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1 Background

In scientific computing, it is important to start with an appropriate model in
order to design effective and efficient numerical methods for solving a given
scientific problem. The modeling process usually involves approximations
and assumptions, which leads to various mathematical formulations for dif-
ferent purposes. Different formulations may be mathematically equivalent in
certain sense, but they may make significant differences numerically.

In the early stage of numerical PDEs, people started with the classical
PDE form, say the Poisson equation for the elliptic model problem:

uxx + uyy = f, in Ω (1.1)

and applied finite differences to approximate the derivatives, which led to
finite difference methods (FDM). The FDM approach has many difficulties,
such as in handling complex geometry and boundary conditions, in conver-
gence analysis, in strong regularity requirement, and in solving the resulting
discrete system etc.

The Poisson equation can be derived from the variational principle in
mechanics

min
u∈S

{

1

2

∫

Ω

(u2
x + u2

y) −

∫

Ω

fu

}

, (1.2)

where S is the feasible set of solutions. However, it is also difficult to derive
and analyze numerical methods directly from the optimization formulation
(1.2). In fact, there is another formulation between (1.1) and (1.2), the so
called weak formulation, which is where the finite element methods (FEM)
start with.

We will show how these different formulations are related to each other
and how FEM can be derived and analyzed by simply using the ideas of
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completing the squares and orthogonal projection. Through this example,
we will demonstrate how these elementary, yet fundamental mathematical
concepts and techniques are involved in advanced studies.

2 Optimization and Completing the Squares

2.1 Simplest case in R
1

Consider the simplest optimization problem

min
x∈R1

f(x), (2.1.1)

where

f(x) =
1

2
ax2 − bx, a > 0. (2.1.2)

The most elementary approach to solve this problem is to reformulate it by
completing the squares – just a little bit of algebra:

f(x) =
1

2
a(x − b/a)2 −

1

2
b2/a. (2.1.3)

Thus, the optimization problem is equivalent to the equation

ax = b, (2.1.4)

which, of course, can be solved immediately. Alternatively, one can use
calculus to derive (2.1.4)by

f ′(x) = 0. (2.1.5)

2.2 Extension to R
n

Consider
min
x∈Rn

f(x), (2.2.1)

where

f(x) =
1

2
xT Ax−bT x, An×n is symmetric and positive definite ; x, b ∈ R

n.

(2.2.2)
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Now, completing the squares reads.

f(x) =
1

2
(x − A−1b)T A(x − A−1b) −

1

2
bT A−1b. (2.2.3)

Thus, the equivalent equation becomes

Ax = b. (2.2.4)

Notice that (2.2.4) can also be written as

f ′(x) = 0, (2.2.5)

where f ′ denotes the Frechét derivative.
Observe that the framework in R

1 is completely parallel to that in R
n.

Furthermore, R
n is the finite dimensional model of Hilbert spaces. So we can

abstract and extend the framework to Hilbert spaces. For this purpose, let
us introduce the bilinear form

a(u, v) = uT Av, ∀u, v ∈ R
n, (2.2.6)

and the linear functional

b(u) = bT u, ∀u ∈ R
n. (2.2.7)

Since A is symmetric and positive definite, a(·, ·) in fact defines an inner
product in R

n. The optimization problem can now be rewritten in terms of
a(·, ·) and b(·). To cast equation (2.2.4) to a form in terms of a(·, ·) and b(·),
we apply dot product on both sides of (2.2.4) with any y ∈ R

n. It is easy to
verify that (2.2.4) is equivalent to

a(x, y) = b(y), ∀y ∈ R
n. (2.2.4′)

2.3 Extension to Hilbert Spare H

Given an inner product a(·, ·) and a continuous linear form b in H , consider
the optimization problem

min
u∈H

f(u) (2.3.1)

where

f(u) =
1

2
a(u, u) − b(u). (2.3.2)
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Completing the squares now reads

f(u) =
1

2
a(u − u∗, u − u∗) −

1

2
b(u∗), (2.3.3)

where u∗ ∈ H , such that

a(u∗, v) = b(v), ∀v ∈ H. (2.3.4)

The existence and uniqueness of the solution u∗ of (2.3.4) is given by the
well-known Lax-Milgram theorem. The proof of (2.3.3) is simply the same
algebraic manipulation as used in completing the squares by expanding the
terms and carrying out simplification:

1

2
a(u − u∗, u − u∗) −

1

2
b(u∗)

=
1

2
{a(u, u) − a(u, u∗) − a(u∗, u) + a(u∗, u⋆)} −

1

2
b(u∗)

=
1

2
a(u, u) − a(u∗, u) +

{

1

2
a(u∗, u⋆) −

1

2
b(u∗)

}

=
1

2
a(u, u) − b(u).

2.4 An example in H1(Ω): Poisson equation

Consider the Sobolev space H ≡ H1
0 (Ω) = {u|u ∈ L2(Ω), Du ∈ L2(Ω), u|∂Ω = 0}.

a(u, v) =

∫

Ω

ux · vx + uy · vy, ∀u, v ∈ H,

and

b(v) =

∫

Ω

f · v, f ∈ L2(Ω), ∀v ∈ H.

