Singularities in low-order derivatives of the solution
occur in most problems where corners exist on the boundaries and/or where
the physical parameters (k, y, g) ofEq. (10-2.1) are not smooth. Near singular
points, there is no reason to expect a "high-order" 25-point discretization
formula to be more accurate than a "low-order" 9-point formula (Babuska
and Kellogg [1973]). For problems with few singular points, the accuracy of
high-order methods can be maintained through the use of special techniques.
For example, around the singular points, a suitable mesh refinement (Birkhoff
et at. [1974]) or special discretization formulas (Strang and Fix [1973]) could
be used. However, for more general problems, it is difficult and costly to
account for each singular point individually.

TABLE 10-2.2
Multiplications and Storage Requirements of the CCSI Solution Method as a

Function of Discretization Stencil

p x p
Mesh elements F 1

0
0 Storage, '1

5-Point stencil
( ~ p2 unknowns) 7 p2 0.8 (P(w) 5.6 0: (p3(W) 5 p2

9-Point stencil
(~ p2 unknowns) II p2 0.8 (P(w) 8.8 0: (pJjw) 7 p2

21-Point stencil
(~ 3p2 unknowns) 60 p2 0.8 (P(w) 48.00: (p3(W) 34 p2

21-Point stencila

(~~p2 unknowns) 15 p2 0.4 (P(w) 6.0 0: (p3(W) 8.5 p2

a!p X !p mesh elements.
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TABLE t 0-2.3

Global Mesh Structure Effects

1.7

1.4

6.8

Storage, 11

1.I

8.6

1.6

Arith.,O

{

9_point

. 5- oint
(p x p) Elements 2IP .

-POlIlt

5-point
KiP x ~:p) Elements} 21-point

{(P x p) Elements} 5-point

Thus far we have discussed the solution cost factors given in (10-1.2) relative
to various discretization formulas only for regular mesh structures. The
generalization of the above estimates to the semiregular mesh structure case is
straightforward. However, some care should be taken for the semiregular
mesh case in estimating the data transmission overhead cost factor for large
problems where disk storage is required. Since the amount of data required
for each line may be different, the use of concurrent iterations may be more
complicated.

Ratios of Multiplication and Storage Requirements for
the 9- and 21-Point Stencils to the Requirements of the

5-Point Stencil

--

Often, a concern to the user is the error caused by the discretization of the
mathematical model. For most practical problems there is no easy way to
estimate pointwise this discretization error. Usually, error estimates can only
be obtained (Zienkiewicz [1973]) by analyzing the solutions from successively
finer mesh subdivisions. Previous information may beneficially be used when
analyzing discretization errors by successive mesh subdivisions. For example,
a good initial approximation for a refined mesh problem can be obtained by
simple interpolation of the coarse mesh solution. Moreover, the optimum
acceleration parameters for the refined mesh problem usually can be easily
estimated from the coarse mesh problem. We note that at least two mesh
subdivisions are necessary to get useful information concerning the discretiza
tion error. Thus the cost for doing numerical discretization error analysis can
be high and is often impossible due to size restrictions of the program being
used.

276 10 THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS
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For a helter-skelter global mesh structure, block CCSI solution methodst
may be used to solve the matrix equation but usually at a considerably greater
cost than that for a problem with a regular mesh structure. The greater cost
is due to increased arithmetic and storage requirements and increased over
head due to logical operations and data transfer. The efficiency of a particular
program is often determined by how well the regularities ofthe numerical pro
cedure can be adapted to the characteristics of the computer at hand. The
fewer regularities which a numerical procedure possesses, the more difficult
it is to make use of the characteristics of the computer. For problems with a
helter-skelter global mesh element structure, the effectiveness of iterative
solution methods are reduced considerably.

10.3 THE TIME-INDEPENDENT
THREE-DIMENSIONAL PROBLEM

In this section we consider the numerical solution of the time-independent,
three-dimensional problem

-

_~ (k aT) _~ (k aT) _~ (k aT) + yT = gax ax ay ay az az (10-3.1)

with T = 0 on the surface boundaries. The mesh element types and discreti
zation stencils considered are given in Fig. 10-3.1. The global mesh element
structure is restricted to be of the regular type given in Fig. 10-3.2.

A one-line partitioning of the unknowns leads to a redjblack partitioning
of the coefficient matrix only for the 7- and ll-point stencils corresponding to
elements 3.1a and 3.1b. For the 27-point stencil corresponding to element
3.1c, a one-plane partitioning of the unknowns is needed to produce a con
venient red/black partitioning for the coefficient matrix. In Table 10-3.1, we
give the arithmetic and storage requirements for the block CCSI solution
method as a function of the mesh element used in the discretization of(10-3.1).
~e have assumed that q ::; p ::; r. The increased arithmetic and storage
requirements for the one-plane CCSI method is caused by the increase in the
half-bandwidth of the subsystem of equations which must be solved at each
step of the iterative process. The asymptotic rates ofconvergence for the CCSI
method were obtained by assuming that the spectral radii /11 ofthe associated
Jacobi iteration matrices to be of the form /11 ~ 1 - (W/q)2. The subscript on

t For example, the Cuthill-McKee [1969] reordering algorithm developed to minimize
bandwidth, may be used to obtain a block red/black partitioning of the coefficient matrix.
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I
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p

( 0) (b) ( c)

Fig /0-3./. Types of mesh elements and discretization formulas for three-dimensional
problems. (a) 4-node rectangular prism element, 7-point discretization stencil. (b) 5-node
quadrilateral prism element, II-point discretization stencil. (c) 8-node hexagonal element,
27-point discretization stencil. .

o P
Fig. /0-3.2. p x q x r regular global mesh structure.

the w variable in Table 10-3.1 indicates the dependencet of this variable on the
partitioning used.

The semilog graphs of e and 1] versus p given in Figs. 10-3.3 and 10-3.4
clearly indicate the magnitude of the storage and computational requirements
for the three-dimensional problem. The graphs are based on the assumption
that p = q = r, that (J. = 5, and that WL = Wp = 0.7. The right margin of

t For the model problem (k = 1.0, l' = 0.0, and p = q = r) in the unit cube, wi ~ ~1!2 and
II'~ ~ ~1!2.

. '1;
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TABLE 10-3.1
Multiplication and Storage Requirements of the Block CCSI Solution Method as a
Function of Discretization Stencil."

I, F e Storage, I)

7-Point stencil 0.8q 7.2(/. 2
6pqr(line partitioning) 9pqr -pq r

WL W L

11-Point stencil 0.8q
13pqr

1O.4(/. 2
8pqr

(line partitioning)
--pq r

II'L W L

27-Point stencil 0.8q 1.6(/.(p + 9)
pq2r

(plane partitioning) 2(p + 9)pqr (p + II)pqr
Wp Wp

"The quantities 170 F. e. and 'I are defined by (10-2.6)-(10-2.7).

Fig. 10-3.3 gives the time required just to carry out the required number of
multiplications on a CDC-7600 computer.

For the computer configuration of Fig. 10-2.7, the storage limitation is
8 x 107 words. Thus if p = q = r, the storage limitation restricts p to
be less than 90 when the 27-point stencil and the one-plane CCSI solution
method are used. Moreover, the effectiveness of the iterative solution method
is reduced considerably when a 27-point discretization formula is used. The
reduced effectiveness is caused not only by the increased arithmetic and
storage requirements but also by the possibly even greater increase in the
logical and data transmission overhead associated with the implementation
of the method.

For most three-dimensional problems of modest size, some data must be
stored in disk bulk storage. We illustrate this for the CDC-7600 configuration
of Figure 10-2.7. With p = q = r, for example, an upper bound on p before disk
bulk storage is required is p = 20 and p = 29 for the plane and line partition
ings, respectively. Since the disk streaming transfer time (assuming the use of
four disks in Fig. 10-2.7) is ten times larger than the multiplication time, many
of calculations would be done at the slower bulk storage transfer rate. The
use of the concurrent iteration procedure discussed in Section 10.2 permits
some of the bulk data transfer time to be covered by central processor cal
culations. The difficulty here is that large fast memory might not be large
enough to hold the data required. In Table 10-3.2, we give the number of
concurrent iterations which can be done as a function of p for the one-plane
SOR and the one-line SOR methods using a natural (non-redjblack) order
ing for the partitioned unknowns. For the one-plane SOR and one-line SOR
methods, respectively, we assume that (p3 + 10p2) and (8 p2) words per plane
are required. To do C concurrent SOR iterations, (C + 1) planes of data are
required in the large fast memory. For the red/black ordering required by the
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TABLE 10-3.2
Number ofConcurrent Iterations as a Function ofp
for the One-Plane SOR and One-Line SOR

Method1'

No. of concurrent iterations

p = q = r One~plane SOR

10 124
20 20
30 6
34 4
35 3
37 2
41 I
56
60
70
72

One-line SOR

ISS
76
32
28
22
20
18
8
6
6
4

a The plane method assumes a 27-point dis
cretization formula while the line SOR method is
for an II-point formula.

CCSI methods, 2(C + 1) planes of data are required in the large fast memory
in order to do C concurrent iterations. Thus the number of concurrent
iterations which may be done using the CCSI method is roughly one-half that
given in Table 10-3.2 for the SOR method. It is for this reason that the SOR
method using a natural ordering for the partitioned unknowns often is used
instead of the CCSI method in the solution of three-dimensional problems.

Taking into account the three cost factors given in (10-1.2), Hageman
[1975J gives estimates for the solution times of the various methods for
different values of p. His estimates are given in Table 10-3.3 and are based on
the assumptions thatt p = q = r, that the computer configuration of Fig.
10-2.7 is used, and that concurrent iterations are used. The estimates given
are rough and are based on many assumptions. However, they do indicate the
magnitude of the computing time required to solve three-dimensional
problems. .

Based on Figs. 10-3.3 and 10-3.4 and the estimates of Table 10-3.3, it is
clear that the solution time required for a 7- or 11-point discretization system
is significantly less than that required for a 27-point system. The difficulty is
that the 7- or ll-point discretization formula is usually applicable only for

t If p and q in Fig. 10-3.2 are small relative to r, the computational cost for the plane method
(relative to the line method) is considerably reduced.
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TABLE 10-3.3
Estimates for the Solution Time Required by Different Solution

Methods on a CDC-7600 Computer

Solution time (hr)

283

p=q=r

19
34
40
41
50

27-Point formula
one-plane SOR

0.06
0.96
4.26

1\.20

7- or II-Point formula
one-line SOR

0.02
0.17
0.32
0.33
0.84

those problems whose geometry can be described using rectangular or
quadrilateral prism mesh elements.

We remark that partitionings other than plane should also be considered
in the solution ofthe 27-point discretization problem. Consider, for example,
a partitioning of the unknowns by lines. Since such a partitioning produces a
coefficient matrix which does not have Property .91, neither the CCSI method
or the SOR methodt is applicable for this case. However, other iterative
procedures can be used. One such method is the J-SI method (see Section 9.9).
The plane CCSI method discussed above converges faster, perhaps three to
six times faster,t than the line J-SI method; however, the total computer time
required by the line solution method may be less than that for the plane method
since less storage and less arithmetic per iteration are required.

lOA THE TIME-DEPENDENT PROBLEM

In this section we consider the numerical solution of the time-dependent
linear problem

aT
p- = V·kVT + gat (10-4.1)

in two or three space dimensions. We assume that T = 0 on the boundary and
that some initial condition To is given. We also assume that p > 0 and k > o.

t The SOR method can be used but a precise prescription for Wb would not be available.
t This estimate is based on arguments similar to those given in Section 9.9 to obtain the ratio

(9-9.5).
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(10-4.2)

Using one of the spatial discretization methods discussed previously, we
can express (see, e.g., Varga [1962J) the space-time continuous problem
(10-4.1) in the time continuous matrix differential form l,

dr
C dt = - A(t)r + get),

where, for simplicity, we assume that the matrix C is independent of t. Except
for the time variable, the matrix A(t) and the vectors ret) and get) are defined
as in (10-2.2). To discretize relative to time, we integrate (10-4.2) from tn to
tn + I' Using the approximation

rn+'wr dt -:- Ctn+l - tn)[8WCtn+l)r(tn+l) + (1 - 8)W(tn)r(tn)J
In

for terms on the right side of (10-4.2), we obtain

[ AC + 8ACtn+ I)]rn +1= [A C - (1 - 8)ACtn)]rn
Lltn + 1 Lltn + 1

+ [8g(tn+I) + (1 - 8)gCtn)]. (10-4.3)

Here rnrepresents the numerical approximation for rCtn), !itn+1 = tn+1 - tn,
and 0 ~ 8 ~ 1 is the integration weight factor. The backward-difference
method is obtained with 8 = 1 and the central-difference (Crank-Nicolson)
method corresponds to 8 = !. For sufficiently small !it, the central-difference
method is considered to be the most accurate. From (10-4.3), it is seen that an
equation of the type

(10-4.4)

where Sn+ 1 is a known vector, must be solved for r n + 1 at each time step.
The solution cost for the time-dependent problem (10-4.1) depends on the

number of time steps and the work required per time step. The number of time
steps required is a function of the time increments, !it, usedt and is strongly
problem dependent. Thus we will discuss only computational cost per time
step here. Moreover, in what follows,. we assume that 8 > O.

If we let

An+1 = (C/!itn+1) + 8ACtn+ 1),

then for each time step the equation

An+1rn+1 = Sn+l

(10-4.5)

(10-4.6)

t The selection of M required to achieve a certain degree of accuracy is a difficult problem.
Often numerical experimentation or an adaplive procedure is required to determine adequate
values for /'"t. See, for example, Gear [1971].
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must be solved for !n+ l' The known vector Sn+ 1 in (10-4.6) is given by the right
side of Eq. (10-4.3). Since the matrix A corresponds to the discretization of
- V . kV and the matrix C corresponds to the discretization of y in the time
independent equations (10-2.1) or (10-3.1), the matrix equation (10-4.6) is
of the form considered previously in Sections 10.2 and 10.3. Thus the compu
tational cost factors for solving (10-4.6) by the block CCSI method are the
same as those given previously.

The number ofCCSI iterations required to solve (10-4.6) for !n+ 1 is usually
less than that required for the time-independent problems, however. The
reasons fonhis are

(1) For many problems, a stopping criterion number of 10-4 or 10- 5 for
the iterative process is adequate for reasonable accuracy. Moreover, if! does
not change rapidly in the time interval (tn, tn+ 1), !n is a good approximation
for !n+ 1 so that the relative error of the initial guess is already small.

(2) The number of spatial unknowns for time-dependent problems is
usually kept modest in order that the total computer time required be reason
able.

(3) The convergence rate of the CCSI method is now also a function of!J.t
and (J, where the number of iterations required for a fixed degree of accuracy
decreasest as !J.t and (J decrease from 00 and 1, respectively.

(4) The estimate for the optimum acceleration parameters usually needs
little modification in going from time tn to time tn + l'

One ofthe more difficult problems in the use ofan iterative solution process
to solve (10-4.6) is the value' to use in the iteration stopping test (8-3.35). If (
is picked too large, the global error may be adversely affected; on the other
hand, if' is picked too small, the number of iterations per time step would be
unnecessarily large. Obviously, the optimum value of' is a function of !J.t:
perhaps, a good choice for' would be /0 the value of the local time discretiza
tion error for that M. Unfortunately, this discretization error usually is not
known a priori. However, in order to control the time step size dynamically,
methods (see, e.g., Hindmarsh [1974] and Byrne and Hindmarsh [1975])
have been developed to estimate the local (time) truncation error from the
numerical solution. Ifthis is done, then' can be made a function of the criterion
imposed on the local truncation error.

For time-dependent problems, the matrixt An + 1 and the vector Sn+ 1 must
be recalculated for each time step. The cost ofdoing these calculations may be
as great or greater than that required for the solution of (10-4.6). Other than

t This is especially beneficial in the solution of problems where the use of a small M is
required.

t We assume that the thermal conductivity k in (10-4.1) varies with time.
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careful programming, little can be done to reduce the cost involved in the
calculation ofAn+ J'

From (10-4.3), the calculation of the source vector Sn+ 1 involves the·
matrix-vector product

(10-4.7)

Since it is not possible to obtain A(tn) or C from An, it is clear that either the
matrix C and/or the matrix A(tn) must be available to compute Sn+ l' One of
the more efficient ways to compute Sn + 1 is to make use of the fact that

(10-4.8)

Thus if the matrix C and the vectors Sn and g(tn) are available from time step n,
then sn+ 1 may be expressed ast ' .

!.
I

[
~tn+l (1 - O)J C (1 - 0)

Sn+l = 1 +~. -0- ~tn+l Tn - -0- Sn

+ [Og(tn+ 1) + (1 - O)g(tn)]. (10-4.9)

The arithmetic required to compute Sn+ 1 by using (10-4.9) is less than that of
one CCSI iteration. However, additional storage is required since the matrix
C and the vector g(tn) must be stored during time step n.

If the two-dimensional 5-point stencil or the three-dimensional 7-point
stencil is used in the spatial discretization of(10-4.1), C is a diagonal matrix so
that the additional storage required is small. However, for other discretization
formulas discussed in Sections 10.2 and 10.3, the nonzero elements of Care
likely to be structured the same as for A(tn) or An. For thIS case, the addi
tional words of storage required to store C can be significant.

t Since Tn is obtained by iteration, Eq. (10-4.8) will not be satisfied exactly. Because of this, the
vector Sn + 1 given by (10-4.9) will not exactly equal the right side of (10-4.3). The effect of this on
global error is not known to the authors.
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CHAPTER

11
Case Studies

11.1 INTRODUCTION

In this chapter, we describe the use of iterative methods in the solution of
the few-group diffusion, the monoenergetic transport, and the nonlinear
network flow multidimensional boundary-value problems. The goal here is
not to give particular solution methods for these problems but rather to
illustrate the versatility of iterative methods and to illustrate some problem
aspects which must be considered in their use.

In the previous chapters, numerical results were given to illustrate the
behavior of a particular numerical method. The method was given and then
the problem to be solved was chosen. Of course, the problem was selected
so that the use of the numerical method was justified theoretically. In this
chapter, we consider the reverse situation: we are given the problem and
must select a solution method. Often, for this case, theoretical results may be
applicable only for certain model problems, or they may involve assumptions
which are not valid for some problems of interest, or they may be valid only
when some variable is sufficiently small. Thus in the solution of practical
problems, mathematical rigor often must be complemented· by sound
mathematical reasoning and carefully designed numerical experimentation.

When an a priori rigorous mathematical justification for a particular
solution procedure does not exist, an a posteriori numerical verification is
needed. This verification can be made by printing, during the solution

?R7
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process, selected numerical datat which indicates a posteriori whether or
not the assumptions made are valid for the particular problem being solved.
Should the method fail, the behavior of the numerical data often will indicate
which assumption is not valid. Frequently, relatively easy modifications
then can be made in the numerical procedure to correct the difficulty. For
the three problems studied in this chapter, we state what assumptions
are being made in the numerical procedure and why these assumptions are
reasonable.

In Section 11.2, we discuss the numerical solution of the two-group
diffusion eigenvalue problem. The numerical procedure described illustrates
(1) the use of inner-outer (or multistage) iterations and (2) the use of
Chebyshev acceleration in the solution of eigenvalue problems.

In Section 11.3, we discuss the numerical solution of the inhomogeneous
monoenergetic transport equation in x-y geometry. The numerical procedure
illustrates (1) the use of Chebyshev acceleration when the associated Jacobi
iteration matrix may have complex eigenvalues, (2) the use of a Chebyshev
acceleration procedure whose convergence rate is almost independent of
the spatial discretization, and (3) another use of inner-outer iterations.

In Section 11.4, we discuss the numerical solution of nonlinear network
flow problems. The numerical procedure illustrates (I) the use of the SOR
method to solve systems of nonlinear equations and (2) the use of inner
outer iterations in which the block SOR method is used for the outer itera
tions and Newton's method is used for the inner iterations.

11.2 THE TWO-GROUP NEUTRON DIFFUSION PROBLEM

In the following discussion on the numerical solution of the two-group
neutron diffusion problem of reactor physics, we illustrate the use of inner
or multistage iterative processes and the use of Chebyshev polynomials to
accelerate the convergence of the power eigenvalue iterative process.

Statement of the Continuous Problem

The two-group diffusion problem (e.g., see Bell and Glasstone [1970J) is
to determine the largest (in modulus) eigenvalue Al and the corresponding
eigenvector, (qJ I (r), qJ2(r)), satisfying the coupled differential system

-V'D1(r)VqJl(r) + al(r)qJI(r) = A-1[aL(r)qJl(r) + a{2qJ2(r)J,

- V· D2(r)V(P2(r) + a2(r)qJ2(r) - as(r)qJI(r) = (11-2.1)
A-1[a{l(r)qJI(r) + a{2(r)qJ2(r)J.

t For example. see Ihe remarks given allhe end of Sections 6.4, 8.3. and 9.6.
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Here epg(r), g = 1, 2, denotes the neutron flux in an energy interval Eg, r
denotes spatial dependence, and V' is the gradient operator. The coefficients
Dg(r), (Jir), (JS(r), and (J{q.(r) are physically meaningful nonnegative functions
of r. The functions Dg(r) and (Jir) are assumed to be strictly positive.

We assume the solution region to be a rectangle R in the x-y plane and
that

(a) the solution region R is composed of a finite number of simply
connected rectangular subregions, in each of which the coefficients Dy(r),
etc., possess sufficiently high derivatives,

(b) epg(r) and Dir) oepir)jon are continuous across region interfaces
(oepjoll is the derivative of ep in the direction of the normal to the region
interface),

(c) on the boundary r of R, the homogeneous boundary condition

oep (r)
a(r)ep (r) + [3(r) -g- = °

g on

holds, where a(r) ~ 0, [3(r) ~ 0, a(r) + [3(r) > °and where oepulon is the
derivative in the direction of the outward normal to the boundary.

For the two-group approximation, the continuous neutron energy range
is divided into the two intervals E 1 and Ez . The equations given in (11-2.1)
are conservation equations for neutrons in the energy intervals (groups)
Eland Ez at a spatial point r. The ( - V' . DgV' epg) term gives the net loss due
to diffusion, the «(JgC{Jg) term gives the loss of neutrons in group g due to
neutron collisions with material nuclei, and the «(J{1 epl + (J{z epz) term
gives the neutrons born into group g from fissioning. The «(Jsepl) term in the
second equation of (11-2.1) gives the neutrons which are scattered from
group 1 into group 2 through a nonabsorbing collision. The eigenvalue Al
indicates whether there is a net loss or gain of neutrons and that the eigen
vector gives the neutron scalar flux shape. Habetler and Martino [1961 ]
have shown that the largest (in modulus) eigenvalue A 1 of (11-2.1) is positive
and that if Akf AI) is any other eigenvalue of (11-2.1), then Al > IAkl.
Moreover, they show that the eigenvector (epl(r), epz(r» corresponding to
A1 can be chosen to be positive almost everywhere.

Statement of the Discrete Problem

To obtain the discrete analog of (11-2.1), we subdivide the rectangular
region R into a p x q mesh element array (see Fig. 1O-2.2a) such that all
internal interfaces and external boundaries lie exactly on mesh lines. The
coupled differential equations (11-2.1) are then approximated by a coupled
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system of linear equations obtained by standard finite difference or finite
element discretization techniques. The resulting coupled linear system may
be expressed in matrix form as

\

\

Numerical Solution of the Discrete Problem

1

F
t:

1
t

1=

(11-2.2)

<D = [:J.and

M<l> = A-IF<D,
where

M = [ Al A0
2

] , F = [FI'1i F I. 2
],

-R I F 2 ,I F2• 2

Here (P g , g = 1,2 is a vector of order N whose components are the approxi
mations for ((Jk) at prescribed spatial points and A is the discrete approxi
mation for i\. The matrix-vector products Ag({Jg, Fgg,({Jg" and RI({JI are the
discrete analogs of (-V· Dk?v({Jir) + agcpk)), a{q.({Jg.(r), and aScpI(r),
respectively. The matrices A I and A 2 are symmetric and positive definite,
Thus M is nonsingular.

The discrete problem is to determine the largest (in modulus) eigenvalue
Al and the corresponding eigenvector <D I of (11-2.2). For the standard
finite difference discretization,! of (11-2.1), Birkhoff and Varga [1958] have
shown that the discrete problem (11-2.2) possesses a unique positive, largest
(in modulus) eigenvalue Al and that the eigenvector <D I corresponding to
At can be chosen to have positive elements. As the spatial mesh increments
approach zero, the assumption is that the fundamental solution (AI and
<D I ) of (11-2.2) approaches the fundamental solution of the continuous
problem (11-2.1).

We assume that Al > IAk I for k i= 1. Thus the eigenvalues of the 2N x 2N
matrix M- I F can be ordered as <1

(11-2.3)

(11-2.4)

Moreover, we let <D; be the eigenvector associated with Ai> i.e., Aj<Dj =
M- I F<D;.

The well-known power method (Wilkinson [1965]) may be used to obtain
iteratively Al and <D I. Given an arbitrary (positive) guess vector <D(O) and
guess eigenvalue A(O), the power method generates successive estimates for
At and <D I by the process

<D(/ + 1) = A(/)-IM-IF<D(l),

A(l + 1) = A(l)(eTF<l>(/ + l)jeTF<D(l)),

T
t<
tl
(J
p

H

t The nonnegative properties of certain matrices assumed by Birkholf and Varga need not
be valid for some discretization techniques. co
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There eT == (1,1, .. :, 1).1f(11-2.3) is va1id,t the power method is a convergent
rocess, i.e., liml_co A(l) = Al and liml_co <D(l) = <D I . Moreover, the rate at
Thich <D(l) converges to <1>1 depends (Wilkinson [1965J) on how well sep
rated the fundamental eigenvalue Al is from the other eigenvalues of
{-IF, i.e., the convergence rate depends directly on the dominance ratio p,
'here

(11-2.5)

he smaller the ratio, the faster the convergence. When p is close to unity,
Ie power method converges very slowly. We now describe how Chebyshev
olynomials can be used to accelerate the basic power method.
To use Chebyshev acceleration, we make the following additional assump

ons:
(a) the eigenvalues {Adi N of M- I F are real, and
(b) the set of eigenvectors {<1>k} for tvrlF includes a basis (11-2.6)

for the associated vector space £2"'.

rom assumption (b), the initial guess <1>(0) can be expanded in terms of
Ie eigenvectors of M-IF, i.e., we can express <D(O) in the form

2N

<D(O) = L: Ck <1>k
k=1

(11-2.7)

Ir some constants Ck • We assume CI =1= O. For expository purposes, we now
;sume the eigenvalue estimates ,1.(0), ,1.(1), ... in (11-2.4) are approximately
Iual to AI' The iterate <D(l) in (11-2.4) then may be expressed approximately

hus in [ power iterations, the most slowly decaying contribution (i.e., <1>2)
. the error is multiplied by the [th power of the dominance ratio p. We note
at the [power iterations here are equivalent to applying the matrix operator
r IF/AIY to <D(O). The power method is a special case of the general
)lynomial procedure

ere PtCz) is a polynomial of degree [ in z.

t As mentioned above. Birkhoff and Varga have shown (11-2.3) lo be valid under certain
ld ilions.
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L

(11-2.10)

(11-2.11)

HP1(z) could be chosen such that P1(1) = 1 andPICAk!A1) = Ofork = 2, ... ,
2N, then cDC/) = ClcDj. Choosing stich a PICz) is not practical. Instead, we
choose PICz) such that PI(l) = 1 and such that the maximum of IP1(z) I is
minimized for A2N/AI S z S A2/AI(= p). From Theorem 4-2.2, such a
polynomial can be given (Flanders and Shortley [1950]) by

(
2Z - p - b)I (2 - p - b)

P1(z) = T, P _ b T, p _ b '

where b = A2N/A I and T,(x) is the Chebyshev polynomial given by (4-2.1).
For computational purposes, using the recurrence relation (4-2.1) and using
estimates A(/) in place of AI' we can express (Varga [196/]) the iterates
cD(I) of (11-2.9) in the recurrence form:

$(1 + 1) = A(/) -IM- 1FcD(/),

cD(I + I) = cD(I) + 0:1+1[$(1+ 1) - cD(I)]

+ 13l+I[cD(I) - cD(I- 1)],

,1(1 + 1) = A(I)(eTFcD(I + 1)/eTFcD(/),

where 0: 1 = 2/(2 - p - b), 131 = 0, and for 1;;::: 1

4 T,[(2 - p - b)/(p - b)]
0:1+1 = P _ b T,+1[(2 - p - b)/(p - b)J'

131+ I = T,-1[(2 - p - b)/(p - b)].
T,+1[(2 - p - b)/(p - b)]

(11-2.12)

As for the inhomogeneous fixed source problems discussed in Chapter 4,
the effectiveness of the Chebyshev method (11-2.11) depends upon accurate
estimates of certain eigenvalues bounds, which for this case are p = A2/AI
and b = A2N/A 1• In most diffusion programs, the assumptiont is made that
the eigenvalues of M -I F are nonnegative and, thus, b = 0 is used. With
this assumption, i.e., b = 0 S A2N/A ll effective adaptive procedures for esti
mating p may be developed by q;omparing the observedt convergence rate
with the theoretical rate. Such procedures (e.g., see Ref. 9 in Hageman and
Kellogg [1968]) are similar to those given in Chapters 5 and 6 and will not
be described here.

t Forlhe model problem, il can be shown (Waehspress [1966]) Ihat the eigenvalues are non
negative. However, this has not been proven for general heterogeneous problems. In fael,
Kristiansen [1963J gives an example for which M- 1Fhas a negalive eigenvalue.

t Apparenlly, the idea of obtaining improved eslimales for p by comparing Ihe observed
Chebyshev convergence rale with the theoretical rate was first suggested in the mid-1950s by

E. L. Waehspress. Sec Ref. 81 in Wachspress [1966].
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Note that we have no mathematical proof that the Chebyshev-acceleration
method outlined above will work for all problems. However, the method
has been used successfully in many programs. This success indicates that the
assumptions of b = 0 ~ AujA 1, of (11-2.3), and of (11-2.6) are satisfied (or
at least nearly satisfied). There is nothing wrong with using numerical
methods based on (reasonable) assumptions, provided sufficient numerical
testing is done and provided these assumptions are kept clearly in mind.
Moreover, it is often possible (and advisable) during the solution process
to print selected numerical data which indicate a posteriori whether or not
the assumptions made are valid for the particular problem being solved.
For example, for the Chebyshev procedure (11-2.11), the behavior of the
residual vector-norm ratio

11<D(1) - <P(I - 1)11
H(I) == 11<1>(1 - 1) ~ <P(I - 2)11 (11-2.13)

can be used for this purpose. See Ref. 9 in Hageman and Kellogg [1968].
If the method fails and it can be determined which assumption is not valid,
corrective modifications often can be made. For the Chebyshev procedure
(11-2.11), for example, changes to account for negative eigenvalues (i.e.,
b < 0) can be easily made. The other assumptions are much more crucial.
However, even these assumptions may often be relaxed somewhat by appro
priate modifications of the Chebyshev procedure. We will discuss one such
modification in Section 11.3.