It can be shown that a(·, ·) and b(·) define an inner product (by Poincare’s
inequality) and a continuous linear form in H . So, the optimization problem
(2.3.1) – (2.3.2) just corresponds to (1.2). The corresponding equivalent
problem (2.3.4): find u ∈ H1

0 (Ω), such that

∫

Ω

uxvx + uyvy =

∫

Ω

f · v, ∀v ∈ H1
0 (Ω)
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is the so-called weak formulation, which leads to the classical Poisson equa-
tion with Dirichlet boundary condition:

{

−∆u = f in Ω
u = 0 on ∂Ω

if u ∈ H2(Ω) by integration by parts.

3 Orthogonal projection and FEM

3.1 Galerkin approximation

Starting with the abstract weak formulation P : find u ∈ V , such that

a(u, v) = f(v), ∀v ∈ V, (3.1.1)

where V is a Hilbert space, a(·, ·) is an inner-product in V , and f(·) is a
continuous linear form in V . For the computational purpose, one needs to
discretize the continuous problem P to a finite dimensional problem. Suppose
we have a subspace of dimension N : Vh ⊂ V , the Galerkin approximation
restricts P to Vh, which leads to a finite dimensional problem Ph: find uh ∈
Vh, such that

a(uh, vh) = f(vh), ∀vh ∈ Vh. (3.1.2)

(3.1.2) can be represented as a linear system equation in terms of the N basis
functions of Vh, where the coefficient matrix is also SPD because a(·, ·) is an
inner product. Intuitively, if Vh → V , say by increasing the dimension N of
Vh, one could expect the convergence of Ph to P in certain sense. If this true,
furthermore, is Ph the optimal approximation to P ? The following “obvious”
observation is crucial for understanding the convergence mechanism of this
approach. From (3.1.1) and (3.1.2), we see that

a(u − uh, vh) = 0, ∀vh ∈ Vh. (3.1.3)

The geometric interpretation is that the approximation uh to u is nothing
else, but the orthogonal projection of u to the subspace Vh with respect to
the inner-production a(·, ·). Therefore, uh is the optimal approximation of u
in this sense because

‖u − uh‖a = min
vh∈Vh

‖u − vh‖a (3.1.4)
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is the shortest distance, where ‖u‖a = a1/2(u, u) is the energy norm . This
basic geometric concept leads to the fundamental of FEM convergence anal-
ysis.

3.2 FEM

Now the questions are: how to construct Vh, whether Vh converges to V and
how uh converges to u. To construct Vh, one first discretizes Ω by a mesh
Ωh, where h is the average spacing of the elements. Then, one constructs
piecewise polynomials to form Vh. In the simplest case where continuous
piecewise linear polynomials are used, which are called Courant elements,
it can be shown that Vh is a subspace of H1(Ω). Therefore, the Galerkin
framework can be applied to such a Vh, which leads to the famous finite
element methods.

3.3 Convergence analysis of FEM and interpolation

theory in Sobolev spaces

The orthogonal projection property

‖u − uh‖a = min
vh∈Vh

‖u − vh‖a

does not tell too much about how small ‖u − uh‖a is. If we can find a
particular uh ∈ Vh such that ‖u − uh‖a can be estimated, then we have

‖u − uh‖a = min
v∈Vh

‖u − vh‖a

≤ ‖u − uh‖a. (3.3.1)

It can be shown that the energy norm is an equivalent norm of ‖ · ‖H1(Ω).
Thus there exists a constant C, such that

‖u − uh‖H1(Ω) ≤ C‖u − uh‖H1(Ω). (3.3.2)

The natural choice of uh is the interpolation of u, denoted by Ihu. Unfor-
tunately, H1(Ω) is not embedded in C0(Ω). So for u ∈ H1(Ω), Ihu is not
defined. Notice that H2(Ω) is embedded in C0(Ω). Therefore, under the
assumption on the smoothness of u: u ∈ H2(Ω), we have

‖u − uh‖H1(Ω) ≤ C‖u − Ihu‖H1(Ω)

= C‖(I − Ih)u‖H1(Ω), (3.3.3)
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which is the so-called Cea lemma. Thus the convergence analysis of FEM
amounts to the approximation theory of interpolation in Sobolev spaces,
which opened a new field in numerical analysis in 1960’s. From this approx-
imation theory, it holds, if u ∈ H2(Ω),

‖u − Ihu‖H1(Ω) ≤ C‖u‖H2(Ω)h. (3.3.4)

Thus,
‖u − uh‖H1(Ω) ≤ C‖u‖H2(Ω) · h. (3.3.5)

Namely, ‖u − uh‖H1(Ω) → 0 as h → 0 with the order of O(h).
There are other computational issues that we omit here. In general,

FEM overcomes many difficulties of FDM. The framework of FEM has been
applied and extended to many applications, and has made enormously impact
on scientific computing for several decades. It is elegant, yet the key ideas
are easy to understand, which is the beauty of mathematics.

Reference P. G. Ciarlet, The Finite Element Method for Elliptic Prob-
lems, North-Holland Pub., 1978.
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