Inner Iterations

We first discuss the implementation and the effects of inner iterations
relative to the power method (11-2.4). In order to carry out the power
iterations numerically (and also the Chebyshev iterations), a matrix equation
of the form

M<P(l) = (A(I - 1)) - I F<P(1 - 1) (11-2.14)

must be solved for <P(l) every iteration. From the definition (11-2.2) of the
matrix M, <P(l) may be obtained by solving successively the system of group
equations



where Q~m) is the convergent iteration error matrix associated with the inner
iteration l1lethod.t If the inner iteration process is started with <p~O)(I) =
<pil - 1), it easily follows from (11-2.16) and (11-2.17) that

(11-2.18)

(11-2.17)

(11-2.16)g = 1,2,
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We now let iPg(l), g = 1, 2, denote the outer iteration iterates obtained
from the power method (11-2.4) when /Ill and /Il 2 inner iterations are done
in groups 1 and 2, respectively. From (11-2.18), instead of satisfying (11-2.15),
the fluxes iPg(/) satisfy the pseudosystem of group equationst

,1liPl(I) = ,1IQlmIliPl(l- 1) + A(I ~ I/F l,liPl(I- 1) + F 1,2iPi1- I)J,

,12 iP2(/) = ,12 Q~"2)iP2(l - 1) + R 1 c'p 1(/) (11-2.19)

1
+ A(l- l)[F2.1iPl(l- 1) + F 2,2(pi1 - I)J,

t For the Chehyshev or CG methods, Q~") would be some polynomial of degree m. For the
SOR method. (2':;') = .Y':~",

:j: For a derivation of (11-2.19) and for additional discussions on the interrelations between
inner and outer iterations, sec Waehsprcss [1966] and Ref. 160 in Cuthill [1964].

where bgis a known vector and A1/ is the discrete analog of ( - V . DgV + (Jg),
Recall that Ag is assumed to be a symmetric positive definite matrix. The
iterative procedures (11-2.4) and (11-2.11) assume that the <pi/) of (11-2.15)
can be obtained exactly using some direct inversion procedure. However,
for most two- and three-dimensional problems, the use of a direct method
to solve (11-2.16) is impractical. Thus the solutions <pi/) to the group
equations (11-2.15) are usually only approximated by some convergent
iterative process. The iterations used to obtain these approximations are
called inner iterations. The main iterations (11-2.4) or (11-2.11) are called
ollter iterations.

Since the matrices A I and A 2 are SPD, most of the iterative methods
discussed in the previous chapters could be used as the inner iteration
method. Let <p~m)(/) be the approximation to <pi/) in (11-2.16) after /Il inner
iterations. From Eqs. (2-2.6) or (3-2.5), we may express the error vector
[;~")(I) == <p~m>c /) - <pi/) as

Thus <1>(1) can be determined if we can solve the matrix equations

-
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where Ag = Ail - Q~mg») - I. Equivalently, with (D(l) == (ip I (/)1, cP2(/??, we
may express (11-2.19) in the form

(D(l) = [l - fif- I M(l - A(I - 1)-1M- I F)J(D(I - 1), (11-2.20)

where

Note that jJ approaches M as the number of inner iterations in each group
approaches infinity. We always assume that the same number of inner
iterations I11g is performed in group g every outer iteration. If II1 g were allowed
to vary with I, then the matrix fif would also vary with I. .

Thus when inner iterations are done, the power method is being applied
to the problem

Y(D = [l- jJ-IM(l- M-1FIA)JCD (11-2.21)

instead of the problem (11-2.2). If (D satisfies (11-2.21) with A = Al and
I' = 1.0, then (D also satisfies <D = (M-IFIA1)cD, which implies that <D = <D I .

For this case then, the desired solution of (11-2.2) is also a solution of
(11 -2.21).

For expository purposes we assume, as was done in (11-2.8), that A = Al
in (J 1-2.21). We let {Ydf~ I be the set of eigenvalues for the 2N x 2N matrix
[l - jJ-IM(l - M- I F/AJ]. If an infinite number of inner iterations is
done in each group, then jJ = M and i'k = AdAI' Thus from (11-2.3), the
}'k for this case may be ordered as

1 = YI > 11'21 ~ ... ~ IY2N I. (11-2.22)

If the number of inner iterations done in each group is sufficiently large but
finite, then (11-2.22) still holds but Yk # AklAI for k # 1. Henceforth, we
assume (11-2.22) is satisfied. If A(/ - 1) = AI' condition (11-2.22) guarantees
the convergence of the power iterates CD(/)in (J 1-2.20) to <D I . Moreover, the
rate at which (D(/) converges to <D I depends on the dominance ratio p, where

p == IY21IYI = 11'21· (11-2.23)

How close p is to p depends on the number of inner iterations done. We
discuss this aspect later.

To apply Chebyshev acceleration to (11-2.21), we assume as before that
the set of eigenvectors for [l- fif-IM(l- M-1FIA1)J includes a basis
for E 2N

• But we must be more careful concerning our assumption for the
domain containing the eigenvalues {yd. If the Chebyshev method is used for
the inner iterations, it can be shown (Wachspress [1966J) for the model
problem that the matrix [l - jJ-I M(l - fir I FIA1)J may have small
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complex eigenvalues as indicated in Fig. 11-2.1. In Fig. 11-2.1, r5 is the
maximum of S(Q~"d) and S(m"'», where S(Q~;"!I» is the spectral radius of
the inner iteration error matrix Ql;") given in (11-2.17). Generally, the presence
of complex eigenvalues significantly reduces the effectiveness of the
Chebyshev-acceleration procedure. (See, e.g., Ref. 9 in Hageman and
Kellogg [1968J). However, for the eigenvalue domain of Fig. 11-2.1 with r5
not large, we can virtually eliminate the negative ·effects due to complex
eigenvalues by doing a few power iterations before starting the Chebyshev
procedure.

To see why this is so, let the initial guess <f>(0) be expanded in terms of the
eigenvectors <f>k of [J - 1\1- 1M(l - M-1F/A 1)] as <f>(0) = I}~l Ck<f>k' We
assume <f>k is associated with the eigenvalue Yk' After p initial power iterations
(11-2.20) are calculated, we obtain <f>(p) = I~~ 1 Ck(Yky<f>k' If Chebyshev
acceleration is started on iteration p + 1 then, analogous to (11-2.9), we
have for I 2 I that

where

2N

<f>(p) = I Cbky<f>k'
k=1

(11-2.24)

Here p/(z) is a normalized Chebyshev polynomial which we define later.
Note that any eigenvector in the expansion of <f>(0) associated with a complex
eigenvalue has already been multiplied by a factor less than (r5Y before
Chebyshev acceleration has begun. Normally then, for r5 less than 0.1 and
for p = 4 or 5, eigenvector modes associated with small complex eigenvalues
need not be reduced further by Chebyshev acceleration. On the other hand,
Chebyshev acceleration should not significantly amplify these eigenvector
modes either. Numerical evidence indicates that harmful amplification
does not occur if we determine p/(z) based on the assumptions that the
eigenvalues of [I - 1\1-1 M(l - M- 1FIA 1)J are real and that they lie in the

IMAG.

---------t'YfJi,7'ht''fIh'llll'flll'flll'flll'fhxlflfltx-x--- REA L
p P 1.0

Fig. lJ-2.J. Eigenvalue domain of [J -1I1- l ll'f(l- M-1F/).,l] for the model problem.
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interval [ - b, .0], With these assumptions, analogous to (11-2. J0), we define
P1(z) by

Plz) = 7lCz
~ : : b)!71C ~ ~ ; b)'

We remark that undesirable amplification may occur with Plz) defined this
way if b is too Jarge, See Table 11-2.1.

Computational Aspects

In summary, when inner iterations are required the following procedure
is used:

(I) A fixed number of inner iterations is done in each group every outer
iteration. The number of inner iterations my done in group g is chosen
such that the error reduction achieved by the inner iterations is less than b.

(2) The initial four outer iterations are done using the power method.
(3) Chebyshev acceleration is started on outer iteration 5 using (11-2.11)

with Cf>(l) repJacing cD(/). The parameters (Xl and iii are computed using
(11-2.12) with b = - b and with pestimated adaptively.

The data given in Table 11-2.1 illustrate the effect of b on the dominance
ratio p and the number of outer iterations required for convergence for a
typical problem. The line cyclic Chebyshev method was used for the inner
iterations and the value of p was obtained numerically when the problem
was solved using only power iterations. By decreasing the number of inner
iterations (increasing b), we affect the outer iterations in two ways. First, as
illustrated in Table 11-2.1, the dominance ratio p increases. The increase in
the number of outer iterations due solely to a larger value for p is usually
compensated for by the fewer number of inner iterations performed. This is

TABLE 11-2.1
E.fT£>cl of' filII('/" fleraliolls Oil Olll('/" !t('/"lllioIlS

No. of inner
iterations per outer

No. of outer iterations

Inner iter. Dominance Chebyshev
error red .• c5 Group 1 Group 2 ratio. (i Power method 'Ieee!.

0.01 21 16 0.895 39 14
0.15 II 8 0.901 41 15
0.25 9 7 0.911 45 18
0.5 7 6 0.922 51 Did not

converge
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illustrated by the data given in Table 11-2.1 for the nonaccelerated power
method. The second effect of decreasing the number of inner iterations is
that the magnitudes of the negative and complex eigenvalues are usually
increased. As indicated by the data of Table 11-2.1, this can seriously reduce
the effectiveness of Chebyshev acceleration if the inner iteration convergence
criterion 6 is too large. More detailed numerical studies indicate that 6 in
the range 0.075-0.15 is usually sufficient for the Chebyshev acceleration not
to be adversely affected by the inner iterations.

We note that the eigcnvalue bounds j) and fj = - 6 required by the
Chebyshev proced ure are not fixcd if the number of inner iterations is allowed
to vary with l.t The adaptive proccdure for estimating j) is more effective
when the same number of inner iterations is uscd every outer iteration.
This is especially hclpful for slowly converging problems, i.e., when p is
close to unity.

For the inner iteration method, the line CCSI method has been found to
be more effective than the line SOR method. For the problems considered in
Chaptcrs 8 and 9, the CCSI method required 4-16 %fewer iterations than
did thc line SOR mcthod. However, whcn used as the inner iteration method
here, the advantage of the CCSI: method was even greater. Numerical
results indicate that the total number of inner iterations required using the
CCSI method was often 25-40 % less than that required when the SOR
method was used as the inner iteration method. Except possibly for problems
with Neumann boundary conditions, Wang [1977] found the CO methodt
to be less effective than the SOR method. He attributcs this to the combined
facts that the convergcnce requirement for the inner iterations is rather
loose (6 = 0.05) and that CO acceleration is a nonlinear process which
convcrges more slowly during the initial iterations.

We now turn our attention to the problem of determining the number
of inner iterations to be done. For each group equation (11-2.16), we want to
determine I11g such that an error reduction of 6 is achieved hy the I11 g inner
iterations. If flJg(/) is the unique solution to (11-2.16) and if the error vector
for inner iteration 111 is e~")(l) == flJbm

)(/) - flJg(l), then using the notation of
(11-2.17) we want I11 g to be chosen such that

(11-2.25)

Thus we want to pick I11g to be the smallest integer satisfying

(11-2.26)

t For this case, ji and /, are not well defined.
t Wang applied CG acceleration to an approximate factorization method described in

Section 2.5.
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Any convenient norm may be used to determine Ing in (11-2.26). For the
line CCSI method, for example, it is convenient to require that (11-2.25)
hold only for the "black" unknowns. For this case, it follows from Chapter 8
that there exists a symmetrization matrix W such that

(11-2.27)

where, from (8-3.10), P2m",E(X) = T2m,,(x/ME)/T2m,,(1/ME) and where S(Bg)

is the spectral radius of the line Jacobi iteration error matrix Bg • If ME =
S(Bg) is used in the CCSI iterations, it follows from (4-2.20) that
p 2m". E(S(Bg)) = 2;:"'''/(1 + ;:2m,,). Thus if S(Bg) is known, Ing may be obtained
by picking Ing to be the smallest integer satisfying

2(i')m"/(I + (i')"''') :<:; 6. (11-2.28)

Here,;: = (I - ,/1 - S(Bg)2)/(1 + ')1 - S(Bg)2).
Two methods may be used to obtain an accurate estimate for the spectral

radius S(Bg) required in (11-2.28). One method is to estimate S(Bg), while
carrying out the inner iterations for the first outer iteration, using a Chebyshev
adaptive procedure, such as that given previously in Chapter 8. (To insure
that an accurate estimate for S(Bg) is obtained, a reasonably tight inner
iteration convergence criteria should be used for the first outer iteration).
A second method is to obtain an estimate for S(Bg) by a separate calcula
tional procedure performed prior to the start of the outer iterations. For
example, an a priori estimate for S(Bg)2 may be obtained from the power
iteration method applied to the line Gauss-Seidel iteration error matrix se l'

(Recall that S(se 1) = S(B)2 for the red/black matrix problem.) Hageman
and Kellogg [1968J consider this second approach and discuss the use of
Chebyshev polynomials to accelerate the con vergence of the power iterations.

When inner iterations are performed, we again have no a priori gurantee
that inner-outer iteration process is a convergent procedure. However, as
discussed previously, a posteriori confirmations exist which indicate whether
or not the iteration process worked as designed (e.g., see Ref. 1 in Nakamura
[1977J, p. 137).

The number of mesh points used for the spatial discretization has a sig
nificant effect on the number of inner iterations required but only a minor
effect on the number of outer iterations. The reason for this lack of sensitivity
in the outer iteration convergence rate is that the outer iterations could
have been formulated first in terms of the continuous problem (11-2.1) and
then discretized spatially. Thus at least for sufficiently small mesh spacings,
the spatially discretized outer iterations converge at a rate determined by
the convergence rate of the outer iterations defined in terms of the continuous
problem.
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11.3 THE NEUTRON TRANSPORT EQUATION
IN x - y GEOMETRY

(11-3.1)

In this section, we discuss the numerical solution of the inhomogeneous,
monoenergetic neutron transport equation in x-y geometry. The numerical
procedure described illustrates the use of Chebyshev acceleration when the
associated Jacobi iteration matrix may have complex eigenvalues, the use of a
Chebyshev acceleration procedure whose convergence rate is almost inde
pendent of the spatial discretization, and the use of inner iterations.

Statement of the Continuous Problem

In x-y geometry, the monoenergetic neutron transport equation with
isotropic scattering and isotropic source can be written as (see Davison and
Sykes [1957])

crS f2n fn/2
Q . grad N + aN = - N sin 0 dO dqJ + S,

2n 0 0

where

(a) Q = (Qx , Q)" Qz) = (sin e cos (P, sin e sin qJ, cos 0), 0 S qJ S 2n,
o S 0 S n12, is the unit direction vector.

(b) N(x, y, Q) is the neutron flux at the spatial point (x, y) in the direction
Q, and grad N is the spatial gradient vector of N, f

(c) Sex, y) is the isotropic source, and, c
(d) a(x, y) and as(x, y) are bounded positive functions of x, y which·

satisfy, for positive constants C and Cl, a(x, y) 2 Cl > 0 and

as(x, y)la(x, y) S C < 1. (11-3.2)
a

Equation (11-3.1) represents a neu tron conservation law which basically
states that the total derivative in the direction Q of the neutron flux at
position (x, y) per unit area per unit solid angle (leakage) equals the neutrons
introduced (S plus as terms) in that direction less the number which are
removed (a term) by collisions. The as term in (11-3.1) represents those
neutrons scattered by collisions into the direction Q from all other solid
angle elements.

We consider solutions to (11-3.1) in a rectangular region R = {(x, y) lOs
x s a,O S y S b} subject to vacuum (no neutrons entering R) or reflecting
(mirror reflection) boundary conditions. We assume that a and as are
piecewise continuous functions of x, y and that N(r + sQ, Q) is a continuous
function of s for all Q and all spatial points r in R. It can be shown that
(11-3.1) has a unique solution when S is square integrable (e.g., see Kellogg
[1969]).

w
ar

to

wI

'I C(
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(11-3.3)

For x-y geometry problems, N(x, y, Qx, Qy, Qz) = N(x, y, Qx, Oy, -Oz).
Thus we seek N(x, y, 0) only for those directions 0 with Oz ;:::: 0. To define
an iterative procedure to solve (11-3.1), we split the unknowns N(x, y, 0)
into two parts. For any direction 0 = (Ox, Oy, Oz) with Q y ;:::: O,Oz ;:::: 0, we
define the associated direction Q == (Ox, - Oy, Oz) and the new variablesi'

l/l(X, y, 0) == N(x, y, 0),

Il(X, y, 0) == N(x, y, Q).

In terms of these new variables, the transport equation (11-3.1) may be
written in the" partitioned" operator matrix form

[
DI/J - GJ [if;(X, y, O)J [SJ
-F D~ I](X, y, 0) = 5

'or 0 E 9", where 9" == {Q = (Ox, Oy, Oz)jOy ;:::: °and Qz ;:::: O}.
i:ere,

(11-3.4)

as fn fn/2
GI] = - 11 sin edO dcp,

2n 0 0

as f" fnl2Fif; = - if; sin 0 dO dcp,
2n 0 0

DI/J if; = 0 . grad if; + aif; - Fif;, and (11-3.5)

D~II = Q.grad II + al] - Gil.

,long the x = °andx = a boundaries, both II and if; satisfy either vacuum
r reflecting conditions. For y = 0, if; satisfies

lei for y = b, I] satisfies

if;(x, 0, Q) = L/I(X, 0, 0),

II(X, b, Q) = Tif;(x, b, 0),

(11-3.6)

(11-3.7)

lere Land T are either zero or unity (zero implies a vacuum boundary
d unity implies a reflecting boundary condition).
If 11 is the iteration index, the Gauss-Seidel iteration method corresponding
the partitioning (11-3.4) is defined by

[
DI/J 0] [if;(II)] = [0 G] [1//

111
- I)J + [5] (11-3.8)

-F D~ Il") ° ° It'-I) S'

ere
lj/")(X, 0, Q) = LIlIIl - I )(X, 0, 0),

'l")(X, b, 0) = Tif;(II)(x,b, 0).
(l1-3.8a)

In the x·-r plane IjJ corresponds to those neutrons traveling in the positivc.1' dircction. while
rresponds to neutrons traveling in the negative.r direction.
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Along x = 0 and x = a, we always assume 1//") and 11(11) satisfy the specified
boundary conditions. The iterative process is initiated by guessing G1ICO)

everywhere and, if L = I, by guessing 11 CO ) along the y = 0 boundary.
The corresponding Jacobi iteration method may be similarly defined.
Kellogg [1969J has shown that the iteration procedure (11-3.8) is well

defined and converges to the unique solution of (11-3.4) provided the eigen
values A of the Gauss-Seidel iteration operatort satisfy 1,1,1 < 1. Davis and
Hageman [1969J show that, indeed, IAI < I. Moreover, if a vacuum condition
exists along the y = 0 boundary (L = 0), they show that the eigenvalues
A are real and satisfy

-c/(4 - c) ~ A~ c/(4 - 3c), (11-3.9)

where c < 1 is defined in (11-3.2). If all four boundaries are reflecting, some A
may be complex.

It can be shown that every nonzero eigenvalue AB of the Jacobi iteration
operator B is related to an eigenvalue A of the Gauss-Seidel operator by

Afi = A. (11-3.10)

The relationship (l1-3.JO) is not surprising since the splitting (I J-3.4) is the
continuous analog of the red/black partitioning for linear matrix problems
(see Chapter 8). Chebyshev acceleration may be applied to the Gauss
Seidel methodt or to the Jacobi method. Of course, any Chebyshev procedure
used here must allow for the possibility of complex eigenvalues. We will
discuss only the Chebyshev acceleration of the Jacobi method.

Chebyshev Acceleration When the Eigenvalues of the Iteration
Operator Are Complex

Let tPCII) and 0(11) be the iterates of thc Jacobi method corresponding to
(11-3.4), and let B denote the corresponding Jacobi iteration operator. We

-r The eigenvalues and eigenfunctions for the Gauss-Seidel iteration operator satisfy the
equations

subject to the boundary conditions

}d/t(x, 0, D) = LI/(.x. O. D), I/(X. b. D) = TIII(x, b. D).

t Chebyshev acceleration may also be applied to the reduced system (see Section 8.2) obtained

from (11-3.4).
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(a) the set of eigenfunctions for B is complete, and

(b) the eigenvalues of B lie in or on an ellipse as shown in
Fig. 11-3.1, where e < S(B).t

For polynomial acceleration, we let PII(z) = I7=o (XII.iZi be a real poly
nomial of degree 11 such that P11(1) = 1 and then generate the sequences
{!/JlII)} and {ll(II)} by

[
!/JlII)] II [0ll1)]
1/(11) = i~O (XII. i rylll) . (11-3.12)

As in Section 4.2, the error function C(II) == [!/J(I1) - If, Il llI) - I]]T of the !/J(II)
and 11 ll1) sequences may be written as Clll) = PII(B)cl0l, where PII(B) =
I7= 0 (X11. i Bi is a matrix polynomial. The associated real polynomial PI1(Z)
which has the least maximum modulus over the ellipse of Fig. 11-3.1 can be

e

S(8)<1

(11-3.13)

-e

Fig. 11-3./. Eigenvalue domain for B.

expressed (Clayton [1963]) in terms of Chebyshev polynomials and is given
by

P (z) = T,,(z/if)
II -T,,(l/if) ,

where T,,(w) is given by (4-2.1) and

if = JS(B)Z - eZ.

With P
I1
(z) given by (11-3.13), using the recurrence relation (4-2.1), we

can express (see Theorem 3-2.1) the iterates !/J(II) and /1(11) of (11-3.12) in the
recurrence formt

[
lf

ll1
)] = (11){B[t!/lll-I)] [D'II 0. ]-I[S] _ [!/J(II-Z)]} [!/J(II-Z)],

1/") P,/ III - I ) + ° D~ S 1/(11-2) + Il"-Z)

(11-3.14)

t II follows from (11-3.10) that the eigenvalues of B are contained in somc cllipsc ahout thc
origin. Thc assumption that e < 5(B) will be discussed later.

t Equation (11-3.14) also follows from the discussion givcn in Section 12.2. See Eq. (12-2. J0).
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(11-3.15)

where ,//(11) and 11(11) satisfy the boundary conditions (11-3.8a) with
'1(II'(X, b, Q) = T!/t(II-l)(X, b, Q) replacing the second equation. The parameters
p(II' are defined by p( 1) = 1 and f6r II > 1

(II) _ 27;,-1(1/0')
p - ~ 1;,(1/0') .

As for the Chebyshev methods of Chapter 4, p(II) may equivalently be defined
recursively by Eqs. (4-2.15). Also, as before, limll_~oo p(II) == p(OO) = r + I,
where

_ I - )1 - (52

r=
1 + )1 - (52

If f2 denotes the domain bounded by the ellipse of Fig. 11-3.1, then
maxzEEi' IPII(z)1 = PII(S(B)). Moreover, it can be shown (e.g., see Wachspress
[1966]) that

lim [P,lS(B))]l/n = [(Ss«B) ~ e)r] 1

/

2.

II~OO B) e
(11-3.16)

(11-3.17)

The right side of (11-3.16) gives the expected average error reduction factor
for the Chebyshev iterations (11-3.14). The corresponding asymptotic
convergence rate is

{ (
S(B) + e)_}1/2

Roo(Pn(B)) = -log S(B) _ e r .

Note that (11-3.17) reduces to (4-2.22) when e = O.
As e approaches S(B), it follows from (11-3.15) and (11-3.17) that

Roo(Pn(B)) approaches -log S(B),t which is the expected convergence
rate, R(B), of the Jacobi method. Thus as the ellipse in Fig. 11-3.1 approaches
a circle, the Chebyshev process does not converge much faster than the
Jacobi method. In fact, if S(B) is close to unity, then for any e > )1 - S(B)
we have (see, e.g., Ref. 9 in Hageman and Kellogg [1968])

(11-3.18)

(11-3.19)

Thus the acceleration obtained by the Chebyshev method may be small
if e is not small.

The related cyclic Chebyshev method (see Section 8.3) for the "red/black"
partitioned problem (11-3.4) is defined by

!/t(II) = p~'l[D;;; I(GII(n-l) + S) - !/t(II-l)] + !/t(n-I),

t AIso see Section 12.2.
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where 1/;(") and 11(") satisfy the boundary conditions (11-3.8a). The parameters
p~') and p~) are given by (8-3.7) with ?f replacing ME' The asymptotic con
vergence rate of the cyclic Chebyshev method is twice that of the Chebyshev
method (11-3.14). The difficult task of obtaining estimates for if will be
discussed later.

For general problems, it is not possible to carry out the iteration methods
defined above in terms of continuous operators. Thus we resort to a numerical
approximation by discretizing the angular and spatial variables and using
the discrete analogue of the continuous iterative method. The fact that the
iterative method used is a discrete analog of a convergent nondiscretizcd
iterative method suggests that the rate of convergence of the discretized
iterations will not be greatly affected by mesh sizes. The numerical results
given later indicate that this is indeed true.

Angular Discretization

Let the integral Hit Jal2 N sin 0 dO dq> be approximated by the quadrature
formula L~= 1 wpN(x, y, QP), where L~= 1 W p = 2IT and N(x, y, QP) is the
neutron flux at position (x. y) in the discrete direction QP. We now let NP(x, y)
be the approximation to N(x, y, QP) which satisfies the following approx
imate form of the transport equation (11-3.1):

(Js P

QP·gradNP + (JNP = -, L lI'qNq + S, p = 1, ... ,P. (11-3.20)
2IT q =1

The? coupled differential equations (11-3.20) are called the discrete ordinate
equations.

The weights wp and discrete directions QP are determined (e.g., see Abu
Shumays [1977J) by the quadrature formula used. We require only that
the quadrature formula be compatible with reflecting boundary conditions.
That is, we require that there be exactly P/4( =. r) directions Qq, q = 1, ... , r,
with positive x- and y-direction cosines (QL QD and for every such direction
there must be three associated directions Qq-tr, Qq+2" Qq+3r whose x- and
y-direction cosines are, respectively, (-Q~, Q~), (QL -Q~), and (-QL -Q~).

We also require that wq = wq+r = lI'q+2r = Wq+k With this understanding,
the discrete angle approximation to the iff and II variables of (11-3.3) are

I/;q(x, y) =. Nq(x, y),
, Ilq(X, y) =. Nq+ 2r(X, y),

q = 1,2, , 2r,
q = 1, 2, , 2r.

(11-3.21)

In terms of the I/;q and Ilqdiscrete angular variables, (11-3.4) can be written
as

-Go][l/;o(X,y)] [So]
D~.n Ilo(X, Y) = Sn'

(11-3.22)
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(11-3.23)

where t//n and 'In are the 2r x I vectors with components t/fq(x, y) and
'1q(x, y), respectively. D"I.n, D~.n, Gn , and Fn are 2r x 2r matrices whose
elements are semidiscrete operators,t which for q = 1, ... , 2r are defined by

(Js 2, (JS 2, .

(Gn 'ln)q = -2 I lVk'lk(x, y), (Fn11In)q = -2 I Wkl/Jk(X, y),
nk=1 .nk=1

(D'/t,nt/fn)q = Qq. grad t/fq(x, y) + (Jt/fq(x, y) - (Fnt/fn)q,

(D'I,n'ln)q = Qq+2'. grad l/q(X, y) + (J1/q(X, y) - (Gn'/n)q.

Along the x = 0 and x = a boundaries, ,!,q and I/
qsatisfy either vacuum or

reflecting conditions. For y = 0, wehave IV/(X, 0) = LI/q(x, 0) and for y = b,
'1q(x, b) = Tt/lq(x, b). Land T have the same meaning as before. Madsen
[1971J shows that the discrete ordinate problem (11-3.22) has a unique
solution which is also nonnegative if Sn ~ O.

Iterative solution methods for (11-3.22) analogous to those given for solving
(11-3.4) are easily defined. It can be shown (Davis and Hageman [1969J) that
eigenvalues of the Gauss-Seidel and Jacobi iteration operators for the discrete
ordinate problem (11-3.22) possess the same basic properties as was shown
for (11-3.4). That is, the Gauss-Seidel and Jacobi methods converge and the
relationships (11-3.9)-(11-3.10) remain valid for the discrete ordinate
equations (11-3.22).

Spatial Discretization .

To obtain the discrete spatial problem, we first impose a mesh of horizontal
lines on the rectangle R and use" upstream" differencing to approximate the
y-derivative in Q. grad N = QxU!JNjax) + Q/aNjay). Thus along the mesh
line Yj of Fig. 11-3.2, we use the approximationst

(11-3.24)

q=I, ... ,2r,

q = I, ... , 2r,

Qq
~ A Y [t/fy(x) - IIIY_I(X)J,

uj'j

nq+ 2, a'lq(X, y) -'- Q;' [q () q()J
~~y a --;- - ~-- //j+ I x - Il j x ,

Y UYj+ I

where t/fy(x) and lJy(x) are approximations to Illq(X, y) and 'lq(x, y). In what
follows, we let II/nJx) and IlnJx) denote the 2r x 1 vectors with components
'/Jy(x) and '1y(x), q = 1, ... , 2r.

t Continuous in the x and)' variables.
t Recall that'l' corresponds to neutrons traveling in the positive y-direction, while II corres

ponds to those neutrons traveling in the negative y-direction. We also use the fact that nr 2, =
-nr in (11-3.24).
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Fig. 11-3.2. Y mesh grid.

In terms of the semidiscrete variables l/Jj(x) and 'lj(x), (11-3.22) can be
written as

[
D.p,n,y
-Fn,y

-Gn, y] [l/Jn, y(x)] [Sn, y]
D~.n,y 1Jn,Y(x) = Sn,y'

(11-3.25)

where the 2rJ x 1 vectors l/Jn, y(x) and Ilnjx) may be expressed in the J x
block form

Iln.J-1(x)

'In, y(x) = '7n.lx)

'In,o(x)

(11-3.26)

The 2rJ x 2rJ matrices D.p, n, yand Gn,ymay be expressed in the J x J block
forms

D.p.n.l
0-H.p,n.l D.p,n.2

D.p.n,y =

0
D- H.p.n.J-l VI.n.J

Gn.o
0

Gn.y = (11-3.27)

0
Gn..l- 1
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Here i\, n, j' If.p, n,j' and Gn,.i are 2, x 2, matrices whose elements are semi
discrete operators;! which, for q = 1, 2, ... , 2" are defined by

_ oljij(x) (Q~ ),/,q (JS ~ ./,k()
(D.p,n,J'f/n,/x»q = Q~ a + ~ + (J ,!,j(X) - -2 L. H'k'!'j x,

X 0Yj 7!k~l

j= I, ... ,J, (11-3.28)

2,

(Gn.J'7.;(X»q = «(JSj2rr) L wk 1l)(x),
k~l

for j=I, ... ,J-I, (11-3.29)

for j = 1, ... , J - I, (11-3.30)

and
2,

(Gn,ollo(X»q = «(JSj2rr) L wk 11Mx) + L(Q~jt..Yl)ll'b<x). (J 1-3.31)
k~l

(11-3.32a)

(11-3.32b)

The additional term in (11-3.31) is obtained by using the boundary condition
(11-3.6) to replace lV6(X) in (11-3.24) for j = 1.

The matrices D",n.y and Fn,y in (11-3.25) are similar to D.p,n,y and Gn,y

given above and will not be given explicitly.
Again, iterative solution methods for (11-3.25) analogous to those given for

solving the continuous problelJl (11-3.4) can be easily defined, and, again, it
can be shown that the convergence properties and the eigenvalue relation
ships (11-3.9)-(11-3.10) are retained. Moreover, it can be shown that ljinjx)
and /7njX) are nonnegative if Sn,y ~ O.

The x variable may be discretized in a manner similar to that used for Y; i.e.,
the approximation for aNjox is based on the direction in which the neutron
N is moving. However, since the computational process may be adequately
described using (11-3.25), the details of the x-variable discretization will not be
given.

The spatial discretization given here is called the step model by Carlson
[1963]. Other more accurate approximations exist (Lathrop [1969aJ).
However, the solution positivity (Lathrop [l969bJ) and some iterative
convergence properties (Davis et al. [1967J) need not hold for the more
accurate approximations.

The Discrete Cyclic Chebyshev Method

For the Q and Y discrete problem (11-3.25), the cyclic Chebyshev method
(11-3.19) may be expressed in the form:

D 'j,(nl ( ) - G (11- Il( ) + S.p,n,y1fln,y x - n,y1ln.y x n,y'

1{;~\(x) = p~l[Vi~;ix) - If;K~ 11(X)J + lji~,~,1)(x),

t Conlinuous in Ihe x variable.
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D~.0..yl1f1:ix) = Fo.. ylf;f1;,.(x) + So.. V' (1l-3.32c)

'1f1: y(X) = p\~)[lli~:y(x) - 1JK~.1)(x)J + 11f1.~, tl(x). (11-3.32d)

Since DIjJ. 0.. y(given by (11-3.27)) is a block lower triangular matrix, the vector
,ff1:y(x) can be determined by solving successively the line equations

DIjJ,o.,j,fo.,/x) = b",o..j, j = I, ... , J, (l1-3.33a)

where b".o..j is a known vector. Similarly, 11f1:Y(x) may be determined by
solving successively the equations

j=J-I, ... ,O, (11-3.33b)

For general problems, the line equations (11-3.33) are best solved by some
iterative process. As before, these iterations are called inner iterations, while
the main iterations (11-3.32) are called outer iterations. For the numerical
results given later, the one-dimensional discrete analog of the Gauss-Seidel
method (11-3.8) is used as the inner iteration methodt We omit the details.
Henceforth, we assume the x variable has also been discretized in (11-3.32)
and (11-3.33).

We assume the eigenvalues and eigenfunctions of the Jacobi iteration
matrix Bo.,)',X corresponding to (11-3.25) satisfy conditions (a) and (b) of
(11-3.11). For the spatial discretization presented here, it can be shown that
condition (b) holds for any combination of boundary conditions. Nothing is
known concerning the validity of condition (a).

We also assume that a fixed number of inner iterations is done for each line
every outer iteration. The number of inner iterations I11j done for line j is
chosen such that the error reduction achieved by the inner iterations is less
than 6. As discussed in the previous section, the utilization of inner iterations
results in the outer iterations being carried out with a modified iteration
matrix. With inner iterations, the Jacobi matrix B,j can be written as (Nichols
[1973J)

(11-3.34)

Here, To is the iteration error operator of the inner iteration process with an
error reduction criterion of 6 and Bo.. y. x is the Jacobi iteration matrix when the
discretized line equations (11-3.33) are solved by some direct method.
Obviously, the spectral radius, S(Bo)' of Bo will depend on the value of 6.

Procedure for Estimating Acceleration Parameters

If the eigenvalues of Bo are assumed to lie in the ellipse of Fig. 11-3.1, the
cyclic Chebyshev parameters p~) and p(~l arefunctions of cJ = (S(Bo)2 - e2)1 /2.

t For most problems. the conversence of the Gauss-Seidel method in soh'ing t hc line equations
is sulliciently rapid that no acccleration is dccmed ncccssary.
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Fig. //-3. .1. Eigenvalue domain for B,) with e < ("J. < S(B.).
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To numerically estimate both S(B6) and e is a difficult task. We try to avoid
this difficulty by using a procedure which, in essence, attempts to estimate
only S(Bb) numerically. A brief description of this procedure and the as
sumptions made are given below.

Assume now the eigenvalues of Bb are contained in the domain given in
Fig. 11-3.3. (We discuss this assumption later.) Now suppose that the
Chebyshev procedure (11-3.32) is used with the estimate iiE = (SE(Bb)2 
e~) t /2, where the approximations SE(Bb) and eo are assumed to satisfy

(1l-3.35a)

(11-3.35b)

If !?2 denotes the domain bounded by the ellipse of Fig. 11-3.3 and if (11-3.35)
is satisfied, it can be shown that

maxIP",E(Z)!:::; P",E(SE(Bb» < Pn,E(S(Bb»,
ZE fiJ

(11-3.36)

where P", E(Z) = T,,(z/iiE)/T,lI/iiE). With the difference vector for the black
unknowns /7 defined by

A (n> _ . (n) (n + 1)
Ull = Iln,y,x - 17n,y,x, (11-3.37)

it follows from (11-3.36) that the results given for 6\7> in Chapter 8 also are
valid for the 6W> of (11-3.37). (It is only necessary to replace ME and PI in
Chapter 8 by iiE and B == (S(Bb)2 - e~)1/2, respectively.) Thus if the con
ditions (11-3.35) are satisfied, we can obtain new estimates BE using the
procedures of Chapter 8. t We note that the solution to the Chebyshev

t Note that we are not attempting to obtain the optimum i'i = (S(B,d 2
- e2

)li2, Instead we

seek to obtain the pseudo-optimum iT = (S(B,,)2 - d)112 when eo> e is fixed.
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equation (8-3.40) gives the new estimate iT~ for G. Although the new approxi
mation S~(Bo) is not needed explicitly in the generation of the new Chebyshev
polynomial, it can be obtained by S'E(Bo) = [(G~)2 + e~J 1(2.

The question now is how to choose an eo to use in (11-3.35). For problems
with a vacuum boundary condition, it is relatively easy to obtain such an eo'

For problems with all reflecting conditions, the task can be considerably more
difficult.

If a vacuum boundary condition exists, we may without loss of generality
assume it exists at the y = 0 boundary. For this case, it follows from (11-3.9)
and (11-3.10) that the eigenvalues All of the Jacobi iteration operator for
(11-3.8) are either real or purely imaginary. Moreover, the real eigenvalues
satisfy A~ S cj(4 - 3c) and the purely imaginary eigenvalues satisfy liAB I2 S
c/(4 - c). It is reasonable to expect that the eigenvalues of Bn.y. x (the discrete
approximation to B) satisfy these same conditions. Moreover, from (11-3.34),
if b is small then Bo will closely approximate Bn.y. x' Consequently, it is
reasonable to assume that the eigenvalues of Bosatisfy these same conditions.
Thus for problems with a vacuum boundary, e6 = cj(4 - c) can be used in
(11-3.35). For reasons given later, we will not use this estimate in the com
putational procedure.

For problems with all reflecting boundary conditions, it can be shown (for
the difference equations given here) that the eigen values of Bn.y. x are COn
tained in a domain given by Fig. 11-3.3. However, depending on problem
conditions, e may now take on any value between 0 and S(Bo)' For these
problems, we start the Chebyshev process using some eo and proceed assuming
that the conditions (11-3.35) are satisfied. If the Chebyshev process appears to
be divergent, we terminate the generation of the Chebyshev process, incre
ment eo by 0.1 and start a new Chebyshev polynomial. If eo becomes greater
than 0.75, we cease using Chebyshev acceleration and continue the iterations
using the Gauss-Seidel method (PR = PB = 1.0), which is guaranteed to con
verge. As noted previously, the acceleration achieved by the Chebyshev
process is small if e is large. Thus little is lost by using the Gauss-Seidel
method when e is large.

This rather arbitrary procedure for obtaining estimates for e is not very
appealing. However, no completely satisfactory method is known to the
authors. (For other approaches to this problem, see Wrigley [1963J, Wachs
press [1966J, and Manteuffel [1978].) Fortunately, many transport problems
have at least one vacuum boundary. Moreover, even for problems with all
ref1ecting boundaries, the complex eigenvalues are frequently small in
magnitude.

Several CG variants were tried by Lewis [1977J in solving the one
dimensional transport problem. He found the CG-convergence behavior to
be poor and erratic.
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For the numerical results given below, the Chebyshev outer iterations
(l1-3.32) were carried out using the following procedure:

(I) Five Gauss-Seidel iterations (PR = PIJ = 1.0) are carried out. An
estimate, SE(B~), for S(B~) is obtained from these iterations.t

(2) Chebyshev acceleration is started using the estimates SE(B~) and eo.

Initially, eo = 0.0. The adaptive procedure of Chapter 8 is used to update
SE(B~) and to terminate the outer iterations.

(3) If the Chebyshev process appears to be diverging, the Chebyshev
procedure of item (2) is terminated and eo is incremented by 0.1; i.e., eo =
eg1d + 0.1 (20A).t If eo <0.75, go to (I). If eo 20.75, the Chebyshev process
is terminated and the solution procedure is continued using only Gauss
Seidel iterations.

Tn the above procedure, we have taken the initial estimate eo for e to be zero
which, based on the previous discussion, may not seem appropriate at first
glance. However, by (l1·2.24) and the comments made there, the initial
Gauss-Seidel iterations carried out can greatly reduce the effect of small
complex eigenvalues on the effective convergence rate of the Chebyshev
method. Thus when the complex eigcnvalues of Bb are small (in magnitude),
eo = 0:0 is often an adequate estimate for e.§ Numerical results indicate that
the initial estimate eo = 0.0 works well for almost all problems with a vacuum
boundary condition and for many of the problems with all reflecting boundary
conditions.

If the behavior of the Chebyshev process is not as expected, we assume this
is caused by the fact that eo < e. Thus we increase eo. However, since the
Chebyshev adaptive estimate for S(B~) using an eo < e is likely to be in error,
we again do Gauss-Seidel iterations in order to get a new estimate for S(B~)

before restarting the Chebyshev process. This strategy for obtaining estimates
for e undoubtedly could be improved. However, since eo = 0.0 works well for
most problems of present interest, no concentrated effort has been made to
do this.

Since 1//") appears in the Eq. (l1-3.32c) for lj(lI) only through boundary
conditions and the (Fn,y,x!/J(II») term, the extrapolation (l1-3.32b) of !/J(II)

t For the eigenvaluc donJain or Fig. I t-3.3, the Guass-Scidel method is a convergent process,
and the dilTcrcnce vector or (11-3.37) satisfies lim,,_oolltl';;'II/IWi;-I'11 = 5(Bo)2.

t No nonzcro eo less than 0.4 is uscd.
~ From (11-3.16), thc acccicration achieved by the Chcbyshcv proccss is reduccd con

siderably whcn I' > O. Thus by using thc cstimate eo = 0.0, we maximize the convergence ratc
providcd no dctrimcntal cffccts rcsult from its use.
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VACUUM

needs to be done only for these terms. Thus instead of (11-3.32b), we do

(F ./(n) - (nJ[(F .T(n) _ (F ./(n-I)J + (F .1(n-1)
n.)'.x~/n,)',x - PR n.)'. x';/n.)'.x n.)'.x<!/n.)'.x n.)'.xv/n.)',x·

(11-3.38)

When (11-3.38) is used instead of (11-3.32b), less storage is required since
(Fn.)'.x'!/n,)'.J does not depend on Q. We remark that l/Ji~I)'.x must be extra
polated at the y = b and x = a boundariest if reflecting conditions exist
along these boundaries. Similar remarks are valid for the extrapolation
(11-3.32d) for Il(n).

For the numerical results given below, a fixed number of inner iterations is
done for each outer iteration. The number of inner iterations for line j is
chosen such that the error reduction achieved is less than (). Moreover. the
"weighted diamond" spatial discretization method (Lathrop [1969aJ) was
used instead of the step model described above.

PROBLEM I. y'
t------------,

" 02 00
,,' 0 I 98

S ~ 00
VACUUM

VACUUM 12 em

!

" ~ I 796 i
"'01356 I

'---- •.L.:-S _~-,I0,----, ~ . J. __._ x

VACUUM

-12em-

PROBLEM 2 SAME AS PROBLEM I EXCEPT THAT REFLECTING BOUNDARY

CONDIT IONS ARE IMPOSED ALONG ALL FOUR BOUNDARIES

Fig. I J -3.4. Description of two test problems.

To illustrate the effect of the line inner iterations on the convergence rate
of the outer iterations, we consider the solution of problem 1 defined in
Fig. 11-3.4 using four discrete angles and using 24 spatial mesh points in each
ofthe x and y directions; i.e., flx = fly = 0.5. The problem was solved three
times with different values for the inner iteration convergence criterion (j. The
results are given in Table 11-3.1. We note that the red/black cyclic Chebyshev
analysis becomes mathematically rigorous only as the iteration error matrix
Ta in (11-3.34) approaches the null matrix. This probably accounts for the

t Thc extrapolation of ifl at the x = 0 boundary is required since inner iterations are donc.
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TABLE 11-3.1
F:(I<'ct of Lille II/I/er Iteratiol/s 01/ the Outer Iteralioll CO/1/·('I".'/el/cC' Role f<)r

Problem IlI'ilh Four Allgles alld 6x = 6y = 0.5

Inner iteration
convergence criterion, ,)

,
,....

,) = 0.25 <5 = 0.05 ,) = 0.0006

Estimate for S(B,,) from the

Gauss--Seidel iterations 0.9700 0.96205 0.9588

Estimate for S( B,,) from the
Chebyshev iterations 0.9843 0.9672 0.9588

No. of Chebyshev iterations for
convergence 68 49 44

No. of Gauss-Seidel iterations
for convergence 222 181 168

fact that the estimates for S(B6) determined adaptively from the Chebyshev
iterations become less accurate for the larger values of <5.t When the outer
iterations are accelerated by the cyclic Chebyshev method, an inner iteration
<5 in the range O.025~O.075 appears to be adequate.

To illustrate the nondependence of the outer iteration convergence rate on
the discretization mesh, problem 1 was solved with a varying number of
discrete angles and spatial mesh points. The results are given in Table 11-3.2.

TABLE 11-3.2
N'!IIdepelldel1ce o(Collrerqel1ce ROle all Number o(AII.'/les alld Spatial Mesh POillls/ill' Problem

I ll'ilh ,) = 0.05

4 angles 12 angles 24 angles 12 angles
24 x 24 mesh 24 x 24 mesh 24 x 24 mesh 48 x 48 mesh

Estimate for S( B.,) from the
Gauss--Seidcl iterations 0.9621 0.9625 0.9608 0.9610

No. of Gauss-Seidel
iterations for convergence 181 182 175 176

This nondependence of convergence rate on the discretization mesh may be
used to reduce the computing time required to solve large, slowly converging

I
i

t When thc number of inner iterations is finite, the relationship (8-1.10) between the J-SI
and CCSI iterates is not strictly valid. Thus the cyclic Chebyshev equation (8-3.40) also is not
strictly valid. Hcnce the accuracy of the adaptive estimates for S(B,,) is limited. Because of this,
the damping factor F should not be too large unless ,) is sufficiently small. For ,) in the range
0.025-0.075, F between 0.65 and 0.7 seems appropriate. (Recall F, introduced in Section 5.4,

controls the accuracy required of the estimates for S(Bb ).)



TABLE 11-3.3
The Eftect 0/ e of- 0 on the Conl'ergence Rate 0/ Chebyshev Acceleration for Problem I with Four Angles and

~x = ~y = 0.05

(Gauss~Seidel)

Co = 0.0 en = 0.2 en = 0.5 eo = 0.6 en = 0.75 eo = p

Estimate for S( B,,) from
the Chebyshev iterations 0.9672 0.9642 0.9692 0.944 0.943 0.9672

No. of Chebyshev
iterations for convergence 49 65 105 126 ISO lSI
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Fig. / /-3.5. Graph of R(n) versus 11 for problem 2.

Gauss-Seidel
0.8887 0.0
0.9437 0.0
0.9673 0.0
0.9781 0.0
0.9837 0.0
0.9904 0.0
Gauss-Seidel
0.9200 0.4
0.9807 0.4
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problems. For example, such a problem could first be solved with a reduced
number of angles and spatial mesh points to obtain the optimum acceleration
parameters and a reasonable guess for (Fn,)' ..J/n. Y. x), Such procedures have
been used to reduce computer solution time with moderate success.

To illustrate that a nonzero e can have a significant effect on the conver
gence rate, problem 1 was solved using different (fixed) values for eo in the
Chebyshev process. The results are given in Table 11-3.3. The seemingly bad
estimates for S(Bb) with eo = 0.6 and eo = 0.75 are due to the Chebyshev
strategy. With F = 0.65, new estimates for S(Bb) are calculated only if the
actual convergence rate is less than 65 % of the estimated theoretical rate
(See Eq. (8-3.36)). As eo increases, the convergence rate becomes less dependent
on the estimate for S(BbJ and, thus, less accurate estimates are required to
sat isfy the parameter test (8-3.36).

The behavior of the Chebyshev process when relatively large complex
eigenvalues are present is illustrated in Fig. II -3.5. There, a plot of RIll) versus
n is given for problem 2 of Fig. 11-3.4. (Recall from Chapter 8 that R(Il) is the
approximation to the error reduction achieved on iteration 11 (see Eq.
(8-3.33)). On outer iteration 45, it was determined that the Chebyshev process
was not converging properly. eo was then increased to 0.4 and five Gauss
Seidel iterations were done to get a new estimate for S(Bb). The Chebyshev
process was then restarted on iteration 52 and continued without interruption
until convergence was achieved.

Problem 2 was also solved using eo = 0.3 and eo = 0.4 as the initial esti
mates for e. The estimates for S(Bb) and e used in the successive Chebyshev
polynomial generation are given in Table 11-3.4. On the iterations not given
in Table 11-3.4, a Gauss-Seidel iteration, which is needed to obtain a new
estimate forS(B b), is being carried out (see Section 8.3). Surprisingly, as shown

TABLE 11-304
Estimates/or S(E,,) and e jilr Prohlem 2 Usi/ut Initial Estimates of

eo = 0.3 and eo = 0.4

Iterations SE(E,,) eo Iterations SdEJ) eo

1-5 Gauss-Seidel 1-5 Gauss-Seidel
6-8 0.8887 0.3 6-8 0.8887 0.4

10-13 0.9404 0.3 10-13 0.9387 0.4
15-20 0.9632 0.3 15-23 0.9612 0.4
22-44 0.9730 0.3 25-111 0.9726 0.4
46-64 0.9813 0.3 113-128 0.9823 0.4
66-71 0.9856 0.3
73-77 0.9940 0.3
79-83 Ga uss-Seidel
84··110 0.9807 0.4
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in Fig. 11-3.5, the fewest number o'f iterations were required when the initial
estimate eo = 0.0 was used. This can be attributed to the fact that the error
reduction factors for eigenvector modes associated with the larger real eigen
values of BJ are smaller for iterations with eo = 0.0 then for iterations with
eo #- 0.0.

11.4 A NONLINEAR NETWORK PROBLEM

In this section, we discuss an iterative solution procedure for solving the
systems of nonlinear equations which arise in the network representation of
nonlinear flow problems. The numerical procedure illustrates the use of an
inner-outer iteration process using the (nonlinear) block SOR method for the
outer iterations and the Newton method for the inner iterations. We also
discuss such problem areas as the choice for the initial guess and the selection
of overrelaxation parameters.

Statement of Problem

The problems we consider are special cases of the network problems studied
by Birkhoff and Kellogg [1966J, Porsching [1971J, and Rheinboldt [1970].

We assume that we are given a network consisting of a set of nodes I =
{I, ... , M} and a set of links, A = {i, j} c 1 x 1, joining these nodes. We
assume the network is symmetric in the sense that 0, .I) E A implies (j, i) E A
and that the network is connected; i.e., for any i, .I E I, there is a path of links of
the form (i, ij)(ij, i2 )··· (i"" .I). For every link 0,.1) E A, we are given a con
ductance function ({Ji./S, t) with the following properties:

(PI) ({Ji./S, t) is a continuous function of sand t.
(P2) ({Ji./S, t) is strictly isotone in s; i.e., ifs' < s. then ({Ji./S', t) < ({Ji'/S, t).
(P3) ({J;js, t) is strictly anti tone in t; i.e., if t' < t, then ({Ji./S, t') > ({Ji./S, t).
(P4) ({Ji./S, t) + ({Jj,i(t, s) = O.
(P5) ({Ji./S, t) becomes unbounded as S or t -4 ± 00.

If one interprets sand t as temperatures at nodes i andj, respectively, then
({Ji./S, t) may be regarded as the directed heat flow from node i to node.f
through the connecting link (i, .I). With this interpretation, properties (P2)
and (P3) imply that this directed heat flow decreases when the temperature at
the downstream node is decreased but increases when the upstream temper
ature is decreased. Property (P4) states that the directed heat flow from node i
to node.f is the negative of the flow from node .I to node i. For hydraulic
networks, the state variables sand t represent nodal pressures.
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If U I' U2, ..• , UM are the state variables at the nodes of 1, then the net efflux
from node i is defined to be

(11-4.1 )

where, for notational purposes, we define ({Ju(u;, Uk) == °if (i, k) r/: A. If the
Ui are assigned known values on a nonvoid set of boundary nodes, N + 1,
N + 2, ... , M, then the network problem of interest here is to determine the
state variables U I , ... , UM which satisfy the boundary conditions and for
which the net efflux at all interior nodes equals a prescribed value. Thus we
seek U I , ... , UM which satisfy

i = 1, ... , N,

i = N + 1, ... , M,
(11-4.2)

where the qi are prescribed constants. The system of equations (11-4.2) may
also be written as

Fu = 0, (11-4.3)

where U = (Ub U2"'" UN)T is the unknown state vector and F is the con
tinuous mapping F: RN --+ R N with the component functions (HUb"" UM)

- qa, i = 1, . : . , N. Here RN is the N -dimensional linear space of real column
vectors.

Birkhoff and Kellogg [1966J have shown that a unique solution of the
network problem (11-4.2) always exists. Their result is valid for more general
boundary conditions than the "Dirichlet" condition used here. In what
follows, we let u* denote the unique solution of (11-4.2).

The Nonlinear Block Successive Overrelaxation (NBSOR) Method

We first define what is meant by a partitioning of a nonlinear system of
equations into block subfunctions. Let 111' ... , I1q be q positive integers such
that IZ~ I 11k = N, and consider RN as a q-fold Cartesian product R"' x
R"2 X ... x R"q. If Pk is the natural projection operator of RN onto R"", then
the kth block of Fy = °is defined by the 11k equations

(11-4.4)

We say F is block diagol1al solvable if for any y E RN and any k, 1 ~ k ~ q, the
system of 11k equations

(11-4.5)
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has a unique solution ZE Wk. It follows from a resultt of Rheinboldt [1970bJ
that the network problem (11-4.3) is block diagonal solvable.

If I is the iteration index, the NBSOR iterates u(l) are defined by the follow
ing procedure: For k = 1,2, ... , q, determine Z E R"k such that

PkF(P1u(l), ... , Pk-1U(l), Z, PH IU(l - 1), ... , Pqu(l- 1» = 0 (l1-4.6a)

and set

(l1-4.6b)

(J 1-4.8)

(11-4.7)

where OJ is the overrelaxation parameter. Since Fu is block diagonal solvable.
the NBSOR process is well defined. If all block sizes are unity, i.e., q = N, we
refer to (I I -4.6) as the nonlinear point successive overrelaxation (NPSOR)
method. The nonlinear block Gauss-Seidel (NBGS) method is defined by
(J 1-4.6) when w = l. The modifications to (11-4.6) required to define the
nonlinear block Jacobi (NBJ) method are straightforward.

For the network problem considered here, it is known (Rheinboldt
[1970bJ) that the NBGS and the NBJ methods are globally convergent; i.e.,
these methods converge to u* for any starting vector u(O) ERN. Unfortunately,
these global convergence results do not in general extend to the truly over
relaxed (w > 1) process. Nor is there any global theory for choosing w in
order to optimize the rate ofconvergence. However, as we shall see, often more
can be said about the local convergence of the overrelaxed process.

I

Local Convergence of the NBSOR Method

For the rest of this section, we assume the mapping (J 1-4.3) is continuously
differentiable in some neighborhood If 0 c RN of the solution u*. Thus the
N x N Jacobian matrix F(u),

, [a.1J1 ~aUl ... O/I(OUN]
F (u) ==' .. .,

DIN/au 1 OIN/DuN

corresponding to the mapping F is well defined for any u E Ho. We partition
F(u) in a form compatible with the subfunction partitioning (11-4.4): i.e.,

[

F'I 1 .•• F'l ]• • q

F(u) = : ' :,
j "' F''~I ~q

t The results by Rheinboldt [l970bJ arc bascd on an analysis of At·functions. Prcviously,
. Rheinboldt [1970'1] showed that the network considered here gives rise to M-functions.
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where F;.j is a nj x nj submatrix and the nk' k = 1, ... , q, are defined by the
partitioning (11-4.4). If D(u) = diag(F;,;) is the diagonal block matrix of
(11-4.8), then F(u) may be written as

F(u) = D(u) - L(u) - U(u), (11-4.9)

where Land U are strictly lower and upper triangular matrices, respectively.
We assume D(u) is nonsingular for any u E Ho. Thus we can define the u
dependent matrices

2 w(u) == [D(u) - WL(U)]-l[OJU(U) + (1 - OJ)D(u)],

B(u) == D(U)-l[L(u) + U(u)],
(11-4.10)

IfF(u*) is regarded as a coefficient matrix, then Sf",(1I*) and B(1I*) in (11-4.10)
are the linear SOR and Jacobi iteration matrices corresponding to the
partitioning (ll-,;~.8) of F(u*).

It follows from a result of Ortega and Rheinboldt [1970J that ift S(Sf",(l/*»
is less than unity, then there is a neighborhood of u*, say H(u*), such that the
NBSOR iterates converge to u* for any starting guess u(O) E H(u*). Moreover,
they show that the least possible asymptotic convergence rate for these
NBSOR iterations is -log S(SfO)(1I*». Thus asymptotically the optimum (I)

for the NBSOR method may be tilken to be that (r) which minimizes S(20)(1/*)).
If F(u) is consistently ordered and if the eigenvalues of B(u*) are real with

S(B(u*» < I, it is known (see Chapter 9) that S(2)0)(l/*» < 1 for I s; OJ < 2
and that S(2w(u*» is minimized for OJ = OJb , where

2
OJb = ---r====

1 + ~ 1 - S(B(U*»2
(11-4.11)

Thus if (11-4.8) is a consistently ordered partitioning for F'(1I*) and if F(II*)
is SPD, it follows that the NBSOR method is convergent provided the starting
guess u(O) is sufficiently close to u*. Moreover, to maximize the asymptotic
rate of convergence, OJ should approach OJb as the iterations become large.
Henceforth we assume that F(u*) is SPD and that the partitioning (11-4.4) is
chosen such that the corresponding partitioning (11-4.8) for F'(u) is con
sistentlyordered.

Let fJ.(I) == u(l) - 11(1 + I) and E(I) == u(l) - 11* denote the difference and
error vector, respectively, for the NBSOR method. If u(l) and u(l + I) are

-j- Recall that S(G) denotes the spectral radius of the matrix G.
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(11-4.12)

sufficiently close to u*, using the mean value theorem and the continuity of the
elements of F(u), we can show that L'1.(l) and E(l) approximately satisfy

L'1.(l) ~ !E",(u*)L'1.(l - I),

E(l) ~ !E",(U*)E(l - I), and

E(l) ~ (I - !E",(u*)) - IL'1.(l).

Thus the L'1.(1) and c(l) vectors approximately satisfy the same relationships as
do the L'1. and c; vectors for the linear SOR method (see (9-4,3)), Thus the
adaptive procedure for estimating W b and for estimating the iteration error
given in Chapter 9 can also be used for the NBSOR method when the iterates
u(l) are sufficiently close to u*.

The difficulty in using the above results is that the initial guess u(O) for the
NBSOR iterates must already be sufficiently close to u*. Utilizing the global
convergence of the NBGS method, Hageman and Porsching [1975J give an
a posteriori numerical procedure for obtaining such a u(O). Basically, their
procedure is

(1) Do 15 NBGS iterations(w = 1.0). Let SE(B) be the estimate for
S(B(u*)) obtained from these iterations.t

(2) Start the NBSOR iterations using the initial estimate w(O) = 2/

[1 + J 1 - SE(B)2]. The adaptive procedure of Chapter 9 is used to update
the estimates for wand to estimate the iteration error.

(3) If the NBSOR process appears to be divergingt, go to (1),

Inner Iterations

To carry out the NBGS or NBSOR process (11-4.6), nonlinear subsystems
of the form

Gk(z) == PkF(P 111(1), ... , Pk- Iu(l), Z, Pk+ 1u(l - 1), ' .. , Pq u(l - 1)) = 0

(11-4.13)

must be solved for z. Unless the system of nk equations, Gk(z) = 0, is of an
extremely simple nature, it is not possible to solve for the solution vector z
in closed form, Consequently, some iterative process must be used, As before,
the iterations used to solve these subsystems are called inner iterations, while
the primary iterations of (11-4.6) are called outer iterations,

t Since F(II*) is consistently ordered and positive definite, it follows that 5(B(1I*))2 =

5(2",(11*» and, from (11-4.12), that lim,_",II~(l)/IIII~(l- 1)11 = 5(,£'),(11*)). Thus we take
SECW = 11~(14)11/1I~(I3)11.

::: For example, divergcnce is implied if the ratio Rt.,·p) dcfincd by (9-5.9) is consistently
greater than unity.
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Some methods which may be used to solve the subsystem Gk(z) = 0 are:

(i) The NPGS method. The global convergence of the NPGS inner
iterations follows from Rheinboldt [1970b].

(ii) Linearization methods. If the elements of the Jacobian matrix G~(z)

corresponding to Gk(z) can be easily determined or approximated, one can
attempt to solve the subsystems using anyone of the variants of Newton's
method.

(iii) Combinations of (i) and (ii). For instance, the globally convergent
NPGS method may be used to obtain an approximate solution which is then
refined by Newton's method.

We now discuss the inner iteration strategy given by Hageman and Por
sching [1975] which uses (iii) above, with safeguards added to improve
reliability. We assume that the elements of the Jacobian matrix G~(z) can be
easily determined and that the Newton method is locally convergent. More
over, we assume that Pku(l) is used as the initial guess for inner iterations to
solve the subsystem

(11-4.14)

on outer iteration (I + 1).
Newton's method is appealing because of its quadratic convergence

properties. As the NBSOR iterates u(l) converge to the solution u*, the initial
guesses available for Newton's method also converge to the solution of
(11-4.14). Thus the most recent NBSOR iteration result Pku(l) should be an
adequate guess for Newton's method in solving (11-4.14) on outer iteration
(I + 1) provided I is large enough. However, for I small, the guess Pk u(/) may
cause divergence of the Newton iterates. We correct for this by using the
globally convergent NPGS method to improve Pku(l) before starting the
Newton process.

Specifically, in solving (11-4.14) on outer iteration (I + 1), two NPGS
iterations are performed prior to the start of the Newton iterations if

Ill/(I) - u(/ - 1)112/llu(1)112 ~ rJ., (11-4.15)

where rJ. is an inner iteration strategy parameter. For the numeric<ll examples
given later, we picked rJ. = 0.001. If after the preliminary N PGS iterations are
done the Newton method fails to converge, we neglect the Newton results and
solve (11-4.14) by the NPGS method. No preliminary NPGS iterations are
performed if inequality (11-4.15) is not satisfied. If the Newton method fails to
converge for this case, we retreat, do two NPGS iterations and then attempt
to use Newton's method again.

The inner iterations for solving (11-4.14) are considered converged when the
estimate for the ratio of final error to initial error is less than fl. Specifically,
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if Pk u(l) is the initial guess for the solution z, we try to do enough inner
iterations so that the final approximation zfor z satisfiest

(11-4.16)

For the inner iteration procedures discussed previously in Sections 14.2 and
14.3, we assumed that the number of inner iterations required to achieve the
error reduction (11-4.16) could be numerically predicted a priori. Thus the
same (fixed) number of inner iterations could be done every outer iteration.
Because the subsystems in this section are nonlinear, the number of inner
iterations required for (11-4.16) to be satisfied is likely to vary with the outer
iteration. Thus the convergence test (11-4.16) is used here to terminate the
inner iterations.

The Newton and NPGS inner iteration procedures for outer iteration I + 1
are summarized below.

Newton Method. If G~(z) is the Jacobian matrix for Gk(z), the Newton
iterations are defined by

(11-4.17)

where In is the Newton iteration index and zlO) is taken to be Pk u(l) or the
result of the preliminary NPGS iterations. The process (11-4.17) is considered
converged when Ild(m+ 1)112/1Id(l)112 ::; (3, and is considered to have failed on
iteration In + 1 > 3 if Ild(m+ [)112/1Id(I)112 ;;0: 2.0 or In + 1 = 15.

NPGS Method. Let Gk(z) = (gl(Z), ... , gn"(z»T, where z = (z[, ... , znJ
The NPGS iterates are defined by the procedure: For p = 1, ... , Ilk> deter
mine z~n+ I) such that

g (z (m +I) zlm +I) z(m +I) Zlm) Zlm) = 0
pi' ... , p-I 'p 'p+ [, ... , n" ' (11-4.18)

where III is the iteration index and zlO) = Pku(l). The NPGS process (11-4.18)
is terminated if Ilz(m+l) - z(m)112/1Iz(l) - z(0)112 ::; f3 or if In + 1 = M, where
M = 2 if the NPGS process is being used to provide a guess for the Newton
iterations and M = 40 otherwise. Note that single nonlinear equations of the
form (11-4.18) must be solved at each step of the NPGS process. These single
equations may be approximated by bisection, regula falsi, or Newton itera
tions. Here again only reasonable accuracy is required. (For the numerical
examples considered later, the bisection method is used.)

In the terminology of Ortega and Rheinboldt [1970J, the inner-outer
iteration process described here could be classified as a variable l11-step SOR
Newton method. Analogously, we could also define the variable l11-step

t Numerical studies indicate [hal a value of Ii = 0.01 is appropriate.
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Chebyshev-Newton and the variable m-step CG-Newton methods. Based on
the results of the previous chapters for linear problems, it seems likely that
SOR-Newton would be the least effective of the three methods.t The use of
the CG method seems especially appealing. However, numerical results
have been obtained only for the SOR-Newton method.

A Numerical Example

We now discuss the numerical solution of a particular network problem.
The connected network is taken to be the 57 node double ladder shown in
Fig. 11-4.1. The state variables Ui are assigned fixed values at boundary nodes

Fig. Il-4.J. Double ladder network.

52-57. The conductance function for a link joining node i to node j is of the
form

<pjJu;, u) = Yijlui - ujl'iJ sgn(ui - u), (11-4.19)

where the constants Yij and (Xij satisfy (Xij = (Xji > 0 and Yij = Yji > O. It is
easy to see that the <Pi. j of (11-4.19) satisfy properties (P 1)-(P5). We consider
the following three problems;

Problem 1 (Xij = 0.5

" _{ 1
1
0- 0 . 5

l'ij -

10- 1

for all links of the network,

for the risers

for the left rungs

for the right rungs

U52 = 0.0,

U5 5 = 5.08,

U 5 3 = 2.0,

U56 = 16.8,

U 54 = 4.0

U5? = 27.8

t We assume that one of the red/black ordering variants for the Chebyshev and CO methods
is lIsed.
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for the risers

for the left rungs

for the right rungs

for all links

Problem 2

{

3.0

(Xij = 0.7

2.0

)'ij = 1.0

U52 = 1.0,

lI S5 = 4.0,

lI S3 = 2.0,

lI S6 = 5.0,

US4 = 3.0

US? = 6.0

Problem 3 (Xij = 0.5 i

{

1.0

)'ij = lO.O
20.0

for all Jinks

for the risers

for the left rungs

for the right rungs

U52 = 0.0,
U S5 = 5.08,

lIS3 = 1.0,
US6 = 9.08,

US4 = 0.0
US? = 4.08.

All problems were solved using the NBSOR method (11-4.6) with each
block in the partitioning being associated with a horizontal line of nodes.
Thus for the network of Fig. 11-4.1, there are three equations in each of the
17 subfunction blocks. For each problem the corresponding Jacobian matrix
F(u) is positive definite in some neighborhood about the solution and is
consistently ordered relativ~ to the line partitioning chosen for Fli = O.

As discussed previously, NBGS iterations are done initially and possibly
later if the NBSOR iterations appear to be diverging. The adaptive procedure
used to obtain estimates for OJ and to estimate the iteration error is that given
by Hageman and Porsching [1975]. Their procedure is basically that of
Algorithm 9-6.1 with F = 0.5 as the damping factor and, instead of (9-5.22),
they use the following smaller upper bounds on the estimates OJ.

!, = 1.33,

!6 = 1.90,

and

!2 = 1.5,

!? = 1.96,

!3 = 1.74,

!s = 1.97,

!4 = 1.8,

1:9 = 1.98,

!s = 1.85,

! 10 = 1.985,

!s = 1.99 for s > 10. (11-4.20)

( = 10- 3 was used as the outer iteration convergence criterion.
The relationships (11-4.12), which are important in the estimation of OJ, are

only valid for u(l) sufficiently close to lI* and even then are only approximate.
The smaller (more conservative) bounds !s of (11-4.20) are used to preven t the
estimates for OJ from possibly becoming too large before u(f) is sufficiently
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close to u*. In addition to the approximate nature of (11-4.12), the effectt of
inner iterations may prevent the theoretical convergence rate predicted by
linear theory from being achievable. Thus the accuracy of the adaptive esti
mates for W b may be limited. Because of this, a relatively loose convergence
criterion should be used for the W estimates. In the adaptive procedure here,
this is accomplished by using the relatively small value of 0.5 for F (see
Sections 5.4 and 9.5).

The inner iteration procedure used is the combination of NPGS and
Newton iterations described previously. rx = 0.001 and (J = 0.0 I were used
for the strategy parameters in (11-4.15) and (11-4.16). We remark that the
partial derivatives of the ((Ji./S, t) in (11-4.19) with respect to sand t are easily
calculated. Moreover, the Jacobian matrices G~(z) for the subfunctions Gk(z)
are tridiagonal. Thus the system of linear equations associated with Newton's
method (11-4.17) may be solved easily.

A flat guess was used for all problems: 27.0 for problem 1, 7.0 for problem
2, and 10.0 for problem 3. Most problems were solved three times: once using
the adaptive procedure to estimate wand twice using w fixed. Fixed values of
w = 1.0 (NBGS) and w ~ W b were used.t The iteration data is summarized in
Table 11-4.1. For all problems considered, no NBGS iterations were required
once the truly overrelaxed process was started. Figure 11-4.2 presents a
graph of R(I) versus I for the NBSOR method applied to problem 1 when
solved using the adaptive procedure to estimate w. Here, as in Chapter 9,
R(l) == II ~(l) 112/11 ~(l - 1) 112 .

The inner iteration procedure worked well for these problems. For problem
1, the average number of Newton iterations/line varied from 3 for the initial
NBSOR iterations to 2 for the last 30 NBSOR iterations. The two preliminary
NPGS iterations were terminated on outer iteration 81. Problems 2 and 3
behaved similarly. However, for problem 3, the Newton method failed to
converge for several lines when the preliminary NPGS iterations were
terminated on outer iteration 82. The second Newton attempt, however, was
always successful.

In order to verify that the subfunction systems were being solved with
sufficient accuracy, problem 1 was rerun using a tighter inner iteration con
vergence criterion IJ in (11-4.16). Changing (J from 0.01 to 0.0001 resulted in
practically no change in the outer iterations. However, the number of Newton
inner iterations almost doubled for the initial outer iterations.

t When the number of inner iterations is finite, the relationships resulting from the consistent
ordering property are no longer strictly valid. For example. Eq. (9-3.8) is only approximately
satisfied when inner iterations are done. The approximate nature of (9-3.8), in turn, implies that
the theoretical optimum SOR convergence rate can only be approximated by -Iog(wh - I).

t Even when a fixed OJ ;6 1.0 was used, the first 15 iterations were carried Ollt using the N BGS
method.
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TABLE 11-4.1
Block Method Iteratiol/ Results

As Ortega and Rheinboldt [1970] note, the asymptotic convergence rate of
the NBSOR method is not enhanced by doing more than one Newton itera
tion. Thus as convergence is approached, one Newton iteration is likely to be
sufficient. However, because of the convergence test used, a minimum of two
Newton iterations Were required for the numerical examples here. We remark
that the Newton convergence test could easily be modified to permit only one
Newton iteration when the iterates are sufficiently close to the solution. Since
the quotient Ild(Zlll/lldll)11 used in the Newton convergence test measures the

1
2
3

NBSOR with Nl3S0Rwilh
NBGS (OJ = I) OJ strategy OJ fixed

Last est. for
Last OJ

1ter. SlY',) (I) her. used her. OJ

644 0.9849 1.786 95 1.788 65 1.76
269 0.9619 1.675 63 1.682 48 1.66
368 0.9718 1.713 82 1.723 I

I
1.00

/

0.90 \
""a: herations w

1-15 1.000

0.80 16-24 1.3333
25-34 1.500
35-53 1.703
54-72 1.747

7395 1.788

0.70
10 20 30 40 50 60 70 80 90 100

OUTER ITERATION NUMBER.f.

Fig. 11-4.2. R(I) versus I for the NBSOR method: Problem I.
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error red uction of the first Newton iteration, one cou Id use this quotient to
indicate when one Newton iteration is sufficient. For example, if Ild(2)ll/lld(llll
s 0.01 for all lines for two successive NBSOR iterations, then one Newton
iteration could be done for subsequent NBSOR iterations.

These problems were also solved lIsing the NPSOR method; i.e., each
block in the SOR process (11-4.6) is now associated with a single node instead
of a line of nodes. The iteration data is summarized in Table 11-4.2. Computer

TABLE 11-4.2
Point Method Iteration Results

NPSOR with NPSOR with
NI'GS (w = I) (}) strategy (I) fixed

Last est. for
Last OJ

Iter. S(!!' 1) U) Iter. llsed Iter. 0)

930 0.9881 1.803 122 1.809 92 1.78

>999 Did not
( 18,000) 0.9988 1.934 525 1.965 converge 1.946

3 >999 > 1482
(900.000) 0.9992 1.945 (2400) 1.990

time limitations made it unfeasible to run some of these problems to con
vergence. However, estimates for the number of iterations required for con
vergence are given in parenthesis. As expected, the point methods required
more iterations for convergence than did the block methods. The significant
increase for problems 2 and 3 is caused by the strong couplingt between nodes
on a horizontal node line. For these problems, the coupling between nodes on
a horizontal.line is much larger than the coupling between nodes on a vertical
line. Thus, the interblock couplings (see Section 9.9) for the line block method
are much smaller than those for the point method. In this connection, we note
that the convergence rates for the NBSOR method would have been signifi
cantly reduced had we chosen the blocks to conform to vertical lines of nodes.

Note that problem 2 did not converge when the NPSOR method was used
with w = 1.946 fixed. However, when the initial guess was changed from a flat
value of 7.0 to a flat value of 5.0, convergence was achieved in 262 iterations.

The numerical procedures described in this section have also been used to
solve the mildly nonlinear elliptic boundary value problems considered by
Ortega and Rockoff [1966]. Numerical results for these problems are givenby
Hageman and Porsching [1975].

t As determincd by thc appropriate element in the Jacobian matrix F(u*).
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12
The Nonsymmctrizable Case

L

12.1 INTRODUCTION

We now will consider various procedures for accelerating basic iterative
methods which are not symmetrizable. Suppose that the basic method

lln + 1) = GU(n) + k

is used to solve the N x N nonsingular matrix problem

Au = b.

(12-1.1)

(12-1.2)

Forthe acceleration procedures given previously in Chapters 5-8, we assumed
that the basic iterative method was symmetrizable. By Theorem 2-2.1, til is
implies in particular that (a) the eigenvalues of G are real, (b) the algebraically
largest eigenvalue of G is less than unity, and (c) the set of eigenvectors for G
includes a basis for the associated vector space EN. However, it is not un
common to encounter problems for which (12-1.1) is nonsymmetrizable and
for which one or more of the properties (a)-(c) are not valid for the matrix G.
Because of the possible presence of complex eigenvalues and because of the
po~sible eigenvector deficiency, the nonsymmetrizable case is essentially more
difticult than the symmetrizable case.

Previously. in Section 6.8, we discussed some of the difticulties which are
encountered when property (b) or properlY (c) is not valid. In this cha pteI', we
will be concerned with the case where the matrix G has complex eigenvalues.
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In place of property (b), we will require that the real part of any eigenvalue It of
G satisfy

Re(p) < 1. (12-1.3)

We will contiuue to assume that the matrix A is nonsingular and that the
set of eigenvectors for G includes a basis for EN.t In addition, we assume that
the matrices A and G are real and that (2-2.1) holds, i.e., that G and k can be
expressed in the form

(12-1.4)

for some nonsingular splitting matrix Q.
.The complex eigenvalue case may arise for a problem where A is symmetric

but where the splitting matrix Q is not symmetric. Most complex eigenvalue
cases, however, arise from the application of a standard iterative method such
as the RF, Jacobi, or SSOR method to a linear systcm where the coefficient
matrix A is not symmetric.t

vC>ne possible approach for solving nonsymmetric linear systems is to
consider the equivalent symmetric system

ATAu = ATb. (12-1.5)

Since ATA is SP D for A nonsingular, the techniqucs discussed in Chapters 4-7
can now be used to solve the system (12-1.5). However, the condition number
of ATA generally will be much greater than that of A. Because of this,§
an accelerated procedure for solving (12-1.5) in many cases would he '10 faster
than an unaccelerated procedureforsolvingthenonsymmetricsystcm (12-1.2).
In addition, the cost per iteration would be greater for the system (12-1.5) than
for (12-1.2). Thus the use of (12-1.5) is not recommended except in special
cases.

In Section 12.2 We will show how Chebyshev acceleration can sometimes
be applied effectively in the nonsymmetrizable case. In Section 12.3 we describe
three generalizations of conjugate gradient (CG) acceleration for nonsym
metrizable iterative methods. Each of the methods we present may be con
sidered as a "generalized CG-acceleration procedure" in the sense that each
procedure reduces to CG acceleration in the symmetrizable case. In Section
12.4 we discuss an acceleration procedure based on Lanczos method. While

t For discussions of the case where G has an eigenvector deficiency. see Section 6.8 and also
ManteufTeI [1975].

t We remark tbat the RF, Jacobi. and SSOR methods are sYlllmetrizable even if A is not
SPD provided tbere exists a corrcsponding nonsingular block diagonal matrix L such that
2:A2:- 1 is SPD. For the RF method. L need not be a blnck diagonalm<llrix; it is sutllcient tbat
2: be nonsingular.
*For example. the efTect of condition number on the convergence rate or the RF method can

be obtained frolll Eq. (2-3.6).
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the procedures described in Sections 12.3-12.4 have been found to work well
in some preliminary experiments, theoretical results are lacking except in
special cases. Further research and numerical experimentation are needed.

In Section 12.5 we consider a procedure which can sometimes be used if
the matrix A of (12-1.2) is "positive real" in the sense that A + AT is SPD.
For such problems, it is often convenient to use a basic iterative method corre
sponding to the splitting matrix Q = ~(A + AT). (Thus Q is the symmetric
part of A.) The corresponding iterative method was considered by Concus
and Golub [1976aJ and by Widlund [1978J and is referred to as the "GCW
method." Although the iterative method is not symmetrizable, the eigenvalues
of its iteration matrix G are purely imaginary. In such cases, one can apply
either Chebyshev or CG acceleration and analyze the behavior of the resulting
procedure in terms of the theory for the symmetrizable case.

In Section 12.6 we describe the application of some of Ihe methods to solve
a nonsymmetric linear system corresponding to a partial differential equation
of convection-diITusion.

12.2 CHEBYSHEV ACCELERATION

In this section we consider Chebyshev polynomial acceleration of the
basic method (12-1.1) which is applicable when the eigenvalues of the itera
tion matrix G are known to lie within or on an ellipse in the complex plane.

From (3-2.5), the error vector associated with a polynomial method applied
to (12-1.1) can be expressed in the form

8(n) = Qn(G)8(O), (12-2.1)

where QII(G) = (Xn.OJ + (X1I.1G + ... + (Xn.nGn. As in Chapter 4, we require
that Qn(1) = 1. Since the matrix G is real, we also require that the coefficients
(X1I.j be real in order to avoid calculations with complex numbers. Let ~ be a
convex region of the complex plane which contains the eigenvalues of G. We
define the virtual spectral radius ofQn(G) with respect to ~ to be

S§)(QII(G» == maxIQiz)l·
Z E §)

(12-2.2)

The subscript ~ is used to indicate that the virtual spectral radius is now a
function of the domain 0} which is chosen toenc\ose the spectrum of G.
We also define Sg(QII(z» to be the right side of (12-2.2). Analogous to
(3-2.17), we define the asymptotic virtual rate of convergence of the poly
nomial method (12-2.1) for this case to be

(12-2.3)
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When ~ is chosen to be an ellipse, the polynomial QnCG) which maximizes
Rqp , ",(Qn(G» can often be given in terms of Chebyshev polynomials.

Suppose the eigenv,:lIues of G are known to lie in the region ~, whose
boundary is ~pe ellipse

oJ' •

[(x - d)la]2 + (Ylb? = 1,

where the constants a, b, and d are real and where

a+d<1.

(12-2.4)

(12-2.5)

Because any complex eigenvalues of the real matrix G must occur in complex
conjugate pairs and because of the condition (12-1.3), neither of the above
conditions on the constants a, b, and d is restrictive.

With a =I- b, consider the normalized Chebyshev polynomial

T,,[(Z - d)/c]
Fn(z) == 7;,[(1 - d)/c]'

where T,,(w) is the Chebyshev polynomial (4-2.1) and where

( 12-2.6)

(12-2.7)

Since a and b are real, the constant c is either real or purely imaginary. For
either case, Fn(z) is a real polynomial. This follows since T,,(w) is an odd (even)
polynomial for 11 odd (even). We remark that the points d + c and d - care
the foci of the ellipse 02-2.4). See Fig. 12-2.1.

Uthe foci of the ellipse (12-2.4) are real, we have the following result due to
Clayton [1963].

Theorem 12-2.1. Let!Jt be the region enclosed by the ellipse (12-2.4),
where d + a < 1 and where b < a. If .Cf'n is the set of all real polynomials
Qn(z) of degree 11 or less satisfying Qn(1) = 1, then the polynomial Fn(z) of

(d, b)

(d, b)

(ol

d +a

(b)

Fif:. /2-2./. Ellipses with real and complex foci. (a) b < a and (h) h > a.
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(12-2.6) is the unique polynomial in the set .C/" which for any Q,,(z) E Y"
satisfies

ManteufTel [1977J has shown that the above result cannot be extended to
the case where c is purely imaginary. However, he shows that the result of
Theorem 12-2.1 lis asymptotically true, i.e., if d + a < 1 and if b > a, then
lim,,~ 00 [S.'7,(P,,(z»J 1/" ~ Iim,,~ w [Sp(Q,lz»J 1/" for any QnCz) E Y II . Moreover,
ManteufTel notes that this asymptotic behavior is achieved very quickly.

As in Chapter 4, we can use (4-2.1) to express P,,(z) in the recursion form

where

Po(z) = 1,

11 ;;:: 1,
(12-2.8)

I
Y = 1 - d'

_ 2(1 ~ d) T,,[(1 - d)/cJ
PII+l- --c- T,,+l[(1-d)/c]' (12-2.9)

It now follows from Theorem 3-2.1 that the iterates for the polynomial method
(12-2.1) based on PII(z) can be expressed in the three-term form

(12-2.10)

where J(") = Gu(") + k - u(,,). Again, using (4-2.1), we can express the
parameters P" in the more computationally convenient form

where

if 11 = 0,

if 11 = 1,

if n;;:: 2,

(12-2.11)

(12-2.12)

Since P,lz) is analytic, we. have by the maximum modulus principle that ~

maxIP,,(z)1 = max IP,,(z)l, .~.l.·
ZE~ zEE(d.n,b) ,

where E(d, a, b) is the ellipse (12-2.4). Now, using the fact that a maximum of
IP,,(z) I over E(d, a, b) occurs at z = d + a, we obtain (see, e.g., Wachspress
[1966J), after some algebraic manipulation, that

-[ a + b ]R q . 'X/PII(G» = -log J 2 2' (12-2.13)
I-d+ (I-d)-c
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When the basic method (12-1.1) is syITlmetrizablc, we have that h = O. For
this case, the ellipse (12-2.4) reduces to the interval [d - a, d + aJ and
Rv·.", (Pn(G» red uces to

where (J = a/(I -d). This is consistent with the results of Chapter 4. To show
this, we first note.that with h = 0 we have that M(G) :::;; d + a and meG) ;;:::
d - a. Now, from (4-3.23), we have that the convergence rate for the Chebyshev
procedure of Chapter 4 with ME = d + a and with mE = d - a satisfies

R",(Pn.E(G»;;::: -log[(1 - JI - (JD/(I + JI - (J~)]li2 = Rq;.",(PiG»,

(12-2.15)

where (JE = (ME - IIIE)/(2 - ME - mE)' The right equality in (12-2.15)
follows from (12-2.14) and the fact that (JE = [a/(1 - d)J = (J. For the case
when M(G) = d + a, we have equality throughout (12-2.15).

A difficult problem in the utilization of the Chebyshev-acceleration
procedure given above is the determination of the bounding ellipse f» which
encloses the eigenvalues of G and which maximizes Rq • ",(Pn(G» with respect
to all such ellipses. Numerical procedures to obtain such a bounding ellipse
have been developed, for example, by Wrigley [1963J, Wachspress [1966J,
and Manteuffel [1978]. (Also, see Section 11.2.)

We now discuss several special cases.

Chebyshev Acceleration When Bounding Ellipse Is a Circle

For this case, a = band c = O. As Pn = 1for alln when a = b, it follows that
the Chebyshev procedure (12-2.10)-(12-2.12) with a = h reduces to the basic
method with extrapolation (see Eq. (2-2.13». Manteuffel [1975J shows that
this result for circles is compatible with the result for ellipses, i.e., he shows
that

lim Pn(z) = [yz + (1 - Y)r, (12-2.16)

where, as in (12-2.9), y = 1/(1 -- d). Note that with z = G, the right side of
(12-2.16) is equal to (G[y]Y, where G[l'] is the iteration matrix of the extra
polated method (2-2.13). Thus if the domain containing the eigenvalues of Gis
a circle or nearly a circle, there will be little or no acceleration over that of
extrapolation. This situation occurs, for example, when G is the SOR
matrix !l!OJ of Chapter 9 with OJ close to (l)b (see Fig. 9-3.1).



Chebyshev Acceleration When the Eigenvalues of G Are Purely Imaginary

This situation occurs whenever G is similar to a skew-symmetric matrix.
For this case, with b = S(G), the bounding ellipse (12-2.'1) reduces to the

interval [ - ib, ibJ in the complex plane. Thus with a = d = 0, the Chebyshev
procedure (12-2.10)-(12-2.12) becomes

336
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When the eigenvalues of G are purely imaginary, we also can utilize the
Chebyshev procedure given earlier in Chapter 4. To show this, consider the
"double method" based on (12-1.1):

u(n+ I) = G21/(II) + Gk + k. (12-2.21)

Since G2 U(II) + Gk + k = G(GU(II) + k) + k, it is evident that (12-2.21) is
equivalent to two applications of (12-1.1). Clearly, the eigenvalues of G2 are
real and satisfy M(G2

) 5 0 and m((12) = - V This, coupled with the assump
tion that G has no eigenvector deficiency, implies that the double method
(12-2.2\) is symmetrizable. Hence the Chebyshev-acceleration method of
Chapter 4 may be applied to (12-2.21). Using M(G 2

) = 0 and m(G 2
) = -b2

,

we can express this Chebyshev procedure in the form

u(n+l) = Pn+ I [YII+ I (G 2 U(II) + Gk + k) + (I - YII+I)U(n)] + (I - PII+I)lI(II-l),

u(n+l) = Pn+I(GlI(n) + k) + (1 - Pn+I)U(II-l),

where

PI = I, P2 = (I + ib 2)-1,

PII+I = (I + ib 2PII)-1 if n:2: 2.

Moreover, from (12-2.13), we have that

R 9fi ,oo(PII(G» = -i log r,
where

r = (JI + b2
- l)/(JI + b2 + I).

(12-2.17)

(12-2.18)

(12-2.19)

(12-2.20)

I
•

(12-2.22)
1

where, from (4-2.12), YII+ I = 2/(2 + b2
) and where the Pn+ I are given by

(4-2.15) with (j = b2/(2 + b2
).

Hageman et al. [1980] show that the Chebyshev procedures (12-2.17) and
(12-2.22) are, in a sense defined by them, equivalent. Moreover, since effective
adaptive procedures can be developedt for both Chebyshev methods, there
is no apparent reason to favor one method over the other.

t For eaeh Chebyshev method, the results of Section 6.5 can be used to develop an adaptive
procedure for estimating h. We remark that only pseudoresiduals corresponding to even
iterations (i.e., ()12.') should be examined for the Chebyshev method of (12-2.17).

1

J

,..:I
f.

f.~
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Chebyshev Accleration When Bounding Eigenvalue Region Is a Rectangle

We now consider the case when the eigenvalues p of G satisfy

,,'.'- IRe(p - d)1 .::;; G, IIm(Jl) I .::;; 5, (12-2.23)

where, analogous to (12-2.5), we assume that (a + d) < 1. Such bounds for the
eigenvalues of Gcan be obtained, for example, by examining the eigenvalues of
the symmetric matrix H == -!-(G + GT

) and the skew-symmetric matrix K ==
-!-(G - GT

) associated with G. For any eigenvalue p of G, it can be shown
(Manteuffel [1975J) that Re(p) lies in the interval [m(H), M(H)J and that
IIm(/L) I .::;; S(K). Thus if the extreme eigenvalues of Hand K can be deter
min'ed, then the eigenvalues of G satisfy (12-2.23) with d = -!-[M(H) +
m(H)J, a= -!-[M(Ii) - m(H)J, and 5 = S(K). Another example where
(\ 2-2.23) holds is given in Section J2.6.

Without loss of generality, we can assume that d = O. Otherwise, we simply
consider the extrapolated method

lI(n+ I) = (1/(1 - d»(GH(II) + k) - (d/(1 - d»lI(lIl, (12-2.24)

whose iteration matrix has eigenvalues {i which are bounded by

IRe(fi) I .::;; G, IIm(fi) I .::;; b, (12-2.25)

where G = a/(J - d) and b = 5/(J - d).
There are many ellipses of the form

[(Re Jl)/aJ2 + [(Im p)/bJ2 = 1 (12-2.26)

(12-2.27)

(J 2-2.28)

a = 52/3(1 _ p2)2/3 + a2/3 (1 + p2)2/3

2p(1 - p2)-1/352/3

b = b2/3 (1 _ p2)2/3 + a2/3(l + p2)2/3'

which contain the rectangle (12-2.23) with d = O. We choose the one for which
RI'}. et)(PII(G» given by (12-2.13) (with d = 0) is as large as possible. From the
analysis of Young [J 97 JJ, see also Kjellberg [J 958J, it can be shown that the
choice of a and b which minimizes Ri'}, et)(PII(G» is given by

2p(1 + p2)-1/3a2 /3

Here p is the solution of the cubic equation

(I+ p2)2/3-2/3 (I - p2)2/3 2/3a + ------- 5 = J.
2p 2p

( 12-2.29)
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Chebyshev Acceleration for Red/Black Partitioned i\latrix Problems

(12-2.32)

(12-2.31)

I

~
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L-...;

We choose the root of (12-2.29) such that 0 S P < 1. It can also be shown that

a+b
P = (12-2.30)

1 + Jl + b2
- a2

We now consider Chebyshev acceleration of the Jacobi method when the
matrix problem (12-1.2) is partitioned into the redfblack form

338

[i ~J [~:J = [~:J
We assume that DR and DB are nonsingular. As in previous chapters, we let
B denote the iteration matrix for the associated Jacobi method.

Since the coefficient matrix of (12-2.32) has Property .r# (see Section 9.2),
relative 10 the red/black partitioning imposed, it can be shown (see, e.g.,
Varga [1962]) that the real parts of the eigenvalues /1 ofB occur in ± pairs.
Thus a bounding ellipse for the eigenvalues of B can be given by (12-2.4)
with d = O. From (12-2.10)-(12-2.11), Chebyshev acceleration of the Jacobi
method can then be defined by

u(n+l) = P [F u(n) + C ] + (1 - P )//"- 1 )R 11+ 1 R B R n+ 1 . R

(11+1) [F (II) + ] + (1 ) (11-1)
UB = PII+1 BUR CB - PII+I UB ,

(12-2.33)

where PII+ 1 is given by (12-2.11) with (J2 = a2 - V In (12-2.33), we let
FR = _Dill H, Fn = -DB I K, cR = Dil lbR , and Cu = DB Ibn.

That the Golub-Varga cyclic procedure given in Chapter 8 is also applic
able here can be shown, as before in Section 8.3. Thus if we let V~') = ulf"- I)

and VI;') = u\i"), the process (12-2.33) can be carried out by the cyclic formula
tion:

(12-2.34)
V~) = P~)[FBV~) + CB - V~-1)] + V~-I),

where,wilh(J2 = a2 - b2,wehavep~) = l,pbl ) = (1 -1(J2)-l,andforll;::: 1

P~+ 1) = [1 _ i(J2p~)r 1, P~+ I) = [1 - i(J2p~+ 11r 1. (12c2.35)

If a < 1, it follows from (12-2; 13) that the asymptotic virtual rale of con
vergence for the cyclic accelerated method (12-2.34) is -log[(a + b)/
(1 + Jl - (J2)Y
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We remark that the successive overrelaxation (SOR) method can also be
used to solve the matrix problem (12-1.2) when A is not symmetric. To
briefly discuss this application, let the system (12-1.2) be partitioned into the
form (9-3.1) and let B denote the iteration matrix for the Jacobi method
associated~with this partitioning. We assume, as in Chapter 9, that thecoef
ficient matrix A has Property cr# and is consistently ordered relative to the
partioning imposed. Because A has Property d, it again follows that the
real parts of the eigenvalues of B occur in ± pairs. Thus a bounding ellipse
for the eigenvalues of B can be given by (12-2.4) with d = 0, i.e.,

x2/a 2 + y2/b2 = I.

When a is less than unity, we have

Theorem 12-2.2. Let the coefficient matrix A be consistently ordered rela
tive to the partitioning imposed. If the eigenvalues of the associated Jacobi
iteration matrix B lie in or on the ellipse (12-2.36) with a < I, then the SOR
method (9c3.2) converges for all OJ satisfying °< W < 2/(1 + b). Moreover,
if

OJb = 2/(1 + Jl + b2
- a 2

),

then the spectral radius of the SOR iteration matrix !fw" satisfies

5(2wJ ::;; [(a + b)/(I + Jl + b2
- a2)Y

(12-2.37)

(12-2.38)

Further, if some eigenvalue of B lies on the ellipse (12-2.36), then equality
holds in (12-2.38) and 5(2w) ~ 5(2Wb) for OJ ¥- wb •

Proof See, for example, Young [1971].

As for the case when the eigenvalues of B are real, the SOR method and the
cyclic method (12-2.34) for the redjblack partitioned problem (12-2.32) have
identical asymptotic convergence rates.

12.3 GENERALIZED CONJUGATE GRADIENT
ACCELERATION PROCEDURES

In this section, we consider three procedures for accelerating the con
vergence of the basic method (12- I.l) in the nonsymmetrizable case. One of
the schemes, which we call ORTHOMIN, was developed by Vinsome [1976].
Each of the procedures we present can be derived by a method which yields
conjugate gradient (CG) acceleration in the symmetrizable case. All the
procedures are thus equivalent in the symmetrizable case. In general, we refer
to the schemes of this section as "generalized CG-acceleration procedures."



If the basic method (12- 1.1) is symmetrizabJe, there exists a nonsinglilar
matrix Wsuchthat W(I - G)W- I isSPD.Aneqllivalentconditionfor(12-1.1)
to be symmetrizable is that Z(I - G) is SPD for some matrix Z which is also
SPD. This follows since if W(I - G) W - I is SPD, then Z(I - G) is SPD for
Z = W Tw. On the other hand, if Z(I - G) is SPD and if Z is SPD, then
W(I - G)W- I is SPD for W = ZI/2. For two of the generalized CG
acceleration procedures, we will utilize a matrix Z, not necessarily SPD, such
that Z(I - G) is SPD. It is necessary and sufficient that such a matrix Z
have the form

12 THE NONSYMMETRIZABLE CASE340

(12-3.1)

where Y is SPD. Obviously, if Z has the form (12-3.1), then Z(I - G) is SPD.
On the other hand, if Z(I - G) is SPD, then, since (I - G) is nonsingular, we
can write Z = (I - GfY, where Y = (I - G)-TZ. But since Z(I - G)
is SPD, it then follows that (I - G)TY(I - G) is SPD,and, hence, Y is SPD.

The generalized CG procedures which we consider are polynomial ac
celeration proced ures as described in Chapter 3. From (3-2.5), the error vector
associated with a polynomial method applied to (12-1.1) can be expressed in
the form

e(n) = Qn(G)e(O), (12·3.2)

where Q,lx) = I~=o rJ.n,kxk with Qn(1) = 1. Let ()CO) denote, as before, the
pselldoresidual vector

b(O) = k - (I - G)u(O) (12-3.3)

and let Kn(b(O) denote the so-called Krylov space, i.e., the space spanned by
the Krylov sequence of vectors ()(O), (I - G)b(O), ... , (I - G)"'" l b(O). We now
show for 11 = 1,2, ... that

u(n) - u(O) E Kn(b(O».

Since Q,ll) = I, we have, by (12-3.2), that

u(n) - u(O) = (u(n) - it) - (UfO) - it)

= e(n) - e(O) = (Q,,(G) - l)e(O)

= (Qn(G) - Qn(I»e(O)

(12-3.4) I
I
I

n

= I rJ.n,k(Gk - l)e(O)
k=O

(12-3.5)

Now, from (12-1.4), G = 1 - Q-I A and from (5-2.3), e(O) = (G - 1)-lb(O) =
(- Q- 1A)-lb(O). Using the binomial expansion for (I - Q-l Al, we then can
express (G k - 1)e(0) in the form

(G k _ 1)1:(0) = [iiI + ~k(k ~ 1)(-Q-1A) + ... + (_Q-1A)k-l})(0).

(12-3.6)
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Since Q-1A = I - G, it now follows from (12-3.5) that U(II) - u(O) can be
expressed as a lineai' combination of the vector sequence {6(0), (I - G)<5(o>, ... ,
(I - G)"-16(0)} and (12-3.4) is proved.

Let £(0) be given and suppose that the basic method (12-1.1) is symmetriz
able, i.e., there exists an SPD matrix Z such that Z(I - G) is SPD. It can be
shown (see, for instance, Young et al. [1980J) that one can derive the CG
acceleration procedure of Chapter 7 by requiring for all n that II £(11) II [2(1- G)l'/2

be minimized over all £(11) such that 1'(11) - £(0) E K
II
(6(0». This minimization

procedure can also be used when Z is not SPD but where Z(I - G) is SPD.
As we show below, this miriimization procedure can lead to a generalized
CG-acceleration method for the nonsymmetrizable case.

Our discussion in this section will be very brief and we will omit many
details. These details can be found in Young et al. [1980J and in Young and
lea [1980a, 1980b].

ORTHODIR and ORTHOMIN

We now assume that Z(I - G) is SPD but that Z is not necessarily SPD.
We let ii denote the true solution of (12-1.2) and let U(II) denote the iterates
associated with the polynomial method (3-2.1)--(3-2.3). We assume the
starting vector u(O) is arbitrary.

To derive formulas for a generalized CG-acceleration procedure as de
scribed above, it is convenient to choose a set of vectors q(o>, q(1), ... which are
pairwise (Z(I - G»112 orthogonal and are such that q(i) E K;+ 1()(O»,

i = 0, 1, .... Such a set of vectors could be constructed by applying the
Gram-Schmidt procedure to the set of vectors 6(°1, (I - G)6(0), .... However,
it is more convenient to use the following procedure to generate the {qUJ}:

q(O) = ()(O)

q(lI) = (I - G)q(II-1) + f311.1I_1q(II-1) + ... + f311.oq(O"

where

n = 1,2, ... ,

(12-3.7)

f311.i =
(Z(I - G)2q (II-l),q(i)

(Z(I - G)qul, qUI) ,
i = 0, I, ... , n - 1. (12-3.8)

It is easy to see that qU) E K i + 1(6(0» and that the {q(i)} are pairwise
(Z(I - G»112 orthogonal. i.e.,

ii=j. (12-3.9)
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Since q(i) E K i + 1(6(0», we also have that

q(i) = C. 6(0) + c. (I - G)(j(O) + ... + c .. _ (I - G)i-I(j(O) + (I - G)i(j(O)
1,0 1,·1 I, I 1

(12-3.10)

and that

(I - G)i(j(O) = e. q(O) + e. q(l) + ... + e. ._ q(i-I) + q(i) (12-3.11)
1,0 I, 1 I, J 1

(12-3.12)

for some coefficients Ci, 0' Ci. I' ... , Ci, i-I, ei. 0' ei. 1, ... , ei. i-I'

In the symmetrizable case, where Z and Z(I - G) are SPD, it can be shown
that fin,i = °for i < n - 2; see, for instance, Young et ai. [1980].

If we now require that u(n) - ufO) E Kn(c)(O» and that II u(n) - ull(z(l- G)) II>

~ Ilw - ull(z(l-G))I/> for all w such that w - u(O) E Kn(j(O» we obtain, after
some calculation, that

u(n+l) = ufO) + ~oq(O) + ~lq(1) + ...+ ~nq(n)

= U(II) + ~nq(n),

where

(12-3.16)

(12-3.17)

(12-3.13)i = 0, 1,2, ...

i,j=O,l, ... ,d-l,

i, j = 0, 1, ... , d - 1.i #- j,

j < i,

~ (Z(jCi), q(i)
k = -------,=_--;-o;-

I (Z(I _ G)qCi>, qCi» ,

(j(i) = k - (I - G)uCi ). (12-3.14)

We refer to the procedure defined by (12-3.7), (12-3.8), (12-3.12), and (12-3.13)
as "ORTHODIR" or sometimes as "ORTHODIR(c:o)."

It can be shown (Young and lea [1980a, 1980b]) that the true solution u
of (12-1.2) can be written in the form

Ii = u(O) + ~oq(O) + ~lq(l) + ... + Xd_1q(d-l), (12-3.15)

where d is the smallest integer such that the vectors (j(o>, (I - G)(j(O), ... ,

(I - G)d(j(O) are linearly dependent. (We assume that 6(0) #0 so that d ~ 0.)
Evidently, °~ d ~ N.

From (12-3.12) and (12-3.15) it follows that, in the absence of rounding
errors, ORTHODIR converges in d steps. It can also be shown (Eisenstat et ai.
[1979c]) that

(Z(j(i), qU» = 0,

(Ze)(i), 6U» = 0,

If, in addition to the assumption that Z(I - G) is SPD, we also assume that
Z is positive realt (PR) then we can transform the formulas for ORTHODIR

t A matrix Z is PR if Z + ZT is SPD.
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into a form which more closely resembles the two-term form of CG accelera
tion. To do this we introduce the vectors p(O), pOl, ... defined by

pro) = q(O),

P(n) = _ l' C1(n)
/~n - 1 , 11 = 1, 2, ... , d - I, (12-3.18)

where Xn - I and q(n) are defined as in (12-3.7) and (12-3.13). It can be shown
(Young and lea [1980a, 1980bJ) that since Z is PR the {~d do not vanish, and
hence the {p(i)} are linearly independent. It is also easy to show that the
{p(i)} can alternatively be given by

{

<5(O)
)(n) = '

1 <5(n) + rx _ p(n-I) + ... + rx pro)
n, n 1 . n, 0 ,

where

11 = 0,

11 = 1, 2, ... , d - 1,

(12-3.19)

CXn,i =
(Z(I - G)<5(n), p(i)

(Z(I - G)p(i), p(i) , i = 1, 2, ... , n - 1, 11 = 0, 1, ... , d - 1.

(12-3.20)

From (12-3.12), (12-3.13), and (12-3.19) we obtain the following method:

(12-3.21 )

where p(O), p0l, ... are given by (12-3.19) and (12-3.20) and where

A = (Z<5(nl, pen»~ .
n (Z(I _ G)p(nl, p(n» (12-3.22)

We refer to the method defined by (12-3.19)-(12-3.22) as "ORTHOMIN."
This method was given by Vinsomc [1976]. Evidently, ORTHOMIN closely
resembles the two-term form of CG acceleration given in Section 7.4. We
remark that in the symmetrizable case (tn. i = 0 for i < 11 - 1 and ORTHO
MIN reduces to (7-4.7). For a proof see, !or instance, Young and lea [1980a,
1980b]. (We remark that (Z<5(nl, p(n» can be shown to equal (Z<5(n), <5(n» and
that Z = WTW.)

Because of the equivalence of ORTHOMIN and ORTHODIR, it follows
that (12-3.9) and (12-3.16) hold with qU) replaced by pUl, and that (12-3.17)
holds.

Truncated Procedures

Neither ORTHODIR nor ORTHOMIN in their "idealized" forms
described above are computationally feasible in general since the determina
tion of q(n) and pCn) requires the use of information from all previous iterations.



(See (12-3.7) and (12-3.19).) We now consider" truncated" versions of the
above schemes. For each nonnegative integer s, we define ORTHODIR(s)
and ORTHOMIN(s) as follows. For ORTHODIR(s)we use (12-3.7), (12-3.8),
(12-3.12), and (12-3.13) but with
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fl. = 01-'", I
if i < II - S. (12-3.23)

For ORTHOMIN(s) we use (12-3.19)-(12-3.22), but with

IY. Il.i = 0 if i < 11 - S. (12-3.24)

Evidently, the idealized versions ofORTHODIR(s) and ORTHOMIN(s) are
ORTHODIR(oo) and ORTHOMIN(oo), respectively. In the symmetrizable
case, ORTHODlR(s) for s z 2 is equivalent to ORTHODlR(oo), while
ORTHOMIN(s) for s ;:::: 1 is equivalent to ORTHOMIN(oo).

As stated above, ORTHODlR((0) is more generally applicable than
ORTHOMIN(oo) since for ORTHODlR(oo) we only require that Z(I - G)
be SPD, whilcfor ORTHOMIN(oo) we also require that Z be PR.lf Z is PR,
then both methods are equivalent. However, this is not necessarily the case for
ORTHODlR(s) and ORTHOMIN(s) for finite s. For these procedures we
have no convergence theorems. \Ve can, however, say something about
"breakdown." We say that breakdown occurs for ORTHODIR(s) if 6(11) i= 0
but q(ll) = 0 and that it occurs for ORTHOMIN if 15(11) i= 0 but p(ll l = O. It
can be shown (Young and lea [1980a, 1980b]) that breakdown cannot occur
for ORTHODlR(s) for II < d, where d is defined in (12-3.15). It is assumed that
Z(I - G) is SPD but not that Z is PRo We have no proof that breakdown can
not occur for 11 Z d even if Z is PRo On the other hand, for ORTHOMIN(s),
breakdown cannot occur provided that Z(I - G) is SPD and Z is PRo This
follows from results of Eisenstat et al., [1979c]; see also Young and lea
[1980a,1980b].

So far there are relatively few theoretical results available concerning the
behavior of the generalized CG-acceleration schemes defined above. How
ever, numerical results reported by Eisenstat et al. [1979c] and by Eisenstat
et al. [1979 a] arc encouraging. Encouraging numerical results have also been
obtained by Young and lea [1980a].

ORTHORES

We now seek to obtain a prbcedure which more closely resembles the
three-term form of CG acceleration. To do this, we first observe that if
Z(I - G) is SPD and if (12-3.4) holds, then the condition that

f,

(
I
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for all HI such that HI - u(O) E K n(c5(O» is equivalent to the condition that

(12-3.25)

for all v E K;;(c5(O». We now can weaken the condition that Z(I - G) be SPD
and only require that Z(I - G) be PRo Using (12-3.25), we can derive a
generalized version of ORTHODIR by choosing an ordered set of vectors
q(0l, q(1), ... which are pairwise" semiorthogonal " with respect to Z(I - G)
in the sense that

j < i. (12-3.26)

To do this we use the procedure defined by (12-3.7) but with

_ (Z(l - G)2q(n-1), q(i» + D:b f3nJZ(I - G)qU), q(i»
f3n, i - - (Z(I _ G)q(i), q(i» ,

i = 0, 1, ... ,11 - 1. (12-3.27)

The generalized ORTHODIR procedure is given by (12-3.7), (12-3.12),
(12-3.13), and (12-3.27).

If we now assume that Z as well as Z(I - G) is PR and if we define {p(i)} by
(12-3.18), we can derive a generalized form of ORTHOMIN. Thus we obtain
(12-3.19), (12-3.21), (12-3.22), and

(Z(I - G)c5(n), p(i» + D:b (XnJZ(I - G)pU), p(i)
(Xn, i = - (Z(I _ G)p(il, p(i» ,

i == 0, 1, ... ,11 - 1. (12-3.28)

Let us now assume that Z is SPD. For the generalized ORTHODfR and
ORTHOMfN procedures it can be shown that the {c5(i)} are pairwise ZI/2_

orthogonal, i.e.,

(Zc5(il, (5U» = 0,

By (12-3.21) and (12-3.19) we have

i =1= j. (12-3.29)

urn + I) = urn) + An p(n)

= u(n) + An(5(n) + IXn.n- IP(n - I) + ... + IXn.0 pro»~

A= urn) + A. b(n) + __n_ (X (u(n) _ urn-I» + ...
n A. n. II - 1

n- I

(12-3.30)
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Thus we have

U(II+ll = )'11+ 1/11+ I,,"(j(") + III+I,IIU(II) + ,.. + 11I+I,ou(O), (12-3,31)

whereYII+I/II+I,1I = All and

fn+I,1 + 111+1,2 + ... + 111+1,11 = 1. (12-3.32)

Using (12-3.32) and (12-3.29), with i = n + 1, we obtain, by (12-3.31) that
(j(II+ 1) = -YII+ Ifn+ 1,11(1 - G)(j(II) + 111+ 1, II (j(II) + .,. + fn+ 1,0(j(°l, where

-1
YII+ I = 0"11+ 1,11'

i = 0, 1, ... , 11,

111+1,11 = (1 + YII+I~II0"1I+1'i)-I,
,;0

(Z(1 - G)()(II), (j(il)
0"11+ 1, i = (Z(j(i), (j(i»)

(12-3.33)

111+ I,i = )'11+ Ifll+ 1,110"11+ l,i i = 0, 1, ... , 11 - I.

We refer to the procedure defined by (12-3.31) and (12-3.33) as
"ORTHORES," or "ORTHORES(co)." We now consider the truncated
procedure ORTHORES(s) where we choose a nonnegative integer s and we
let

0"+1·=0II ,I for i < 11 - S, (12-3.34)

In the symmetrizable case, where Z and Z(1 - G) are SPD, O"II+I,i = °for
i < 11 - 1 for ORTHORES(co); hence ORTHORES(s) for s ~ I reduces to
the three-term CG-acceleration scheme of Section 7.4. (Here, PII+ I = fn+ I,ll)'

An important special case is ORTHORES(I). If we let fll+ I,ll = PH I'
then fll+ 1, II-I = 1 - PII+ I and we obtain

\/"+1) = P [y (j(II) + U(II)] + (1 _ P )U(II-1)11+1 11+1 11+1,

(12-3.35)

(PI = 1).11 ~ 1

)'11+ I = (Z(1 _ G)(j(II), 6(11»)'

[
(Z(1 - G)()(II), ()(II-1))]-1

PII+ 1 = I + YII+ 1 (Z()(II 1), (j(II. 1)) ,

In the symmetrizable case one could transform (12-3.35) into the alternative
form (7-3.1 )-(7-3.3). However, the tW9 forms are not, in general, equivalent
in the nonsymmetrizable case. Preliminary numerical experiments indicate
that (12-3.35) is more effective than (7-3.1)-(7-3.3). These experiments also
indicate that ORTHORES(s) is quite promising in spite of the fact that, except
for the case s = co, we have no theoretical results concerning convergence or
breakdown.
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Choice of Auxiliary Matrix

Let us now discuss the choice of the auxiliary matrix Z corrcsponding to a
given C:gefficient matrix A and to a given splitting matrix Q. In order to apply
ORTI~bDIR or ORTHOMIN, we desire that Z(I ~ G) should be SPD.
But, as we have seen above, this implies that Z = (l - G?Y for some SPD
matrix Y. In order to apply ORTHORES, we desire that Z should be SPD.
Thus Z = Y for some SPD matrix Y. Thus for all three methods, we choose
an SPD matrix Yand we use Z = (I - G)Ty for ORTHODIR and OR
THORES and Z = Y for ORTHORES.

Let us assume we are dealing with a family :IF of problems each involving
a coefficient matrix A and that for the basic iterative method there is a
splitting matrix Q(A) corresponding to each A E.? such that Q(A) is a
continuous function of A. We also assume that there is a matrix A E.? such
that the basic iterative method corresponding to Q(A) is symmetrizable,
i.e., there exists an SPD matrix H such that H(I - G) is SPD, where G =
I - [Q(A)r 1it.

As an example, one can consider the RF method or the SSOR method for the
family of problems discussed in Section 12.6. The matrix A corresponds to the
case fi = 0 and is SPD. For the RF method Q(A) = I and H = I. For the
SSOR method Q(A) is SPD and H = Q(A).

Our procedure is to choose, for each A E.?, an SPD matrix YeA) such that
Y(A) depends continuously on A and such that Y(A)Q(Ar 1 A is SPD. We
indicate below several possible choices of Y.

(a) If Q(A) is PR and if A and Q(A) are SPD, we can let

Y = !(Q + QT).
f'
I
I'

1
I
Ii

I
\

(b) If A is PR and if A and Q(A) are SPD, we can let

Y = !(A + AT).

(c) If A and Q(A) are SPD, we can let

Y = Qi;IQoIQu,

(12-3.37)

(12-3.38)

where Qo and Qu arc such that for some permutation matrix P we have
PQ(A) = QL Qo Qu· Here Qu is unit upper triangular, Qo is diagonal, and QL
is unit lower triangular. We let IQo I be the matrix whose elements are the
absolute values of Qo' The above representation is valid since Q(A) is
nonsingular (see, e.g. Strang [1976]). Clearly, Y = Y(A) is a continuous
function of A.

(d) In the general case we can let

Y = H. (12-3.39)
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Having chosen Y = YeA), we can apply ORTHODIR(s) or ORTHO
MIN(s)withZ = Z(A) = (I - G(A»TY(A)orwecanapplyORTHORES(s)
withZ = Y(A). In the fonnercase Z(I - G)isSPD,whileinthelattercaseZis
SPD. We now show that for A sufficiently close to A the condition that Z(A)
is PR holds for ORTHODIR(s) and ORTHOMIN(s) and the condition that
Z(A)(I - G(A» is PR holds for ORTHORES(s). Thus we seek to show that
L(A) == Y(A)(I - G(A» is PR for A suffJciently close to A. But since YeA)
(l - G(A» = Y(A)Q(A)-l A is SPD, it follows that the eigenvalues of L(A)
are positive. Hence the eigenvalues of K(A) are positive where, for any A,
we let K(A) = !(L(A) + L(A)T). Hence for A sufficiently close to A the
eigenvalues of K(A) are positive and L(A) is positive real.

From the above discussion one would expect that, for A sufficiently close to
A, ORTHODIR(s) and ORTHOMIN(s) would behave much like CG
acceleration with Z = (I - G(A»TY(A). One would also expect that
ORTHORES(s) would behave much like CG acceleration with Z = YeA).
This analysis, however, says nothing about the case where A is not necessarily
close to A. If one could be sure that Y(A)(I - G(A» were PR, then one could
be sure that ORTHOMIN would not break down. In some cases this is
possible. An example is the case where A is PR for all A E §' and where Q(A)
is SPD for all A. (See the example of Section 12.6.) A special case is the RF
method where Q(A) = I. Here we can let YeA) = Q(A). Evidently, YeA)
(I - G(A» = Y(A)Q(A)-l A = A which is PRo Thus ORTHOMIN(s) will
not break down for all S. Additional examples are given in Young and lea
[1980a, 1980b].

As stated earlier, numerical experiments carried out to date indicate that
the methods are promising. However, a great deal of additional work, both
theoretical and experimental, is needed. Based on the discussion in this
section, it would seem that ORTHOMIN(s) should be used with a small value
of s provided that one can choose YeA) such that Y(A)(I - G(A» is PRo

Another po~sibilitywould be to use the idealized form of ORTHODIR or,
if Y(A)(l - G(A»is PR, the idealized forms of ORTHO MIN orORTHORES
and then" restart" every few iterations. This procednre would not break down
and would not require an excessive amount of storage. Such a procedure for
ORTHOMIN is discussed by Eisenstat et al. [1979c].

12.4 LANCZOS ACCELERAnON

In this section we describe another procedure which appears very promising
for accelerating basic iterative methods in the nonsymmetrizable case. The
procedure is based on a method of Lanczos [1950, 1952].
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We first describe the basic Lanczos procedure, which can be regarded as an
acceleration process for the RF method. Instead of considering only the
solution of the system

Au = b,

we also consider an auxiliary system

ATii = b.

( 12-4.1)

(12-4-2)

The choice of b will be discussed later.
In Section 7.3 we presented a derivation of the three-term form of CO

method for the case where A is SPD. We considered the procedure defined by

(12-4.3)

where r(n) is the residual vector

(12-4.4)

ThecoefficientsPn+ 1 and Yn+ 1 wcrechosensothat(r(n+ 1), r(n) = (r(ll+ 1), r(n-1»
= O. If A is SPD, the method thus defined is the CO method. In particular,
(r(i" rU» = 0 for i =I- j.

For the Lanczos method we consider the procedure defined by (12-4.3)
and also by

(12-4.5)

where
(12-4.6)

(12-4.8)

is the residual vector for the auxiliary system. We now seek to choose the
Pn+ 1 and Yn+ 1 so that the sets 1'(0), r(1), ... and R(OI, R(1 I, ... are biorlhogol1al
in the sense that for i =I- j we have

(r(i), RU» = 0. (12-4.7)

By an extension of the procedure used in Section 7.3 and by requiring that
(r(n+ 1), R(n» = (1'(11 +1>, R(n- 1I) = 0, we obtain

(r(n), R(n»
Yn+ 1 = (A,);'), R(n»'

if 11 2:: (p 1 = 1).

(12-4.9)

It can then be shown that the biorthogonality condition (12-4.7) holds for all
i and j.
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To summarize, the Lanczos procedure is defined by

1/(0) and R(O) are arbitrary,

rIO) = b - A1/(O),

lI(n+ 1) = Pn+ Il'n+ Ir(n) + Pn+I1/(n) + (I - PII+ I)!/"-I),

r(n+l) = -PII+I)1I1+I Ar ln) + PII+lr(n) + (1 - PII+I)r(II- 1l,

R(n+l) = -PII+I)ln+IA TR(II) + PII+IR(II) + (I - Pn+I)R(II-I),

(rln ), R(n»

1'11+ I = (Ar(lI>, R(n»'

if 11;;:: (PI = 1).

(12-4.10)

We remark that rather than choosing iiIO ), we simply let R(O) = E- ATii(O).

This also avoids the need to choose E.
Evidently, if A is SPD and if R(O) = r(o>, the above procedure reduces to the

CGmelhod.
In the nonsymmelric case, the Lanczos process may fail if at some stage

r(n) i= °but (r(n), RY") = 0. This can happen if one makes an unfortunate
choice of R(O) or if the matrix A has an eigenvector deficiency (see Section 2.3).
On the other hand, if none of the numbers (r(O), R(O», (r( Ii, RI I », ... vanishes,
then the process will converge irl at most IV iterations. This can be proved by
showing that the vectors R(O), R(I), .•• are linearly independent and that the
condition (ru", R(i» = 0, i = 0, I, ... , IV ~ 1 implies that r(N) = 0.

Let us now consider the use of the Lanczos method to accelerate the con
vergence of a basic iterative method of the form

where

1/(n + I) = GlI(n) + k, (12-4.11)

(12-4.12)

We consider the related equation corresponding to (12-4.11), namely,

(I - G)1/ = k. (12-4.13)

This can be regarded as a preconditioning of the system (12-4.1).
The residuals of (12-4.13) are the pseudoresiduals c5(n) = GU(II) + k - 1/").

We let ~(n) denote the residuals of the corresponding auxiliary system
(I - G)Tii = k. If we replace A by I - G, AT by I - GT, r(lI) by c5(II), and
R(II) by ~III) in (12-4.10), we obtain the more general procedure:
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u(O) and fi(O) are arbitrary,

J(O) = Gu(O) + k - dO),

u(n+ 1) = p.}' J(n) + f) 1,(n) + (I _ P )1,(n-l)
.n+l n+l n+l' n+l',
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J(n+l) = -Pn+1Yn+l(I - G)J(II) + Pn+1J(II) + (1 - PII+I)J(II-I),

fi(II+I) = -PII+lYII+ 1(1 - GT)fi(lI) + Pn+lfi(n) + (1 - PII+I)fi(II-11, (12-4.14)

(J(II), fi (II)

Yn+l = ((1 - G)J(II), fi(II»'

[
}' (J(n) fi(n») I ] - J

- I - ~ , - if 11:2: I (/)1 = I).Pn+ 1 - i'll (J(n- 1), fi(lI- 1) P
n

Suppose now that (12-4.11) is symmetrizable and that Z is any SPD
matrix such that Z(1 - G) is SPD. If we let fi(O) = ZJ(O), then the above
procedure reduces to CG acceleration.

The choices of Z which are recommended for Lanczos acceleration are the
same as for the ORTHOMIN and ORTHORES procedures described in
Section 12.3.

Preliminary numerical experiments based on the Lanczos-acceleration
procedure defined above have been very encouraging. However, there is a
need for many more experiments and for a complete theoretical analysis of
the method.

Fletcher [1976J introduced a method based on Lanczos' method which
resembles the two-term form of the CG method. This method is referred to as
the" bi-CG algorithm." Wong [1980J describes some numerical experiments
together with a preconditioning technique involving "row-sums agreement
factorization." The method was very effective for the class of problems
considered.

12.5 ACCELERATION PROCEDURES FOR THE GCW METHOD

Let us now ~.~ssume that the matrix A of (12-1.2) is "positive real" in the
sense that A + AT is SPD. We consider the basic iterative method defined by

where
1/"+ I) = Gl/") + k,

G=I-Q- 1A=Q- 1R,

k = Q-Ib,

Q = teA + AT),

R = Q - A.

(12-5.1)

(12-5.2)

( 12-5.3)

(12-5.4)

( 12-5.5)
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We willrder to this method as the" GCW method," Generalized CG-accelera
tion procedures for the GCW method were developed by Concus and Golub
[1976aJ and by Widlund [1978].

In order to carry out a single iteration of the GCW method, it is necessary
to solve an auxiliary linear system whose matrix is the SPD matrix Q. This
can often be done by direct methods. Concus and Golub [1976aJ and Wid
lund [1978] used fast direct methods for problems arising from elliptic partial
differential equations. One could also solve the auxiliary linear system by an
iterative method. Since Qis SPD, one Gan solve the auxiliary system iteratively,
for example, using one of the procedures discussed in previous chapters. We
note that good initial approximations to the auxiliary linear systems would be
available, especially at later stages of the overall procedure.

An important property of the GCW method is that the eigenvalues of the
iteration matrix G are purely imaginary. To show this, we first note that the
eigenvalues of G are the same as those of (;, where

(; = Ql/2GQ-I/2 = Q-I/2RQ-I/2,

Moreover, since R T = - R, we have

(;2 = Q-l/2RQ-l/2Q-l/2RQ-I/2

= _Q-l/2RQ-l/2Q-l/2R TQ-I/2

= _ [Q-l/2RQ-I/2J [Q-l/2RQ-l/2F.

(12-5.6)

(12-5.7)

Thus - (;2 is symmetric and positive semidefinite. From this, it follows that
the eigenvalues of (;2 are nonpositive and hence that the eigenvalues of (;
and those of G are purely imaginary.

Both CG and Chebyshev acceleration can effectively be applied to the
GCW method. For Chebyshev acceleration, we can use either the method
(12-2.17) or (12-2.22) with

b = S(G). (12-5.8)

The asymptotic average rate of convergence is given by (12-2.19).
Concus and Golub [1976aJ and Widlund [1978] developed a generalized

CG procedure based on the GCW method. Their method is defined by

if 11:2: 1 (p 1 = 1).

1/"+1) = P,,+I(GU(") + k) + (1 - P"+I)UI"-J),

where G, k, Q, and R are given by (12-5.2)-(12-5.5) and where

(jl") = Gu l") + k - ul"),

[

(Ql/2(j("1, Q 1/2(j(1l) 1] - 1

P,,+ J = 1 + (QJ/2(j(" 1), QJ/2(j1" I) P"

(12-5.9)

(12-5.10)

(12-5.1 I)
We refer to the above method as GCW-GCG method.
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It can be verified that the pseudoresiduals <5(01, <5(1), ... are pairwise Ql/2_
orthogonal in the sense that

(Q1/2<5(i), Q1/2<5(j» = 0, i #- j. (12-5.1 2)

Thus the nrethOd is guaranteed to converge in at most N iterations.
We now give a derivation of(12-5.9}-(12-5.11) by using LanclOs accelera~

tion. We simply let

(12-5.13)

We show by induction that

(12-5.14)

(12-5.15)

But by (12-4.14) we have

Yn+ 1 = «(1 _ G)<5(rr), Liln)'

which equals unity if (G<5(n), L'i1n) = 0. But

(G<5(n), Li(n) = (Q - 1R<5(n), Q( - 1Y<5(n» = (- 1Y(R<5lnl, <5(n) = ° (12-5.16)

since R is skew symmetric. Moreover, since rn+1 = 1, we have by (12-4.14)
that

Li(n+ 1) = Pn+1( -1Y(Q<5(n) - Yn+ 1(1 - GT)Q()(n)

+ (1- Pn+1)(-1)n-1Q<5(n-l)

= Pn+ 1( -IY(GTQ6(n) + (I ~ Pn+ 1)( _ly-1Q6(n-l)

= Pn+1(-IY(R T<5(n) + (1 - Pn+l)(-l)n-1Q()(1I-1)

= (_1)n+ l{Pn+ lR<5(II) + (1 - Pn+1)Q6(1I-1)}

= (_1)n+1Q{Pn+1G6(1I) + (1 - <5n+1)6(1I-1)} = (_ly+ 1Q6(n+1),

(12-5.17)
Thus (12-5.14) follows.

It can be shown (see Hageman et al. [1977J) that the GCW-GCG method
is equivalent to the regular CG procedure of Section 7.4 applied to the
"double" GCW method

(12-5.18)

This is true provided the symmetrization matrix WD = Ql/2(1 + G)-I is used
as the symmetrization matrix for the double method. The equivalence holds
in the sense that if VIO) = u(°l, v(ll, vl 2 ), .•. are obtained by the accelerated
double method and u(O), u(1), LP), ... are obtained by the GCW-GCG method,
then

(12-5.19)
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From this it can be shownt that

(12-5.20)

where

_ 1 - JI - {S(G)2/[2 + S(G)2J}2 (JI + S(G)2 - 1)2
r = 1 + JI _ {S(G)2/[2 + S(G)2J}2 = ,jI+S(G/ + 1 . (12-5.21)

It should be noted that Widlund [1978J has reported that in some cases
the sequence of odd iterants u(l), LPl, LPl, ... for the GCW-GCG method
converges much more rapidly than the sequence of even iterants u(2), U(4), •.•.

12.6 AN EXAMPLE

Let us consider the linear system obtained by using the standard five-point
finite difference discretization of the differential equation

'/xx + Uyy + fJu x = O.. (12-6.1)

The region considered is the unit square 0 ::;; x ::;; I, 0 ::;; y ::;; 1. Dirichlet
boundary conditions are assumed. The difference equation used is given by

h- 2 {u(x + h, y) + u(x - h, y) + u(x, y + h) + u(x, y - h) - 4u(x, y)}

+ YJh-1(u(x + h,y) - u(x - h,y)) = O. (12-6.2)

It can be shown (sec, e.g., Young and lea [1980aJ) that the eigenvalues of
the RF method are given by

A" = {1- cos prrh + 1- cos qrrhJ1,_= (1-hfJi,
1.1 1- cos prrh + [! cos qrrh.J~~fJh)2 - 1Ji,

if 1-h If31 ::;; 1,

if 1-h IfJ I :2: 1.
(12-6.3)

Here p, q = 1,2, ... , h- 1
- 1. It can also be shown that for the GCW

method:~

1 i
!L p q = zhfJ ,

. J[(2 - cos qrrh)/cos prrhJ2 - 1
p,q= 1,2, ... ,h- 1 -1.

(12-6.4)

t We compare the CG-accelerated error v(U) - li with the error vector associated with
Chebyshev acceleration applied to (12-5.18) with M(G 2

) = 0 and m(G 2
) = -S(G)2. We also

used the fact that 11',J;H'i)(I - G2
) = Q.

:::Widlund [197R] gave asymptotic values or the eigenvalues or the GCW method. These
values were undoubtedly obtained rrom formulas similar to (12-6.4).
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(12-6.5)

(12-6.6)

Let us apply the RF method with Chebyshev acceleration (RF-SI method)
for the case fi = -100, h = 10 - I. In this case, the eigenvalues II of the RF
method lie in the rectangle

IRe III :s; cos nh = 0.47553 = G,

11m III :s; !J24 cos nh = 2.32961 = b.

Solving the cubic equation (12-2.29) for p, we obtain

p = 0.90141

and, by (12-2.27), (12-2.28), and (12-2.12), with d = 0,

a = 0.6081, b = 3.7372, (J2 = 13.5969.

(12-6.7)

(12-6.8)

Thus by (12-2.31), the asymptotic average rate of convergence of the RF-SI
method is

Rg;,oo(Pn(G)) = -Iogp = 0.10380. ( \2-6.9)

Based on (12-6.9), the number of iterations required for convergence with
( = 10- 6 is approximately \33. The corresponding numerical experiment for
this case required 109 iterations for convergence. For the RF method with
Lanczos acceleration with Z = 1,57 iterations were required. With ORTHO
MIN(s) for the RF method with Z = AT, the following results were obtained:

s o 2

No. of ileratiollS 185 133 108 55

For the GCW method, the eigenvalues of the iteration matrix are purely
imaginary and lie in the interval - is(G) to is(G), where S(G) is given by
(12-6.5). We can then apply Chebyshev acceleration to the GCW method
(GCW-SI method) as described in Section \2.2 with b = S(G). By (\2-2.19),
the asymptotic average rate of convergence for small h and for large S(Gyl is
approximately

1 JS(G)2 + 1 - 1. 1 .•( I{JI)-I
Rq,. oo(Pn(G» = -2 log J =;= S(G) =;= -r;;:- ,(12-6.\ 0)

S(G)2 + 1 + I 2y!2n
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(12-6.1 I)

and the number of iterations needed for convergence with ( = 10- 6
IS

approximately, for small 11 and for P= - 100,

,/V ~ (6 log 10)S(G) ~ (6 log 10)(lf/l/2j2n)

~ 155.

Thus in this case, the GCW-SI method requires more iterations than the
RF-SI method in spite of thc fact that each iteration of the GCW-SI method
requires solving an auxiliary linear system. The RF--SI method would have a
much greater advantage for linear systems corresponding to the differential
equationt

"xx + It yy + P("x + "y) = 0, (12-6.12)

wherc 11 is small and Ifl I II is large. For in this case, it can be shown that if
IPI 11 > 2, then all eigenvalues of the RF mcthod arc purely imaginary
and

S(I - A) ~ ~hlfJI, h --> O. (12-6.13)

On the other hand, for the GCW method we have

S(G) ~ IPI/2n, h --> 0. (12-6.14)

The ratio ofnum ber of iterations required by the RF -SI method to the number
required by the GCW-SI method is proportional to 11. For small 11, this would
be a substantial improvement.

It should be noted, however, that for linear systems arising from (12-6.1) or
(12-6.12) the number of iterations required with the GCW-SI method is
nearly independent of 11, while the number of iterations required with the
RF-SI method behaves as h- 1 for small 11. For values of h considerably less
than 21 fl \- 1, the GCW-SI method is much faster.

It should also bc noted that the GCW-GCG method has been observed to
converge more rapidly in certain cases than one would predict, based on the
analysis of the GCW-SI method. See Widlund [1978].

A series of experimcnts based on the use of ORTHOMIN acceleration and
other acceleration procedures applied to the SSOR method and other basic
iterative methods for problems involving Eq. (12-6.1) are described in the
paper of Eisenstat et al. [1Q79a]. They considered cases where P< 0 and
used" upwind differences" for Ux rather then central differences. It was found
that when the SSOR method was used, ORTHOMIN acceleration with s = 0
(which is essentially the method of steepest descent) was better than when
values of s = 1 or s = Gwere used. Also, it was found that the convergence
was faster as IfJ Iincreased. The GCW-CG method was also used. The method
was quite effective for small IfJ I but was much less effective for large IPI.

l This was pointcd out to us by 1'. MantcutTcl. private eom111uniGltiol1,
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Chebyshev Acceleration Subroutine

LISTING OF A SUBROUTINE
DESIGNED TO PROVIDE ACCELERATION PARAMETERS

AND TO MEASURE THE ITERATION ERROR
FOR THE CHEBYSHEV ACCELERAnON METHOD

ALGORITHl1 6-5.1 CHEBYSHEV POLYNOM I AL ACCELERATION METIIOD

~f' 1
002
003
004
005
006
007
006
009
010
OIl
012
013
014
015
016
017
016
019
020
021
022
023
024
025
026
027
026
029
030
O:ll
032
033
034
035
036
037
036
039
040
041

TO 042
043
044
045
046
047
046

'mE IlAS I C I TERAT I ON ~IETIIOD IS SYMMETR I ZADLE. SEE
DEFINITION 2-2.1. IN TilE fOLLOWING, "'E LET G DENOTE
TIlE lTEltL\TION l'lATIIIX OF TIlE B,\SIC !'lETHOD.

o
TIlE INITIAL ESTIMTE FOH MX MU, THE LAHGEST
EIGENVALUE OF G. XME MUST LIE IN THE
INTERVAL (XLME.l.O).
TIlE INITIAL APPROXIMATION FOR MIN MU, TIlE SKALLEST
EIGENVALUE OF G. XI.!'lE /lUST BE LESS TIIAN Xl'1E.
CONTROL WORD THAT CONVEYS IIORE 1NFORI'lAT I ON CONCERN I NG
TIlE ESTJllATE ::LME. (SEE THE DISCUSS ION GIVEN IN
SECTION 5.3.)
IE=-I IMPLIES THAT TIlE INITIAL ESTIMATE FOR MIN MU IS

BE CALCULATED BY THE SUBHOUTINE. IF LAM IS THE
ESTIMATE CALCULATED, TIlEN TIlE INITIAL
APPROXIMATION FOR MIN MU 18 TAKEN TO BE THE
MINIMUM O~' (LAM.XLME.-1.0!. IF IE=-) ANO IF
N011I1Nf; IS KNO""N ABOUT /lIN MU. SF:T XLMF:=-l.O.

IE=O II1I'LIES TIl,\T XLME PROBABLY IS LESS THAN OR EQUAL

IE

XLME

ITP
XME

SUBRo~rINE CHEBY(DELNP,DELNE,i~,SIP,NPRT,

X RBO.GAM. ICONV. ILl MIT, ITP,
X XME.XLME.D,F, IE, 10, ILIM)

INITIALIZ!\"fION EHTHY( I,E .• TIlE ENTRY BEFORE COMPUTING ITERATION I).

ASSUMPTI ONS:

ALL VARIABLES IN TIlE CALT.1NG SEQUENCE ARE RE,\L EXCEPT FOR
NPRT, ICONV. I U l'l IT, ITP, IE. 10. ILIM.

TIlE CREIlY SUBROUTINE COllPUTES ACCELERATION PARAI'lETE~~ AND MEASURES
TIlE ITERATION ERROR VECTOR FOR TIlE CHEBYSHEV POLDlOMIAL METIIOD
DEfINED BY EQUATION (6-:1. J). THIS SUBROln'INt~ MUST BE ENTERED BEFORE
EACII ITERATION. ON EXIT. RIIO AND GAM ARE THE CHEIlYSHEV PARAMETERS TO
BE USED ON TIlE N[;-(T ITERATION. ICONV INDICATES WHETHER OR NOT
CONVEHGENCE "'AS ACHIEVED ON TIlE PREVIOUS lTER<\TION.
li'ARN I NG: SOME LOCAL VARI AIlU:S I N Til IS SUUROUT I NE ARE ASSUf'IED TO
RETAIN "ll1E1R VALUES Ilt:TliEEN CALLS. THUS, IF THIS SIJBHOUTINE IS
RELOADED BEl""EEN CALLS, 8UCII VAR I.<\IlLES MUST IlE STORED I N COMMON.

C
C
C SUBROUTINE CHEBY IS AN IMPLEMENTATION OF ALGORITHl1 6-5. I GIVEN IN
C *APPLIED lTERATlv~ MEl~ODS* BY LOUIS A. HAGEK4N AND DAVID M. YOUNG,
C ACADEMIC PRESS( 1981). EQUATION Nu~rnERS AND SECTION NUMBE~~ GIVEN
C BELOw REFER TO TIllS BOOK.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C



ON EXIT, TIlE CHEay SUllHOUT I NE' SUPPLl ES TilE FOLLOW I NG DIHA< ASSUME
ITERATION N+I HAS BEEN COMJ'UTID):

ON SUCCEEDING ENTRIF.S. S,W AFTER COMPUTING lTEHATION (N+l). TIlE USER
MUST SUPPLY TilE FOLLOWI NG NurlBElts:

NPHT PH I NT CONTI\OL WORD.
NPHT=O I!O'LlES NO PHINTING Of lTEll\TlON DATA EXCEPT FOH

'I1IAT ITEHATION ON WHICH CONVU\GENCE IS ACHIEVED.
NPHT= I IMPLlE'; PHINTING 0;' ITERATION D,HI\.

DELNP TIlE 2-NOIU'H OH THE W-NOJ\!1) OF TIlE I'SEUDO-RES I DUAL
V'EcTOR DEFINED BY EQUATION (5-2. I).

DELNE TIlE BETA NORM Of TIrE PSEUDO- RES I DUAL VECTOH.
YIHl TIlE: ETA-NOl\!1 OF ,\ I1ECENT API'ROXlrLHION FOH TIlE

SOLlJr I 011 VECTOR.
SIP THE STOPPING I;R[TERIONNUMlJER, ZETA. IN (6-3.23).

IN OHDEH 111.H ACCURATE ESTlrL\TES BE OBTAINED FOH TIlE
SPECTR.>\L R.>\DIUS OF G AND FOR THE ITERATION F:MOH. SIP
SHOULD NOT llE TOO LAHGE.

IlEl'lARK 4: D[L~P IS USED IN THE ,\DAPTIV'E PAR·\METER ESTlrLHION
I'ROCEDUIlE .

RErL\RK 5: DE:LNE. YON. ,\ND S I I' AIlE USED I N TIlE STOPI' 1NG TEST Of
(6-3.23). FOR" DISCUSSION OF APPHOPl\lATE llF.TA AND ETA
NORMS TO USE FOH DELNE AND YON. SE:E THE LAST FEW P,\GES
OF SECTION 5.4. SF:T YUN= 1.0 If TIlE HELATIVE NORM IS
USED FOH DELNt:.

RErL\RK 6: IF nIE CHEBYSHEV POLYNOMI,\L METilOD IS USF:D AS AN INNER
ITER.>\TION PROCEDURE. TIlE STOPPING TEST (6-3.23) SHOULD
llE llEPLACE:D BY A STOPPING TEST BASED ON TIlE TOTAL ErROR
REDUCTION. SEE COl1!1ENTS GIVEN IN CHAPTER II.

TO M[N MD. If TillS INEQUALITY IS NOT SATISfIED.
TilE SUBROUTINE WILL UPDATE TIlE ESTIMATE fOIl MIN I'lU
If NECESSAIlY.

IE= I IIIPLIES TIlAT TilE INPUT ESTlT'L\TE FOR MIN I1U IS TO
BE USEfl FOH I\LL ITERATIONS. 1111S OPTION SHOULD BE
USED ONLY If ,\ LO"'ER BOUND fOR 111 N I1U IS KNOWN.
ESSE~TI,\[.LY. AI.GOI\lTml 6-4. I IS CARI\lE!l OUT WilEN
IE IS SF:T EQU,\L TO ONE. WARNING: IF IF:= I AND If
XUIE IS G/\EATER TllAN 111 N MU. I TEHAT I VE D I VEIlGF.NCE
/lAY OCCUR.

ILIM 11IE MAXIMIn! NUI1BER Of lTEHATIONS "lIlCH I1AY BE DONE IN
OBT,'. I N I NG .\N I NIT I ,\L EST IrIATE fOH 111 N I1U. I L 1M IS
USE\) ONLY IF IE=-I ,\ND SHOULD BE GIlEATU\ TII,\N 7.

D TIlE STR,\TEGY PA11,,"'IET£H DEFINED BY EQUATION (6-3.19).
THF: DEF,\lJLT V,\LUE D=. I IS USED IF D IS OUTSIDF: 111£
INTEHVAL [.001 .. BI.

F 11[[, S'mATEGY 1',\I\,\/IE"I1:R DEFINF:D BY EQU,HION (6-3.21).
THE DEFAULT V,\LUE F=.7 IS USED IF F IS OU1'::'IDE TlIE
I!iTEHV,\[, [ . 1 •. 91.

10 OUTPUT U~IT USE:lJ FOR PRINTING
ILIMIT TIlE: UPPEH LIMIT ON TIlE NUrlBE:1l Of ITER"TIONS w11lCII

'1.1 Y BE DONE. III MI l' MUST BE NON-ZEIlO.
IlErL\RK I: IF IT IS KNOwrl ONLY TIIAT rlAX MU .GT. 0.0 AND TILAT

11 IN rf\! . LE. O. O. SET XME=. 0 I.
IlEflAilK 2: I F BOTH I1\X rlu AND 111 N I1U ARE TO BE F I XED FOR ALL

ITF:lIATIONS. SET XME AND XLME TO 'nIEIR DESIl\ED VALlTES ,\ND
SET ILIMIT NEGATIVE. W,\RN[NG: w1IEN TilE VALUES FOR XME
AND XUIE AIU: FIXED. TIlE E:STIMATE FOR TilE ITEIlATION ERROR
VECTOH rlAY riOT BE ACCUHATE. WARNING: IF XLME IS FIXED
,\ND XLME IS (;HE,\TER THAN rllN MU. ITEHATIVE DIVERGENCE
n\ Y OCCUH.

IlE!L\RK 3: ,\FTEH THE INITI,\LIZATION Ewnw INTO CIIEllY. TIlE USER
SHOULD NOT !lOD I FY ANY VAR I ABLES EXCEPT
DELNI'.lJELNE. YlJN.SIP. NPHT.
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

RIIO

GAM

ICONV

APPENDIX A

111E CnF.BYSm:v PARAMETEH. RHO. OF EQU,HION (6-3.1) TO
IJE USED ON TIlE NExr ITERATION. WIlIcn IS ASSUMED IrEIlE
TO llE I TE:HAT I Ofl 1'1+2.
THE CHEBYSHEV PAR.>\METER. GA1'IJ1A. OF EQUATION (6-3. I) TO
BE USED O~ 'mE NEXT I TERATI ON.
THE CONVEHGENCE INDICATOR.
I CONV= - I I MPL I ES POSS I llLE D I \'EHGENCE AND THAT TIlE

049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
C69
070
071
072
07~

074
075
076
Hi7
U7B
079
000
OUI
002
OO:l
OB4
005
Oa6
nB7
080
089
090
091
09:1
993
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
1 10
1 I I
112
113
114
115
116
117
118
119
120
121
122
123

r
I....
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C
C INITIALIZE

1'=-1
ID 1\'=0
DELNP= 1.0
R= 1.0

EDITS. ASSUME ITERATION N+ 1 lIAS BEEN CO/lPUTED.

TIlANKS ARE DUE TO L. A. ONDIS, C. J. PFEIFER, AND C. J. SPITZ OF
WESTINGHOUSE W110 MADE MANY HELPFUL SUGGESTIONS CONCERNING THE
PHOGRAMMING OF THIS SUIJROUTINE.

INTEGER I'
INTEGER PS
REAL TAU(7)
DATA TAU( I) ,TAU(2) ,TAU(3) ,TAU(4) ,TAU(5) ,TAU(6) ,TAU(7)/.948, .985,

X.99J,9975, .9990, .9995, .99995/
IC0:1V=0
IPWM=O
C= 1.0
Cf\R= 1.0
EPS= 1.0
IF I. ITP. GT. 0) (;{) TO 130

124
125
126
127
128
129
130
131
132
133
134
J35
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
J58
159
160
161

''''2163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
17B
179
180
181
IB2
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

ITERATIVE PROCESS SHOULD BF:TERMINATED.
ICONV=0 I1lPLIES TIIAT CONVERGENCE "'AS NOT ACHIEVED ON

ITERATIOIl N+ 1.
ICON\'= I 1!1PLIES THAT CONVERGF.NCE HAS BEI:N ACIlIEVED( I.E.

TilE STOPPING TEST (6-3.23) WAS SATISFIED ON
ITERATION 1'+ 1) .

ICONV= 10 IMPLIES 111AT THE ITERATION COUNT EQUALS OR
EXr:Ef::PS ILl MIT.

TIlE ITERATION COUNTER.
THE ESTIKATE FOR THE ITE~\TION EP~OR vLCTOR ON
ITERATION l' AS GIVEN BY lUE LEFT SIDF. OF
INEQU'LITY (6-3.23). DELNE=I.0 IF NO ESTI~IATE WAS
CALCULATED.
TIlE ESTI KATE FOR Mi\X MU CURRENTLY BE 1NG USED.
THE ESTINATE FOR ~lIN MU CURRENTLY BEING USED.

Xl'1E
XLME

ITP" -
DELNF:

I (P) ITP( 1'). ;>1!}:RE I' IS TIlE DEGREE OF TIlE CHEBYSIIEV
POLYNOMI,\L !\Pi'LiED ON ITERATION N+ 1, ITP IS l1IE
ITE~\TION COUNT FOR TilE ITERATION JUST COrIJ'LETED.

R llIE RATIO OF SUCCESS IVE PSI:UDO-RES I DUAL vLCTOR NORMS
DEFINED BY (6-5. II).

TEll. TIlE THEORETICAL ERROR REDUCTION FACTOR W"HICH WOULD MVE
BEEN ACH I EVLD ON ITERAT I ON I' HAD TilE ACCELEf\AT I OIl
PA~UlETERS BEEN OPTmAL. WITH Q(p) DEFINED BY (5-4.Ill,
THEN TEH=Q(p)/Q(p-I).

CR THE RATIO OF ACTUAL TO THEORETICAL CONVEHENCE RATES.
CH IS DEFINED BY (6-4.11).

EpS TIlE ESTI'L\TE FOR TilE NOHKALIZED lTE~\TION EHROR VECTOR
ON ITEilATION N AS GIVEN BY TilE LEFT SIDE OF ("'-3.23).

HEMARK 7: VALUES FOR TEll., CR. AND EpS ARE NOT COMPUTED ON ALL
iTEHATIONS. WllEN NO CONPUTATIONS ARE MADE, TilE VALUE
PRINTED IS UNITY.

W"HENEVER ESTHIATES FOR MAX MU AND MIN MU AHE CIIAi'lGED, THE FOLLOWING
DATA. IS PI\WTED PROVIDED NPRT= 1:

MAX MU TIIE ESTIMATE FOH rIA.X MU CO~lPUTED BY (5-4.24).
KAX ~!U U = THE ESTHLHE FOR ~'\X MU USED IN TilE GENF.RATION

OF THE CIlEBYSIIEV POLYNOMIAL. M,\X MU U WILL DIFFER
FHOII Mi\X MU ONLY BECAUSE OF TIlE UPPER BOUND RESTIUCTION
HU'OSED BY TIlE TAU CONSTANTS G I VEl' BY (6~4. I) .

MIN MU THE ESTIi'IATE FOR rlIN MU COMPUTED BY (6-ri.22)
on (6-5.2:J).

A. E.R. TilE ,\:3YMpTOTIC ERROR REDUCTION FACTOR FOR TIlE
CHEBYSHEV POLY1l0MI I\LrfETIIOD CORRESPOND I NG TO MAX MU U
AND MIN MU. A.E.R.=SQHT(R), WHERE R IS DEFINED BY
(4-3.21).
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[LI1'I1= IL[1'I
I CLllE= 0
[NPRT=O
[LF= ILI1'I[T
IF' l XME. LT. 1.0) GO TO 10
X!'!E=O.O
I LF= I,\DSI [Lf)

10 IF I X1'lE.GT. XL/lE) GO TO 20
X1'lE= XLME+. I
ILF= IADSI ILF)
IF (X1'lE. LT. 1.0) GO TO 20
XLME=O.O
X1'lE= . I
IF ( IE. GT. 0) IE=O

20 IEE= If:
X"lf:I'=X!'!E
XLMT=XLMZ
Xrn:T= X1'lE
DD=!)
FF=F
IF' ID.LT.. OOI.OR.D.GT.. 8l DD=.I
IF (F'. LT .. I . OH. F . GT .• 91 FF=. 7
IS=O
IF (ILF. LT. 0) IEI':= I
IF IIEE.GE.O) GO TO 30
XI'lEI'= TAUI Il
:-<LME= - X1'lF.P

C
C NEXT lTEl1ATION

30 ITP = ITI'+ I
P;;P+I
DF.LNO=DELNp
ILIMIT= IABSlILI1'IIT)
II' (p.GT.{J) GO TO 70

C INITIALIZE FOR STAHl' OF NEW CHEBYSHEV POI Yl'I01'llAL
IS= 1St 1
ICT=O
IF (IS.GT.7) IS=7
TAUS=TAUI IS)
XI'lE=XI'lEP
IF ( lEE. 1,1'.01 GO TO 40
IF (X1'lE. GT. TAUS) X11F:=TAUS

40 IF lILF.G£.O) GO TO 50
XI'lE= XI'lEI'
XLME=XL11T

50 GAI'I= 2. 0/( 2.0- XI'lE- XLt'lE)
SE=IXI'lE-~~~lE)/12.0~XI'lE-XLME)

SESF=SE*SE/4.0
RIIO= 1.0
Z= I. O-SE*SE
Z= SORT( Zl
XLH= I I. O-ZI /( I. O+Z)
AERO= SORT< XLR)
ACR=-ALOG< XLHl
Z=-ALOGIDD)/ACR
PS= INTI Zl
IF II'S.LT.6) PS=6
IF I ILF. LT. 0) PS= 10000
IF IIEE.LT.O) I'S=8
ACR= ACIV2. 0
I PWM= I

60 FOR~fAT ( 1110. 7IDlAX 1'lU=, Ell. 4, 12B 1'lAX 1'lU U=, Ell. 4, lOB
11.4.IOIf A.E.R.=,lcI1.4)

GO TO flO
C CONTINUE 1'0LYNmIIAL GENEl1ATION

70 RHO= I .0/( I. O-SESF*I\!JO)
IF I p.Ell.. I) RJIO= 1.0/( 1.0-2.0*SESF)

C
C CLEAN UP BEFOHE EXIT

00 DELNE=EpS
IT1'I=ITP-1
IF (ITI'I.EQ.O) WRITE( 10,O!;)

85 FORMAT (IIJO.20IIINJTIAL EIGENVALUE ESTI11ATES)
IF (ITI'I.EQ.OI GO TO 110
IF I ITI'I.GE.ILI1'IITl ICONV=IO

~99
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IF (ICONV.NE.Ol GO TO 250
IF (NPRT.EQ.O) GO TO 120

90 WRITE 110.1(0) IPM.ITM.R.C.CRR.EPS
100 FORl'IAT (til .2HlC .14.2Hl=.14.58 R=.EII.4.'7H TER=.EII.4.6H CR=

I.EI1.4.7Jl EPS=.EII.4)
110 IF (IPWM.EQ. 1) WRITE 110.60) XMEP.XME,XLME.AERO
120 IPM= P+ 1

REllJRN
C
C CALCULATE NEW ESTIMATE XMEP

130 RO=R
R=DELNP/DELNO
IF (P.Efl..Ol DELNPI=DELNP
IFIITP.EQ.2) RESDS=DELNP
IF IP.LE.2) CO TO 30
XP=FLOATIP)
){I'OT= XP /2.0
Z= 1.0+ XLR**P
Q=(2.0*XLR**){I'OT)/Z
B=DELNP/DELNPI
IF (B.LT.1.0) GO TO 160
ICT= ICT+ I
IF (ICT.CE.5.,\ND. IEE.CT.O) GO TO 140
IF (IEE.LE.O) GO TO 180
GO TO 30

C PRINT Tfu\T lTElli\TIONS ARE POSSIBLY DIVERGENT.
140 IF (IDIV.EQ.ll GO TO 30

liRlTE 110.150)
150 FORl'!AT (IHO.50HTHE QUMITITY B DEFINED BY 15-4.10) IS GREATER THAN,

14011 UNITY FIVE TIMES. POSSIBLE DIVERGENCE.)
10 IV= I
ICONV=-I

GO TO 30
160 CRR= ALOGI Q)

CRR=ALOG(Il)/CRR
){I'M 1=){I'- I . 0
ZMI= I. O+XLR*':){I'MI
C= AERO*ZM l/Z
XMEP= Xl'1E
IF (B.LE.fl.) GO TO 170
ZI=B*B-Q*Q
CX= Il+SQI\T( Z I)
Z1= I .O/){I'
CX=(Z*Cx/2.0)**ZI
ZI=12.0-XME-XLME)/( 1.0+XLR)
Z=(CX*CX+XLR)/CX
XMEP=.5*IXME+XLME+ZI*Z)

c
C CONVERGENCE TEST

170 Z= 1.0/( I. 0-XMEP)
IF 1 ICLME. NE. I) GO TO 175

C THE FOLLOW I NG 2 CAI\DS ARE INCLUDEO TO PREVENT POSS I BLE PSEUDO
C CONVERGENCE ON 11ffi ITEHATIONS I !'!!'!ED I ATELY FOLLOWING A CHANGE IN
C THE XLME ESTI IIATE.

IF (P.LE.PS.OI\.R.GE. I.) GO TO 180
IFIZ.LT.100.0) Z=100.0

175 EPS=DELNE*Z/YUN
IF (EPS.LE.S1P) ICONV=I

C
C PAHAMETER CHANGE TEST

180 IC= MOD( P, 2)
IF IIC.GT.O) GO TO 30
IF (P.LT.PS) GO TO 30
IF IIEE.LT.O) GO TO 200
Z=Q**FF
IF (B.LE.Z) GO TO 30
IF (ICT.GT.O) GO TO 190
P=- 1
ICLME=O
GO TO 30

190 IF (R.LT. 1.0 .OR. IEE.GT.O) GO TO 30
IF (ICT.LT.5) GO TO 30

C
C UPDATE XLME

200 XLEP=O.1l
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XLEPP=0.0 349
ID1\=O 350
IF (H.LE.I.0) GO TO 210 351
XP= FLOAT< P) 352
XP~l1=XP- 1,0 353
U= ( I. O/SQRT< XLRl ) :l<R:I;( I. 0+ x:LR:I:*XP 1/( I • O+XLR:I;:I;XP~H 1 354
XLEI'P= .5':( XHE+XLm:-( XI1E- XL1'IE) *( U:I;U+ 1.01/( 2. O*UI 1 355
Z= ,\llS( RO-H> 356
IF (Z, LT.. I' IDR= I 357

210 IF «(1.LE.I.O) GO TO 220 358
Z=B/Q 359
ZI=I.0/XI' 360
Y= Z*Z- I .0 36 I
Y= ( Z+SQRT< Y) ) **z I 362
XLEP= .5*' IDlE+ XL1'IE- (XHE-XL1'IEI:I;( Y*Y+ I .01/( 2. O*Y) 1 363
GO TO 230 364

220 IF (IEE.EQ.0) GO TO 30 365
230 IF (XLEP.LT.XLEPP) XLEPP=XLEP 366

XLEI'P=l.I*XLEPP 367
Y=ID.1'IE 368
IF (IEE.LT.0) GO TO 240 369
IF (IDR.EQ.O) GO TO 30 370
IF (XLEPP.LT.XL1'IE) XL1'IE=XLEPP 371
XHEP=. I 372

C TIlE FOLLOWING 2 CARDS ARE A SLIGHT VARIATION FROM ALGORITHl'l 6-5. I. 373
IF (Y. GT. XL1'IE) XHEP= ¥ 374
ICUlE= I 375
1'=-1 376
GO TO 30 377

240 IF (lIlR.EQ.0.AND.ITP.LT.ILIMIl GO TO 30 378
IF (XLI'IT. GT. - 1. 0) ID_I'IT= - 1. 0 379
XL1'IE=XLEPP 380
IF (XLI'IT. LT. XL1'IE) XL1'IE=XLI'IT 381
XHEP=. I 382

C THE FOLLOWING 2 CAlliS ARE A SLIGHT VARIATION FROM ALGORITll11 6-5. I. 303
IF (Y.GT.XL1'IE) XHEP=¥ 304
ICUlE= I 305
IEE=O 306
1'=-1 387
IS=0 308
GO TO 30 389

C 390
C IF NPHT=O, PRINT FINAL ITERATION RESULTS. 391

250 IF (NPHT.EQ. I) GO TO 90 392
IF (INPRT.NE.OI GO TO 90 393
WRITE (10,255) 394

255 FORHAT (IllO. 17HlTERATION SU11J'lARYI 395
I NPRT= I 396
WRITE (10.601 XHEP. XHE, XL1'IE, AERO 397
GO TO 90 398
END 399
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APPENDIX

B
CCSI Subroutine

LISTING OF A SUBROUTINE
DESIGNED TO PROVIDE ACCELERATION PARAMETERS

AND TO MEASURE THE ITERATION ERROR
FOR THE CCSI ACCELERATION METHOD

ALGORITHJ1 B-3. 1 CYCLIC cm;oYSHEV <CCSIl POLYNOMIAL !'!ETHOD

SUBROUTI NE 'CCS I (DELNP, DELNE, ¥UN ,S I P, NPRT, RIIOR, RIIOB, I CONV, I LIMIT, 001
1 ITP,xm:,D,F. 10> 002

C 003
C 004
C SUBROTHINE CCSI IS AN Il'IPLEI'lENT,\TION OF ALGORITHJ1 8-3. I GIVEN IN 005
C "'APPLIED ITERATIVE I'lETIIODS* BY LOUIS A. HAGEMAN AND DAVID M. YOUNG, 006
C ACADE/IIC PIlESS' I9B)). EQUATION NU!1DERS AND SECTION NU!1DERS GIVEN 007
C BELOW REfER TO THIS BOOK. 00B
C 009
C TIlE CCS I SUBROUTINE COl1PUTES ACCELERATION PARAI'lETERS AND MEASURES TIlE 010
C ITERATION ERF;OR VECTOR FOR TIlE CYCLIC CHEBYSHEV POLYNOMIAL ME.1110D 011
C DEFINED BY EQUATION (8-1. Ill. THIS SUBROUTINE !'lUST BB ENTERBD BEFORE 012
C EVERY CCSI ITERATION. ON EXIT, RIIOR AND RIIOB ARE TIlE CIlEBYSIlEV 013
C PARAl'IETERS TO BE USED ON THE NEXT ITERATION. ICONV INDICATES "lJETIlER 014
C OR NOT CONVERGENCE WAS ACHIEVED ON 'rnE PREVIOUS ITERATION. 015
C WAIINING: SOI'lE LOCAL VARIABLES IN THIS SUBROUTINE AIlE ASSUl'IED TO 016
C RETAIN TIIEIR VALUES BETWEEN CALLS. THUS, IF TIllS SUBROUTINE IS 017
C RELOADED BETWEEN CALLS, SUCH VARIABLES !'lUST BE STORED IN CO!1l'lON. 018
C 0n
C 0H
C ASSUMPTIONS: (I) THE COEFFICIENT MATHIX A IS PARTITIONED INTO A 021
C RED-BLACK FOILI1.· SEE SECTIONS 1.5, B. \, AND 9.2. 022
C (2) TilE COEFFICIENT MATRIX A IS SY!1l'IETRIC !\ND POSITIVE 023
C DEfiNITE; OR ELSE TIlE ASSOCIATED JACOBI MATRIX 024
C IS SYN:I'IETRI ZABLE I SEE DEF. 2-2.)). 025
C 026
C 027
C ALL VARIABLES IN TIlE CALLING SEQUENCE ARE P£AL EXCEPT FOR NPRT, 028
C ICONV,ILIMIT,ITP'AND 10. 029
C 030
C 031
C INITIALIZATION ENTRYITIIAT IS. TIlE ENTRY BEFORE COl'lPUTING ITERATION)) 032
C 033
C ITP 0 034
C X1'IE TIlE INITIAL ESTIMATE FOR TIlE SPECTRAL RADIUS OF TIlE 035
C JACOBI lTEMTION MATRIX B. XI'IE !'lUST LIE IN TIlE 036
C INTERVAL [0.0, 1.0). 037
C D TIlE STM.TEGY PAIL<\l1ETER DEFINED BY EQUATION (6-3.19). 03B
C TIlE DEfAULT VALUE D=.1 IS USED IF D IS OUTSIDE TIlE 039
C INTERVAL [.00 I, ; BJ. 040
C F THE STRATEGY PAMl1ETER DEFINED BY EQUATION (8-3.36). 041
C TIlE DEF AULT VALUE F = .7 I S USED IFF I S OUTS I DE TIlE 042
C INTERVAL [.I,.9J. 043
C 10 OUTPUT UNIT USED FOR PRINTING. 044
C ILIMIT = TIlE UPPER LIMIT ON TIlE NUnBER OF ITERATIONS WHICH 045
C I'~Y BE DONE. ILIMIT !'lUST BE NON-ZERO. 046
S REMARK I: SET XI'IE = 0.0 UNLESS SOl'lE A-PRIORI INFORMATION 047
C CONCERN I NG TIlE SPECTRAL RAn I US OF B IS KNO"'N. 04B
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C REl'lARK 2: IF A FIXED VALUE FOR THE SPECTRAL RAD[US OF B [S TO BE 049
C USED FOR ALL ITERATIONS, SET IDlE TO TIlE DESIRED VALUE 050
C AND SET [LIMIT NEGATIVE. WARNING: IF XNE IS FIXED 051
C AND IF IDlE IS GREATER TJJAN TIlE SPECTRAL RADllfS OF B. TIlE 052
C ESTItlATE FOR TIlE ITERATION ERROR '"ECTOR MAY NOT BE 053
C ACCURATE. SEE FIGURE 0-4.4,. 054
C REMARK 3: AFTER THE INITIALIZATION ENTRY INTO CCS!, TIlE USER 055
C SHOULD NOT MODIFY ANY VARIABLES EXCEPT DELNP. DELNE, 056
C YUN, SIP, AND NPRT. 057
C 050
C 059
C ON SUCCEEDING EN,mIES,SAY AFTER CALCULATING ITERATION (N+l), TIlE USER 060
C MUST SUPPLY nIE rOLLOtllNG NUMBERS: 061
C 062
C NPRT PRINT CONTROL WORD. 063
C NPRT=O IMPLIES NO PRINTING OF ITERATION DATA EXCEPT FOR 064
C TdAT ITERATION ON WfllCJI CONVERGENCE IS ACIIIEVED. 065
C NPRT= I [MJ'LIES PIlINTING or ITERATION DATA. 066
C DELNP TI~ 2-NORM(OR THE S-SUB-BNORM) OF TIlE DIFFERENCE 067
C VECTOR FOR TIlE BL,\CK UNKNOWNS. TlIE DIFFERENCE 060
C VECTOR [S DEFINED BY EQUATION (8-3.19). 069
C DELNE THE BETA-NOR.'f OF TIlE D I HERENCE VECTOR FOR THE 070
C BLACK UNKNOWNS. 07 I
C ¥UN TIlE ETA-NOHH OF A RECENT APPROXIMATION FOR THE SOLUTION 072
C VECTOR. OF BLACK UNKNOWNS. 073
C SIP THE S1UPPING CRITERION NUMBER. ZETA, IN (8-3.35). 074
C IN ORDER TJlAT ACCURATE ESTIMATES BE OBTA[NED FOR TIlE 075
C SPECTRAL RADIUS OFB AND FOR TIlE ITERATION ERROR, SIP 076
C SHOULD riOT BE TOO LARGE. 077
C REMARK 4: DELNP IS USED IN TIlE ADAPTIVE Pi\lv\I'IETER ESTIMAT[ON 078
C PROCEDURE. 079
C REl'lARK 5: DELNE, YUN, AND SIP ARE USED IN THE STOPPING TEST 080
C OF (8-3.35). FOR A DISCUSSION OF APPROPRIATE BETA AND 001
C ETA NORrIS TO USE FOR DELNE AND YUN, SEE TIlE LAST FEW 082
C PAGES OF SECTION 5.4. SET ¥UN = 1.0 IF TIlE RELATIVE 083
C NOR.'f IS USED rOR DELNE. 084
C REl'lARK 6: IF THE CCS I METHOD IS USED AS AN INNER ITERATION 085
C PROCEDURE, THE STOPPING TEST (8-3.35) SHOULD BE REPLACED 086
C BY A STOPPING TEST BASED ON TIlE TOTAL ERROR REDUCT[ON. 087
C SEE COMMENTS GIVEN I){ CHAPTER n. 088
C O~
C 090
C ON EXIT, TIlE CCSI SUBROUTINE SUPPLIES TIlE FOLLOWING DATA(ASSUME 091
C ITER.\TION N+ I HAS BEEN COMPUTED): 092
C 093
C RII0R TIlE CllEllYSllEV PARAMETER FOR TIlE RED UNKNOWNS OF 094
C EQUATION (8- I. II) FOR TIlE NEXT I TERATION( W11ICH IS 095
C ASSUMED IIERE TO BE ITERATION N+2). 096
C RII0B TIlE CIIEBYSIIEV PARAMETER FOR TIlE BLACK UNKNOWNS OF 097
C EQUATION (0-1.11l. 098
C ICONV = TIlE CONVERGENCE INDICATOR. 099
C ICONV=I IMPLIES CONVERGENCE liAS BEEN ACIII EVED( I.E. ,TIlE 100
C STOPPING TEST (8-3.35) HAS BEEN SATlSFJEll ON 101
C ITERATION N+I). 102
C ICONV=O IMPLIES TJJAT CONVERGENCE WAS NOT ACHIEVED ON 103
C lTER.~TION N+I. 104
C ICONV= 10 IMPLIES TJlAT TIlE ITERATION COUNT EQUALS OR 105
C EXCEEDS ILIMIT. 106
C ICOHV=-I IMPLIES POSSIBLE DIVERGENCE AND TJlAT TIlE 107
C ITERATIVE PROCESS SHOULD .BE TERMINATED. 108
C IF TIlE ITERATIONS ARE ALLOWED TO CONTINUE, 109
C TIlE GAUSS-SEIDEL METIIOD WILL BE USED. 110
C ITP TIlE ITERATION COUNTER. I I I
C DELNE TIlE ESTIMATE FOR TIlE ITERATION ERROR VECTOR ON 112
C ITERATION N AS GIVEN BY TIlE LEFT SIDE OF 113
C INEQUALITY (8-3.35). DELNE=I.O IF NO ESTIMATE IS MADE. 114
C XNE TIlE ESTIMATE FOR TIlE SPECTRAL RADIUS OF B 115
C CURRENTLY BEING USED. 116
C 117
C 118
C EDITS. ASSUME ITERATION N+I HAS BEEN COMPUTED. 119
C 120
C J( 1') = ITP( P). WHERE I' IS TIlE DEGREE OF TIlE CIlEBYSIlEV 121
C POLYNOMIAL APPLIED TO TIlE BLACK UNKNOWNS ON ITERATION 122
C N+ I. ITP IS TIlE ITERATION COUNT FOR TIlE ITERATION 123
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C
C l'lEXT ITERATION

10 ITP= ITP+ I
P=P+I
ILIMIT= IABS( ILIMITl
IF (P.GT.O) GO TO 40

C INITIALIZE FOR STAHl' Of REW POLYNOMIAL
IS=IS+I

C
C INITIALIZE

P=-I
IS=O
IF (XME.GE.O.O.AND.XME.LT. 1.0) GO TO 5
XME=o.O
ILHIlT= IABS( ILIMITl

5 XMEP=XfIE
RESD= 1.0
INPRT=O
ILF= ILIMIT
DD=D
FF=F
IF (D.LT•• OOI.OR.D.GT.• 8) DD=. I
If (F.LT.• I.OR.F.GT•. 9) FF=.7

Y

R

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
15 I
152
153
154
155
156
J:)7
150
Hi9
1,",0

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
19 I
192
193
194
195
196
197
198

EPS

CR

[IEP P.

MEP U.

A.E.R.

REMARK 7:

INTEGER P
INTEGER PST
INTEGER PS
REAL TAU( 7)
DATA TAU( 1) • TAU( 2) ,TAU( 3) • TAU( 4) • TAU( 5) • TAU( 6) • TAU( 7)".948 •• 985.

X.995 •• 9975,.9990 •• 9995 •. 99995/
ICONY=O
IPWM:=O
AER= 1.0
C= 1.0
CRR= 1.0
EPS= 1.0 .
IF (ITP.GT.O) GO TO 100

THE ESTIMATE fOR THE SPECTRAL RADIUS OF TIlE JACOBI
ITERATION r~TRIX B COMPUTED BY (8-3.44).
TIlE ESTIMATE fOlt TIlE SPEC~\L RADIUS USED IN TIlE
GENERATION OF THE CEEBYSHEV POLYNOMIALS. MEP U. WILL
DlfFEIt frrOM MEP P. ONLY BECAUSE OF THE UPPER BOUND
RESTItICTlON IrIPOSED BY THE TAU CONSTANTS. SEE
DISCUSSIOHS GIVEN IN SECTION 6.4 AND ABOV1:
EQUATION (8-3.53).
TIlE ASYMPTOT I C ERROR HEDUCT I ON F ACTOH CORRESPOND ING TO
rIEP U. A. E. R. IS THE SAME AS THE LO"ER CASE R IN
EQUATION (8-3.44).

TlIANKS!\RE DFf: TO L. 11.. ONOIS, C. J. PFEIFER. AND C. J. SPITZ OF
WESTINGHOUSE HIlO NADE ['L\NY HELPFUL SUGGESTIONS CONCERNING lllE
PROGRA.M:MING OF TIIIS SUBROUTINE.

JUST COMPLETED.
~\TIO Of SUCCESSIVE DifFERENCE V~CTOR NORMS. THAT IS,
V=(DELNP FROl1 ITERATION N+J)/(DELNP fROM ITERATION NJ.
THE R DEFINED RYEQUATION (8-3.33). TIffi QUANTITY R
APPROXIMATES TIlE ERROR REDUCTION FACTOR "lI1CII WAS
ACTUALLY ACIIIEVED ON ITE~\TIOr, N.
Tlffi TH[ORETICAL ERROR REDUCTION FACTOR IoillICH WOULD IIAVE
BEEN ACHIEV~D ON ITERATION 1'1 HAD THE ACCELERATION
PARAI1ETERS BEEN OPTIMAL. TER IS TIlE SECOND QUANTITY
GIV1:N IN BRACKETS IN TIlE DEfINITION Of H "llICH IS
GIV1:N FOLLOWING EQUATION (8-3.35).
TIlE ~\TIO Of ACTUAL TO THEORETICAL CONVERGENCE RATES.
CR IS DEFINED BY (8-3.57).
Tlffi ESTI1'f_ATE FOR TIlE NORMALIZED ITERATION ERROR ",1:CTOR
ON ITEM1'101'1 1'1 AS G IV1:N BY TIlE LEfT S I DE Of (8-3.35).
VALUES fOR R. TER. CR, .\ND EPS ARE NOT COIlPUTED ON
ALL ITERATIONS. "'HEN NO COrIPUTATIONS ARE MADE, THE
VALUE PRIN1~D IS UNITY.

1ffiENEVER THE ESTIMATE FOR THE SPECTRAL RADIUS IS CHANGED. THE
FOLLOWING DATA IS PRINTED PROVIDED NPRT=I.

c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C
C CI\LCULI\TE NEW ESTIMATE )(MEP

100 RESD'DELNI'
IF (ITP.EQ.2) RESDS=DELNp
V=RESD/RESDO
IF (I'. LT. 3) GO TO I I{)
IF (XME.EQ.O.OI GO 1~ 200
GO TO 120

110 IF (I'.EQ.OI DELNPI'DELNr
GO TO 10

120 IF (RIlOll.GT.1.0) GO TO 170
RP=R**P
XQ'(2.0*RPI/( I.O+RP*RPI
D=(2.0/(2.0-XNE*XNEII*DELNP/DELNPI
DDQ'Il/XQ
IF (BDQ.CE. 1.01 GO TO 130
XMEP=XME
r=- I
GO TO 10

130 IF (B. LT. 1.01 GO TO 160
ICONV'-I
WRITE ( [0.1401

140 FORMAT (I/lO.45HTHE QUI\NTITY B DEFINED BY (8-3.4;) IS GREATER.34H T
InAN UNITY. POSSIBLE DIVERGENCE.)

WRITE (10,150)

MEl' U,'.EII.4.lon A.E.R,'.EII.

ICT'O
ICS'O
IF (IS. GT. 71 IS'7
Z'TI\\i( lSI
XME'XMEP
IF (XNE.GT.ZI XME'Z
IF (ILF.LT.OI XNE'XMEP
XMESF' XME*XME
RJIOR' 1.0
RlIOB'2. 0/( 2. O-XMESFl
R'SaRTl I. 0- XMESFl
R'( 1.0~Rl/( 1.0+RI
[PWI1' I

20 FORMAT (InO,7nMEp p.'.EII.4, Ion
141
XPS'8.0
IF (XME.EQ.O.OI [S'IS-I
IF (XME.EQ.O.O) GO TO 30
XPS'ALOG(DD)/ALOG(RI

30 PS' INT< XPS)
IF ([LF.LT.O) pS'IOOOO
ILF'O
IF (pS.LT.81 PS'8
XMESF'h11ESF/4.0
GO TO 50

C CONTINUE POLYNOMIAL GENERATION
40 DELNO'DELNI'

RBOBO'RBOB
IF.(RlIOB.EQ.1.0) GO TO 50
RBOR'I.O/( I.O-XNESF*RJIOBI
RlIOB' 1,0/( 1. O-XNESF*RBORl

C
C CLEI\N UP BEFORE EXIT

50 DELNE'EpS
IlESDO'RESD
IF (ITP.EQ. II WRlTE( 10.551.

55 FORMAT (1II0,27n1NITIAL EIGENVI\LUE ESTIMATEI
IF (ITP.EQ. [I GO TO 80
IpT'2*p
IF (XOMEGB.EQ.1.01 IpT'O
ITN' ITP-I
IF (ITN.GE. ILIMITI [CONV'IO
IF (ICONV.NE.OI GO TO 220
IF (NpRT.EQ.O) GO TO 90

60 WRITE (10.701 IpT,lTM, V.AER.C.CRR.EpS
70 FORMAT (Ill ,2/11(.14,2Hl'.14.5H V'.EI1.4.7H

1'.EII.4.6H CIl'.E[1.4.7n EpS',EII.4)
80 IF (1I'WI1.EQ. I) WRITE (10,201 XNEp.XME.1l
90 XOMEGD'RlIOD

RETURN

R=.EII.4.7n TEll

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273



C
C PARA1'1ETER CIIANGE TEST

PST=PS/2
IF (P. LT. PST) GO TO 10
PST=ICS*ICT
IF (PST,GT.O) GO TO 10
Z=C**FF
IF (,\ER. LE. Z) GO TO 10
ITP= ITP+ I
P=P+I
!UIOR= I .0
RH03= 1.0
GO TO 50

L.J
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ISO FORJ1,\T (111 .4611IF CONTINUED. THE GAUSS-SEIDEL 1'1ETHOD IS USED. l 274
ILF=-I 275
XMEP=O.O 276
P=-I 277
GO TO 10 278

160 Z=SQRT( B"B-XQ*XQ) 279
Z=( 1.0+RP*RP)*(B+Z)/2.0 280
x~=&LOAT(P) 281
C3A= I. 0/( 2. O*XP) 2112
Z=Z**C3A 283
XMEP=(Z+B/Z)/( 1.0+Rl 284
p= - 1 205
GO TO 10 2B6

C 2~

C STOPPING TEST 28B
170 CONTINUE 289

AER= (2. o-mlnno) /( 2. O-MOB) 290
ALR=AER*(DELNP/DELNO) 291
RSP=R~*P 292
RSP=RSP*RSP 293
RSP~=RSP/(R*R) 294
C=R,:( I. O+fu"PM) /( 1. O+RSPl 295
BET= (RlIOB-I. 0) /( RJIOBO- 1.0) 296
II=BET*AER 297
IF ('\ER.LT. 1.0) GO TO IBO 298
ICS= ICS+I 299

GO TO 10 300
180 IF (AER.GE.Cl GO TO 190 301

ICT=ICT+I 302
11= BET*C 303

190 EPS=DELNE/(YUN*( I.O-H» 304
IF (EPS. LE.SIPl ICONV= I 305
CRR=ALOG(Cl 306
CRR= ALOG( ALRl /CRR 307

308
309
310
31 I
312
313
314
315
316
317
318
319
320

C 321
C INITIAL CAUSS-SEIDEL ITERATIONS 322

200 ALR=DELNP/DELNO 323
IF (AER.GE. 1.0) GO TO 10 324
XMEP= SQRT( ALR) 325
EPS=DELNE/(YUN*( 1.0-AERll 326
PST" ( PS/2) - I 327
IF ,P.LT.PST) GO TO 210 328
P=- 1 329

210 CONTINUE 330
IF .. EPS. LE.SIPl ICONV= I 331

C TIlE TEST USING EPSS IS USED TO PREVENT PSEUDO CONVERGENCE 332
C DU1\fNG AliI' INITIAL GAUSS-SEIDEL ITERATIONS. 333

EPSS=P£SD/RESDS 334
IF (EPSS.GE .. 10) ICONV=O 335
GO TO 10 336

C 337
C IF NPRT=O. PRINT EIGENVALUE ESTIMATES LAST USED. 330

220 I F( ",PRT . EQ. I l GO TO 60 339
IF( INPRT .NE. 0) GO TO 60 340
WH I TE (10. 225) 34 I

225 FOHr/AT (1110. 1711ITERATION SUMMAHYl 342
INPRT=I 343
WRITE( 10.20) XMEP.XME.R 344
GO TO 60 345
END 346



APPENDIX

c
SOR Subroutine

LISTING OF A SUBROUTINE
DESIGNED TO PROVIDE ACCELERATION PARAMETERS

AND TO MEASURE THE ITERATION ERROR
FOR THE SOR METHOD

L

ALCORITIDl 9-6. I SUCCESS IVE OVERRELAXATION (SOR) l'IETHOD

SUBROUTINE SOR (DEl"NP,DELNE, YUN,SJJ', NPRT,Ol'l, ICONV, ILIl'lIT, ITP,Ol'lE,F 001
I , PSI', RSP, 10) 002

C 003
C 004
C SUBROUTINE SOR IS AN I!'!PLEl'lENTATION Or ALCORITIDl 9-6.1 GIVEN IN 005
C *APPLIED ITERATIVE l'lf."l1IODS* BY LOUIS A. IIA.GEl'lAN AND DAVID l'l. YOUNG, 006
C ACADEMIC PRESS( 19BIl. EQUATION NUl'lBERS AND SECTION NUl'lBERS GIVEN 007
C BELOW llEFER TO TIl Is' BOOK. 00B
C 009
C TIlE SOR SUBROUTINE CO!'!PUTES l1IE/OVERRELAXATION PARA!'lETER O!'lEGA AND 010
C l'lEA..<:URES TIIE ITERATION ERROR VECTOR FOR TIIE SUCCESS lVE OVERRELAXATION 0 II
C !'lETHOD DEFINED BY EQUATION (9-3.2). 'TIllS SUBROUTINE !'lUST BE ENTERED 012
Co-BEFORE EVERY SOR ITERATION. ON EXIT, Ol'l IS TIIE VALUE OF O!'lEGA TO 013
C USE ON TIlE NEXT ITERATION. ICONV INDICATES WHETIlER OR NOT 014
C CONVERCENCE WAS ACHIEVED ON THE PREVIOUS ITERATION. 015
C WARNING: (SO!'lE LOCAL VARIABLES IN TIllS SUBROUTINE ARE ASSUl'lED TO 016
C RETAIN Tn;;IR VALUES BETh'EEN CALLS. TIIUS, IF tHIS SUBROUTINE I'!jS 017
C RELOADED llEl''EEN CALLS, SUCH VARIABLES HUST BE STOIIED IN COl'll'lON. OIB
C 019
C 020
C ASSUl'lPTIONS: ()) TIlE COEFFICIENT !'lATRIX A HAS PROPERTY A (OR IS 021
C 2-CYCLIC) AND IS CONSISTENTLY ORDERED RELATIVE 022
C TO TIlE I' ART I T I ON I NG I !'!POSED. SEE SECTI ONS 9.2 023
C AND 9.3. 024
C (2) l~E COEFFICIENT !'lATRIX A IS SYl'll'lETRIC AND POSITIVE 025
C DEFINITE; OR ELSE THE ASSOCIATED JACOBI !'lETIlOD 026
C IS SYl'll'lETRIZABLE (SEE DEI'. 2-2. Il • 027
C 02B
C 029
C TIlE VARIABLES IN TIlE CALLING SEQUENCE ARE REAL EXCEPT FOR NPRT, 030
C ICONV, ILl MIT, ITP,AND 10. 031
C 032
C 033
C REQUlRE!'lENTS FOR INITIALIZATION ENTRY(TIlAT IS, TIIE ENTRY BEFORE 034
C CDtIPUTING ITERATION Il. 03;-
C 036
C ITP 0 037
C O!'lE TIlE "IITIAL ESTIMATE FOR O!'lEGA. 0!'lE !'lUST LIE IN TIlE 038
C INTERVAL [1.0,2.0). 039
C F TIlE STRATEGY PARAtffiTER DEFINED BY EQUATION (9-5.10). 040
C TIlE DEFAULT VALUE F = .7 IS USED IF F IS OUTSIDE TIlE 041
C INTERVAL [. I , .9 J • 042
C PSI' TIlE STRATEGY PARAl'IETER DEI' fNED BY (9-5.20). TIlE 043
C DEFAULT VALlIE PSI' = .5 IS USED IF PSI' IS OUTS IDE TIlE 044
C INTERVAL [.001 , .9 J. 045
C RSP TIlE STI\A.TEGY PARAl'lETER DEFINED BY (9-5.21). TIffi 046
C DEFAlfLT VALUE RSP = .0001 IS USED IF RSI' IS 01HSIDE 047
C TIIE INTEl\V/lL (1. 0E-6,. 011. 04B
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ON SUCCEEDING ENTlIIES. SAY i\FTER CALCULATING ITERATION (N+J). THE
USER !'lUST SUPPLY TRE FOLLOWING NUMBERS:

ON EXIT, TlIE SOR SUBROUTINE SUPPLIES TlIE FOLLOWING DATA(ASSUl'lE
ITERATION (N+ I) lIAS BEEN COMPUTED):

ED ITS. ASSUl'lE ITERATION (N+ J) lIAS BEEN COMPUTED.

I TlIE ITERATION COUNTER.
R RATIO OF DIFFERENCE VECTOR NORMS(SEE EQUATION (9-5.9»).
CR THE RATIO OF ACTUAL TO n~ORETICAL CONVERGENCE RATES FOR

ITERATION N. SEE (9-6.5).
EPS TlIE ESTIMATE FOR T1~ ITERATION ERROR VECTOR FOR

ITERATION N AS DEFINED BY THE LEFT SIDE OF (9-5.17).
REMARK 7: VALUES FOR CR AND El'S ARE NOT COMPUTED FOR ALL

ITERATIONS. ~N NO COMPUTATIONS ARE ~E, THE
VALUE PRINTED IS UNITY.

~NEVER OMEGA IS CIIANGED AND NPRT= I, THE FOLLOWING IS PRI NTED:

REMARK 3:

049
050
05 I
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
0B8
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
I I I
112
113
114
115
I 16
117
118
119
120
121
122
123

ITERATION
SHOULD BE REPLACED
ERROR REDUCTION.

TIlE VALUE OF OMEGA TO BE USED ON TlIE NEXT ITERATION,
WlIICH IS ASSUl'lED HERE TO BE ITERATION N+2.
TIlE CONVERGENCE INDICATOR.
ICONV=0 IMPLIES TI~ STOPPING TEST (9-5.17) IS NOT

SATISFIED.
/lcONV= I IMPLIES TlIE STOPPING TEST (9-5. J7) IS SATISFIED.

ICONV= 10 IMPLIES TlIE l1LI1.ATION LIMIT, ILIMIT, HAS BEEN
EXCEEDED.

THE ITERATION COUNTER.
THE ESTI!'IATE FOR T!~ ITERATION ERROR ON ITERATION N
AS GIVEN BY TlIE LEFT SIDE OF (9-5.17).

THE UPPER LIMIT ON THE NUMBER OF ITERATIONS w~ICH MAY
BE DONE.
OUTPUT UNIT USED fOR PRINTING.
SET OME=I.O UNLESS SOIlE A-PRIORI INFOR~\TION IS KNOw~

CONCERN ING THE OPTIM.AL VALUE OF OMEGA.
IF A FIXED VALUE FOR OMEGA IS TO BE USED FOR ALL
ITERATIONS. SET 01lE TO TIlE NEGATIVE OF THE DESIRED
FIXED V/.LUE. WARNING: IF OMEGA IS FIXED FOR ALL
ITERATIONS AND IF Ol'lE IS GREATER TlIAN TilE OPTIMAL VALUE
OF OMEGA. THE ESTIMATE FOR THE ITERATION ERROR MAY NOT
BE ACCURATE. SEE FIGURE 9-8.3.
AFTER TilE INITIALIZATION ENTlIY INTO SOR. TIlE USER
SHOULD NOT MOD I FY ANY VAllI ABLES EXCEPT ,·DELNE., DELNP.

i YUl'l. SIP. AND NPRT.

PRINT CONTlIOL WORD.
NPRT=O IMPLIES NO PRINTING OF ITERATiON DAn EXCEPT FOR

TlIAT lTEfu\TION ON WHICH CONVERGENCE IS ACHIEVED.
NPRT= I IMPLIES PRINTING OF ITERATION DATA.
TI~ 2-NORM OF TlIE DIFFERENCE vLCTOR. TIlE DIFFERENCE
VECTOR IS DEFINED BY EQUATION (9-4. J).
THE BETA-NOR!'! OF THE DIFFERENCE VEC1UR.

= /n~ ETA-NOR!'! OF A RECENT APPROXIMATION FOR TIlE SOLUTION
VECTOR.
TlIE STOPPING CRITERION NUMBER. ZETA. IN (9-5.17).
IN ORDER TIIAT ACCURATE ESTIMAn:S BE OHT.\INED FOR THE
SPECTRAL RADIUS OF B MID FOR n~ ITERATION ERROR. SIP
SHOULD NOT BE TOO LARGE.
DELNP IS USED IN THE AD,\PTIVE PAfu\METER ESTIMATION
PROCEDURE.
DELNE. YUl'l. AND SIP ARE USED I N TIlE STOPP I NG TEST
(9-5.17). , .. FOR A DISCUSSION OF APPROPHIATE BETA AND ETA
NORMS TO USE FOR DELNE !\ND YUN. SEE TilE LAST FEW PAGES
OF SECTION 5.4. IF THE RELATIVE NOlrn IS USED TO COMPUTE
DELNE. SET YUN=I.0.
IF THE SOR METlIOD IS USED AS AN INNER
PROCEDUREJ-THE STOPPING TEST (9-5.17)
BY A STOPPING TEST BASED ON TlIE TOTAL
SEE CO!'l1'lENTS GIVEN I N CHAPTER I I .

ITP
DELNE

DELNP

DELNE
.. YUl'l

SIP

NPRT

qJI

ICONV

REMARK 4:

REMARK 5:

REMARK 6:

ILIMIT "

10
REMARK I:

REMARK 2:

,

u

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
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C
C INITIALIZE

1'.= - 1
I},'U!
Z=ABSlOME)
IF lZ.LT. I.0.0R.Z.GE.2.0l OME=I.O
XNUI'=0.0
IF l Z. GT. I. 0l lillUI' =2 . O*SQRT< Z.-I. 0l /Z
OMEP=OME
DELNP= 1.0
INI'HT=0
R= 1,0
FF=F
IF (F.LT.. I.OR.F.GT.• 9) FF=.7
PSI' 1'= PSI'
IF (PSI'. LT •. 001.0R.PSP.GT•. 9) PSPP=.5
nspp::RSP
IF (RSP.LT. 1.0E-6.0R.RSP.GT•. 0Il RSPP=.0001

C
C NEXT ITERATION II""

10 ITP= ITP+I I
1'01'+1
DELNO=DELNP
IF (P.GT.O) GO TO 80

C INITIALIZE FOR NEW ESTIMATE FOR ONEGA
ICS=O
IS= IS+ 1
PIl= 3
PS=6
OME= Ql'lEl'
IF (IS.GT.Bl IS=8
TAUS=TAU( ISl
IF (OME.GT.TAUSl OME=TAUS
IF lOMEP.LT.O.O) OME=-OMEP
XOMI =o.ME-I. 0
~C I=Xo.r1I/c:Lo-OMEl
IPH= I NT< XCI)
IF (IPILGT.PRJ PIl= Ipil
XOCR= 1. 0
IF (XOl'!I.GT.0.0) XOCR=ALOG(XOl'!ll
DO 20 l=pS,5000
Z= FLOAT( Il
J= 1- 1
IF (Z*Xo.MI**J.LT.pSpPl GO TO 30

20 Co.NTINUE --
1=5000

30 PS= I
IF lOMEp.GT.O.Ol GO TO 40
I'S=10000
GO TO 50

OMEG P.
OMEG U.

P-IIAT
P-ST/\R
NU

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

INTEGER I'
INTEGER PS
INTEGER PH
REAL TAUl8l
DATA TAU( Il,TAU(2l .TAU(3l ,TAU(4) ,TAU(5) ,TAU(6l ,TAU(7l ,TAU(Bl/I.6,

XI .8. 1.90 I 1.95, 1 . 97~. 1.985. 1.990, 1.995/
ICONV=0
EPS= 1.0

1XC= I .0
[1'\''1'1=0
IF (ITP.GT.0) GO TO 130

TIlE ESTIMATE FOR OMEGA C01'lPlITED BY (9-5.13) ,
TIlE ESTIJ"J\TE FOR OMEGA TO BE USED. OMEG U. WILL DIFFER
FHOl'! OMEG P. ONLY BECAUSE OF TIlE TAU I\ESmICTIONS. SEE
(9-5,22).
TIlE VALUE DEFINED BY (9-6.2).
TIlE VALUE DEFINED BY (9-5.20l.
TIlE ESTIMATE FOR TIlE SPECTRAL RADIUS OF TIlE JACOBI
ITEMTION t1ATIUX B.

I
TIlANKS AI\E DUE TO L. A. ONDIS, C. J. PFEIFER, AND C. J. SPITZ OF
WESTINGHOUSE WHO MADE MANY HELPFUL SUGGESTIONS CONCERNING TIlE
PROGRANMING OF TIllS SUBROUTINE.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
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c
C PRINT FINAL ESTIMATE FOR OMEGA IF NPRT=O

190 IFllNpRT .NE. 0) GO TO 90
IFlpS .GE. 100(0) GO TO 90
IFINPRT . Ell. I) GO TO 90
W'RlTE CIO, 195)

C
(; PARAMETER CHANGE TEST

150 IF (P.LT.pS) GO TO 10
IF (ICS.Ell.O) GO TO 160
ITPD=ITP-ICIS

C THIS TEST INVOLVING ICS AND ITPD IS NOT INCLUDED IN ALGORITHM 9-6.1.
IF (ICS.LT.3.AND. ITFD.GT.40) CO TO 160
GO TO 10

160 IF (OME.CT. 1.0) GO TO 170
Z= I. O_R
OMEP=2.0/( I.O+SQRT(Z»
1'=-1
XMUp= SQRT< RJ
CO TO 10

170 Z=XOMI**FF
IF (R.LT.Z) GO TO 10
DELR=RO-R
Z=-IO.O*XWDEL
IF (DELR.LE.XWDEL.AND.DELR.GE.Z) GO TO 180
IF (IS.GT.2) GO lU 10
Z=XOMI**.I
IF (R.LT.Z) CO TO 10

180 XMUP= (R+}{OMI) /1 OME*SQRTI RJ)
Z= I. O-XMUp*XMUP
OMEP=2.0/( 1.0+SQRTIZ»
1'=-1
GO TO 10

OMEG U.=,EII.4,98 p-HAT=, 13, I

40 IF (XOMI.CT.O.O) GO TO 50
1'8=2
PS=3
IS= IS-I

50 XWDEL= R..<:PP
IF (OME:LE. 1.9) GO TO 60
Z=«2.0-0ME)**2)*.01
IF (Z.LT.RSpp) XWDEL=Z

60 1-1'WJ1= I
70 FORMAT (IHO,8HOMEG p.=,EII.4, IIH

lOR p-STAR=, 15,68 MU=, Ell. 4)
C
C CLEAN UP BEFORE EXIT

80 DELNE=EpS
ITPP= ITP-I
IF (ITPp,GE.ILIMITl ICONV=IO
IF( ICONV.GT.O) GO TO 1?0
IF (ITP. Ell. () "'RITE ( 10.85)

85 FORMAT (IHO,3IRINI riAL ESTI!'IATE USED FOR OMEGA)
IF (ITP.Ell. () GO TO III)
IF(NPRT.Ell.O) GO TO 120

90 w'RITE (10,100) ITPP,R,XC,EpS
100 FORMAT (IH ,2111=,I4,5H R=,EII.4,6H CR=,EI1.4,7H
110 IF (lpWJ1.Ell. I) W'RlTE (10,70) OMEp,OME,pH,rS,XMUP

IF<pS.GE.I0000 .AND. IGONV.CT.O) GO TO 200
120 OM=OME.

RETURN
C
C STOPPING TEST

130 RO= R
_t)\~DE~Np/PELNO
~1f=R -.-.....-.->-

IF (ITP.Ell.2) RESDS=DELNp

:~ ~~:~i:FI~) GgoT~OI~O'
IF (R.GT.XOMI) GO lU 140
ICIS=ITP ..
IJ=XOMI
ICS=ICS+I

140 EpS=DELNE/(YUN*( I.O-H»
r:IF (XOMl.GT.O.O) XC=ALOG(R)/XOCR
. IF (EpS. LE. S I1') ICONV= I ~ ...

EpS=, Ell. 4)

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
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195 FORl1AT (IHO, 17HlTERATION SU11l'lARY) 274
INpRT=1 275
WRITE( 10,70) OtlEP,OtlE,PH,PS.X11UP 276
GO TO 90 277

C 278
C IF OI'!EGA IS FIXT,:D, GIVE ESTIMATE OF ITS WORTH. 279

200 If( INpKf.NE.O) GO TO 120) 280
I NPRT= I 281
DELNp=-I.O 282
IF(R .LT. 1.0) GO TO 250 283

210 WRITE( 10,220) OME 284
220 FOR/IAT( 1I10,35HNUMERICAL RESULTS Il'WLY THAT OI'!EGA=, Ell.4,47H IS GRE 285

XATER TIIAN OR EQUAL TO TIIE OPTIMAL VALUE.) 286
230 WRITE( 10,240) 287
240 FORMAT( IHO) 288

GO TO 120 289
250 II'RED= I 290

IF( ICS .EQ. 0) GO TO 260 291
IT!'D= IT!' - IC IS -I 292
IF( ICS .LT. 3 .AND. IT!'D .GT. 40> GO TO 260 293
GO TO 210 294

260 Z=.OOOI 295
ZZ=~.OOI 296
DELH=RO-R 297
IF(DELR .LE. Z . AND. DELR .GE. ZZ) IPRED=2 298
IF( OI'!E . EQ. 1.0) GO TO 290 299
XMUp= ( R+ XOM I) / ( OI'!E*SQHT< lU ) 300

270 Z= I . 0- XMUP*X11UP 30 I
DELNI'= 2.0/( I. O+SQHT( Z) ) 302
WRITE( 10,280) DELNI' 303

280 FORl1AT( mo. 59HNUMERICAL RESULTS INDICATE THAT TIIE OPTIMAL OI'!EGA IS 304
X ABOUT .EII.41 305

IF( II'RED.EQ.I) WRITE( 10.300) 306
IF( II'RED.EQ.2) WRITE( 10.310) 307
Z= 1.0 308
If( IPRED .EQ. I) Z=-I.O 309
DELNI'=Z*DELNI' 310
GO TO 230 311

2911 XMUP= SQHT( R) 312
GO TO 270 313

300 FORMAT( III ,30HTHIS ESTIMATE IS QUESTIONABLE.) 314
310 FORMAT( IH ,2BIITJIIS ESTIMATE IS REASONABLE.) 315

END 316
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by polynomials. 39-43. 291. 303. 340

A-conjugate vectors. 140- 142
Additive correction method. 44
Alternating direction implicit method. 37
Approximate factorization method. 36-37
Arithmetic operations, 199-20 I. 261- 276.

278-283. 285
elliciency or. 76-78. 153. 169.267-273

Auxiliary linear system. 349, 352
Auxiliary matrix. 347

B

Backward SOR method. 30
Basic iterative method . 18, 22- 37

comparison or. 33-35
completely consistent. 19
convergence or. 19
related system. 19

Basis vectors. 2. 5. 94. 96. 137. 218
Bi-CO algorithm. 351
Biorthogonal vector. 349

Bisection method. 151. 180. 324
Black unknowns. 13-17.299
Block diagonal matrix. 10. 17. 163.

214
solvable. 319

Block partitioning. SCI' Partitioning
Block tridiagonal matrix. 29. 212

c
Capacitance matrices. 38
Case I and II. 52. 54. 62
Case j' and Case II'. 62-64. 95
CCO method. 165. 170. 186-189.267

computational algorithm for. 188
convergence rate or. 166
parameters for. 1M. 186- 187

CCSI method. 165, 170-185. 199.209.
248-253. 266. 277. 285. 298. 304. 309.
338
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309··311.317.338

computational algorithm for. 180
convergence rate or. 166. 338
For1ran subroutine for. 363
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CCSI method (contin/led)
parameters for, 164, 172, 175-180,299,

309- 311, 317
CDC 7600 computer, 269, 279
CO method. see Conjugate gradient

method
Characteristic equation. 3
Chebyshev acceleration method, 34, 42,

46-55, 251, 332
computational algorithm for. 72, 77, 106,

117
convergence rate of. 49, 54. 334. 336
for eigenvalue problems, 291- 296
estimating parameters for. 59-61, 64-69,

100-105, 115-117
Fortran subroutine for. 357
if G has complex eigenvalues, 302, 309

3I I, 332-338
optimal method, see Optimal Chebyshev

acceleration method
parameters for, 51, 60. 334, 336
sensitivity to eigenvalue estimates. 55

58.62-64,91_92,109,113,131-133
for singular problems. 94. 134-136
stoppi ng procedures for, 59, 69-71, 89,

100-105
Chebyshev t>B-equation, 180
Chebyshev equation, 67, 105, 116, 178

solution of. 67-69. 116. 178
Chebyshev polynomials. 46

normalized, see Normalized Chebyshev
polynomial

recursion formulas for. 46
Cholesky decomposition, 26, 78, 167, 267
Coarse mesh variational techniques. 44
Combined (hybrid) procedure, 201-205
Completely consistent method, 19. 145
Complex eigenvalues, 5, 27. 216-217, 288,

296-298,302,310-311,317,330-332
Computer implementation, 246-250, 259

261
Concurrent iteration procedure, 249, 270-

273, 279-283
Condition number, 9, 331
Conjugate direction (CD) method, 141-142
Conjugate gradient (CO) method, 138-144

convergence rate of, 144
error minimization property, 144
matrix polynomial for, 144
parameters for, 140-143
three-term form. 143. 349

Conjugate grarlien\ acceleration method,
34.42, 139, 145-148.249,298, 3I I,
339

computational algorithm for. 153, 155
convergence rate of. 148
error minimization property, 42, 147
if G has complex eigenvalues. 331,339
parameters for. 147
stopping procedures for, 148-151

Conjugate transpose, 2
Consistently ordered matrix. 209, 211-214,

249,321
Contamination factor, 96, 102, 175,221
Convergence rate, 6, 20. 137

effects of mesh on, 253, 268, 277-278.
288,299,305,314-317

effects of partitioning on, 250-253
Crank-Nicolson method, 284
Crossover point, 266
Cuthill-McKee reordering algorithm, 277
Cuthill- Varga normalization procedure,

201, 268, 270
Cyclic acceleration method, 164, 172. see

also CCO method: CCSI method
Cyclic reduction, 38

D

Damping factor, 66, 82-86. 177, 185. 225
Difference vector, 174.219.321
Direction vector. 140- 142
Direct method, 262. 266
Dirichlet problem, 10-12
Discrete approximation, 12,261-265, 289

5-point, 12, 263, 286
9-point, 251, 263, 273-275
stencils for, 261- 265
in three~dimensions, 277-279, 286
25-point. 263, 273-275

Discrete ordinate equations, 305
Disk bulk storage, 78, 269, 279

data transfer from. 270-273, 279-283
Dominance ratio, 291, 295-297
Double method, 63-64, 336. 353

E

Easily invertible matrix. 10,36, 163,214
Effectiveness ratio. 81, 86
Eigenvalue, 3

iterative convergence to, 98, 223, 288- 293



INDEX

I
L--J

383

Eigenvector, 3
deficiency, 7, 27. 134,330,350
expansion in terms of, 96, 137. 175
generalized,6

Eigenv9ctor deficient problems, 94, 134,
137,218

Eigenvector. iterative convergence to, 94-
100,114,219-223.288-293

Ellipse, bounding. 303, 309-311, 333-337
Elliptic Equation, II. 189, 239, 262, 277
Energy norm. 70
Error vector, 20. 40. 61, 102, 110.321
Extrapolation factor. 22
Extrapolation method. 21. 50-51

convergence of. 22
optimal parameter for. 22

F

Fast direct methods, 38
Fast Fourier methods. 38
Few-group diffusion problem, 288
Five-point formula, 12, 200, 263
Fortran subroutines

for CCSI method, 363
for Chebyshev method. 357
for SOR method, 368

G

Gauss elimination method, 142
Gauss-seidel method, 27, 35. 178, 181.

202.234-237,301,312
convergence rate for model problem, 28
iteration matrix for, 27, 235

GCW-CG method, 356
GCW-GCG method, 352
GCW method, 332. 351-356

double, 353
GCW-SI method, 355-356
Generalized CG acceleration procedure,

331, 339-348, 352
Generalized Dirichlet problem, 10-12
Generalized eigenvector. 6. see also Prin

cipal vector
Global mesh structure, 262_265

helter-skelter, 263, 277
regular, 263
semiregular, 263

Golub- Varga cyclic procedure. 164,
338

Gram-Schmidt procedure. 142.341
G-uniformly convergent. 95

II

Half-Bandwidth. 274. 277
Heat conduction equation. 260
Helter-Skelter mesh structure. 263,

277
Hybrid (combined) method, 201-205

Identity matrix. 3
Incomplete Cholesky factorization, 37
Initial error distribution, 81, 87-89. 159
Initial guess vector. 81. 88, 122, 171. 202-

204, 322-323. 327. 329
Inner iteration process, 163,293-299,309.

313,322-328
Inner product. 2
Inner-outer iterations. 294. 299. 313.

322
Irreducible, 25
Iteration matrix, 18.309.313
Iteration parameters. 34-35. see also par

ticular methods
Iterative method. 18-22

basic, 18,22-37
block. 9-10. 23-24
convergence of. 19- 21. 42
degree of. 18
linear stationary, 18
point. 24
selection of. 160. 246-253

.J

Jacobian matrix, 320, 323, 327
Jacobi method. 23-25, 35, 78, 154, 163.

215-216,233,241,248-250,268,277
block,24
convergence rate for model problem.

25
iteration matrix for. 25, 163
point. 24

J-CG method, 147. 164,249-250
J-OE method. 25, 34
Jordan block,S
Jordan canonical form. 6
J-SI method. 164.249-250.283
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Krylov sequence, 340
Krylov space, 340-342

L

Lanczos acceleration, 348-351, 353
Lanczos method, 150
L-condition number, 9
Linearly independent vectors, 2- 3
Line methods, iterative, 190,239,251, 266,

273, 326
Line ordering, 13,239,246
Line partitioning\ 16,250-253,266,277

M

Marching algorithms, 38
Mathematical model, 260
Matrix inverse, 3
Matrix norm, 8

A l,i norm, 70
x norm, 8
L norm, 8
2 norm, 8

Matrix polynomial, 7, 40
Matrix sequence, convergence of, 8
Mesh, II, 261-265

point, 11
stencil, 262-265, 273-275, 278
structure, 262-265, 276, 278

Mesh elements, 262
M-function, 320
Model problem, 14

convergence rates for, 33
discrete approximation of, 14

Ill-step SOR-Newtol) method, 324
Multigrid methods, 44
Multilevel methods, 44
Multiline methods, 165,252, 273-275
Multiplicative correction method, 44

N

Natural orderings, 13-14,27-28,239
NBGS method, 320
NBSOR method, 319-323, 327_329
Network problem, 318
Neutron diffusion equation, 288
Neutron transport equation, 300

Newton method, 323-324, 327-329
Nine-point discretization, 251, 273- 276
Nonlinear system of equations, 319

partitioning of, 319-320
Nonsingular matrix, 3
Nonsymmetric matrix. 5-7, 331
Nonsymmetrizable method, 21, 134, 330-

332
Normalized Chebyshev polynomial, 47-48,

51-54,61, 65, 99, 114.296,333
recursion formula for. 48

NPGS method, 323-324
NPSOR method, 320, 329
Numerical model, 260
Numerical studies

CCSI method, 190-199
Chebyshev method, 79,120-131, 157-

159
CG acceleration method, 156- 161
difTusion equation, 297-299
network problem, 325-329
RS-CG method, 190-199
SOR method, 239-246
transport equation, 312-318

o

Odd-even reduction, 38
Optimal Chebyshev acceleration, 48-50.

75,81, 157-160
convergence rate of. 49-50
parameters for, 48

Optimal extrapolated SSOR method. 31
Optimal extrapolation method, 22
Optimal parameters, CCSI method, 172.338

Chebyshev method, 48
extrapolation method, 22
SOR method, 35

Ordering of unknowns, 9. 12- 13
natural, 13. 15-17.27
red/black, 13, 15- 17,27

Ordering vector. 219
ORTHODIR,341-348

ORTHODlR(s), 344-348
ORTHODlR(z),342-348

ORTHOMIN, 339, 343-347, 351,356
ORTHOMIN(s), 344-348, 355
ORTHOMIN(x), 342-348

ORTHORES, 344-348, 351
ORTHORES(s), 34(,-348
ORTIlORES(:c), 346-348
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P

Pairwise semiorthogonal. 345
Paraboifc equation. 283
Parameter change test

CCSI method. 177
Chebyshev method. 66. 82. 105. 109

110
SOR method. 225

Partitioned matrices. 9
Partitioning. 9. 13.23.34··35

choice of, 34, 246-253
consistently orden;d. 211. 233. 249
line. 13. 16':'17. 250
plane, 277-283
point. 9, 13. 15-16. 250
property .w. 211
red/black. see F.rd/black partitioned ma·

trix
of unknowns. J()

Peaceman-Rachford method. 37
Poisson equation. 14
Polynomial.

associated algebraic. 7
Chehyshev. 46
orthogonal. 41

Polynomial acceleration methods. 39-43.
291. 303. 340

Chebyshev. 42
conjugate gradient. 42
if G has an eigenvector deficiency. 137
three·term form. 41

Positive definite matrix. scc Symmetric.
positive definite matrix

Positive-real matrix. 332. 342. 344. 351
Positive semidefinite matrix. 134
Power method. 290. 295
Preconditioned system. 146. 350- 351
Primitive iterative method. 37
Principal vector. 5-6. 27. 137.218.

221
grade of. 6- 7
effecl on convergence rale. 6. 20. 137.

221-223
Property .rl. 25.29.211-214.250
Pseudo-optimal parameters. 63
PseudoresiduaJ vector. 61-62. 94. 102.

146

Rate of convergence. 20. SCI' also Conver-
gence rate

asymptotic. 20. 43
asymptotic virtual. 43. 112. 332
average. 20
average virtual. 43. 82

optimal. 82. 111- J 12
Rayleigh quotient. 4. 233-236
Red/black orderings. 27. 28

line. 13. 17.239
point. 13. 15

Red/black partitioned matrix. 9. 15-17.
162.211.233.248.277.302.338

Chebyshev methods for. scc CCSI
method: RS-SI method

conjugate gradient methods for. see
CCG method: RS-CG method

SOR methods for. 234-239. 339
Reduced system. 165
Regular mesh structure. 263
Related system. 19. 145
Relaxation factor. 28. 215
Residual vector. 43. 141
RF-CG method. 147
RF method. (Richardson·s). 22. 35. 144.

165-166.347.349.354-356
convergence rate for model problem. 23

RF-OE method. 23
RF-SI method. 355-356
RS-CG method. 166. 169-170. 199-205.

209. 248. 267
computational algorithm for. 169- 170

RS- S I method. 166- 169. 267
computational algorithm for. 168
stopping procedure for. 168

S

Scaled iterations. 44
Secondary iterative process. 94. 210

wnvergence of. 95- 100
Semidiscrete approximations. 284. 305
Semi-iterative method. 41
Semiregular mesh structure. 263
Similar matrices. 4
Simulalive iteration procedure. 79.

121
Singular matrix pl'Oh1cm. 94. 134- 136
Skew-symmetric matrix. 336-337
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Solution method. choice of, 160.246-253.
266

SOR difference vector. 219
SOR equation. 226
SOR method. 28-30. 35. 209. 249, 267.

282. 298. 335
if B has complex eigenvalues. 339
computational algorithm for, 230. 237
convergence of. 215
convergence rate for model problem. 29
eigenvalues of. 216-217
eigenvectors of. 218-219, 234-235
estimating parameters for, 225-226
Fortran subroutine for, 368
iteration matrix for. 29
optimal parameters for, 29. 35. 215- 216
stopping procedures for, 226. 241

SOR-Newton method, 324
Sparse matrix. 262
SPD matrix. 3
Spectral condition number, 9, 144
Spectral radius. 4
Splitting matrix, 19,22,27,29,31, 76
Square root of a matrix, 3. 21
SSOR condition, 32. 35
SSOR method. 30-32. 35. 79, 155.347,

356
convergence rate for model problem. 32
iteration matrix for, 31

SSOR-CO method. 147
Static condensation, 273
Steepest descent method. 139-140. 356
Stopping criterion number, 72, 105.285
Stopping procedures. CCSI method. 173-

176
CCSI method. 176, 192
Chebyshev method. 61, 69-72. 89, 105
CO accelerat ion method. 148- 151 :
RS-CO method. 192
RS-SI method, 168
SOR method. 226. 241

Stopping procedures, norms for, 70-71, 77
Storage requirements, 74, 78, 109, 155,

168,199-201,267,275.279-283,286
Strategy parameter, 66, 104, 109,228, 256

259, 323, 326 \
Strategy sufficient conditions. 225, 256
Strongly implicit method. 37

Subiteration process. 163
Successive overrelaxation method. see

SOR method
Symmetric matrix. 2. 4
Symmetric, positive definite matrix. 3
Symmetric SOR method see SSOR method
Symmetrizable method. 21, 42, 340
Symmetrization matrix. 21, 59. 94. 249

choice of, 21-22, 25. 31, 75. 164, 171
Synthetic method. 44

T

Theoretical number of iterations. 81. 86
Three-term recursion formula. 41. 46. 48,

147, 171, 292, 334
Time-dependent problem, 283-286
Transpose, 2
Tridiagonal matrix. 24. 149. 267

solution procedure for, 26
True error measure. 81,123.193.246
25-point discretization. 273-276
Two-cyclic matrix, 211

u

Underrelaxation. 28
Upstreain differencing. 306
Upwind differencing, 356

v

Vector norm, 7-8
AV, norm. 70, 76,144
f3, z-relative norm, 71,190.192,241
Of' norm, 7. 70-71
L norm, 7
2 norm, 7, 71
HI norm. 42, 59, 70, 93

computation of, 74- 79. 153- 155
Vector sequence. convergence of, 8
Virtual spectral radius. 42. 332

w

Weak diagonal dominance. 25
Weighted residual method. 44
HI-orthogonal, 146
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