
Math2131 Final, Autumn 2015

(1) Let

A =


0 1 2 −3
1 2 −3 0
2 −3 0 1
−3 0 1 2

 .

1. Find the matrices for the orthogonal projections to RanA and KerA.

2. Find the matrix of the linear operator that has RanA and KerA as eigenspaces with
eigenvalues 1 and 2.

(2) Let

A =

 0 2 −1
2 3 −2
−1 −2 0

 , ~b =

 0
−1
4

 .

1. Find an orthonormal basis of eigenvectors for A.

2. Find the orthogonal projections of ~b onto the eigenspaces of A.

3. Find the quadratic form q(x1, x2, x3) corresponding to A and use an orthogonal
change of variable (write explicit formula between two sets of variables) to eliminte
cross terms in q.

(3)

1. Prove that the matrix of orthogonal projection to a line (1-dimensional subspace)
in Rn is precisely ~v~vT (product of n× 1 matrix and 1× n matrix) for a unit length
vector ~v.

2. Prove that the sum of two positive semi-definite matrices is positive semi-definite.

3. Use the first and second parts to prove that a matrix is positive semi-definite if and
only if it is a sum of matrices of the form ~v~vT (~v may not have unit length).

(4) Let L be the linear operator on Pn, such that odd polynomials are eigenvectors with
eigenvalue 1 and even polynomials are eigenvectors with eigenvalue −1.

1. What is the characteristic polynomial of L?

2. Find second order polynomial satisfying L2 + bL+ cI = O.

3. Find the matrix of L with respect to the basis 1, (t− 1), (t− 1)2, . . . , (t− 1)n.
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(1.1) We have KerA = R~v, ~v = (1 1 1 1)T . The orthogonal projection to KerA is

P1~x =
~x · ~v
~v · ~v

~v =
x1 + x2 + x3 + x4

4


1
1
1
1

 =
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ~x.

The orthogonal projection to RanA = RanAT = (KerA)⊥ (A is symmetric) is

P2~x = ~x− P1~x =
1

4


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

 ~x.

(1.2) The linear operator is P2 + 2P1 and has matrix

=
1

4


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

+ 2
1

4


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 =
1

4


5 1 1 1
1 5 1 1
1 1 5 1
1 1 1 5

 .

(2.1) We have

det(λI − A) = det

 λ −2 1
−2 λ− 3 2
1 2 λ

 C2−2C1= det

 λ −2λ− 2 1
−2 λ+ 1 2
1 0 λ


R1+2R2= det

λ− 4 0 5
−2 λ+ 1 2
1 0 λ

 = (λ+ 1) det

(
λ− 4 5

1 λ

)
= (λ+ 1)(λ2 − 4λ− 5) = (λ+ 1)2(λ− 5).

For the eigenvalue 5, we have

5I − A =

 5 −2 1
−2 2 2
1 2 5

 ,

and the eigenspace Ker(5I − A) has basis ~v1 = (−1 − 2 1)T . For the eigenvalue −1, we
have

−I − A =

−1 −2 1
−2 −4 2
1 2 −1

 ,

and the eigenspace Ker(−I − A) has basis ~v2 = (1 0 1)T , ~v3 = (−2 1 0)T .



Because A is symmetric, the two eigenspaces are orthogonal. We may use Gram-
Schmidt process to further make ~v2, ~v3 orthogonal

~v′2 = ~v2 =

1
0
1

 ,

~v′3 = ~v3 −
~v3 · ~v2
~v2 · ~v2

~v2 =

−2
1
0

− −2

2

1
0
1

 =

−1
1
1

 .

Then after dividing the lengths, we get an orthonormal basis of eigenvectors

~u1 =
1√
6

−1
−2
1

 , ~u2 =
1√
2

1
0
1

 , ~u3 =
1√
3

−1
1
1

 .

This is the same as

A = UDU−1 = UDUT , U =

−1/
√

6 1/
√

2 −1/
√

3

−2/
√

6 0 1/
√

3

1/
√

6 1/
√

2 1/
√

3

 , D =

5 0 0
0 −1 0
0 0 −1

 .

(2.2) Since Ker(5I − A) = R~v1, the orthogonal projection of ~b on the first eigenspace is

projKer(5I−A)
~b =

~b · ~v1
~v1 · ~v1

~v1 =
0 · (−1) + (−1) · (−2) + 4 · 1

6

−1
−2
1

 =

−1
−2
1

 .

Since the second eigenspace Ker(−I−A) = (Ker(5I−A))⊥ is the orthogonal complement
of the first eigenspace, we get

projKer(−I−A)
~b = ~b− projKer(5I−A)

~b =

 0
−1
4

−
−1
−2
1

 =

1
1
3

 .

(2.3) The quadratic form corresponding to A is

q(x1, x2, x3) = 3x22 + 4x1x2 − 2x1x3 − 4x2x3.

By q(~x) = ~xTA~x = ~xTUDUT~x = (UT~x)TD(UT~x), we find that, if ~y = UT~x, in other
words,

y1 =
1√
6

(−x1 − 2x2 + x3),

y2 =
1√
2

(x1 + x3),

y3 =
1√
3

(−x1 + x2 + x3),



then
q(~x) = ~yTD~y = 5y21 − y22 − y23.

Note: By U−1 = UT , ~y = UT~x is the same as ~x = U~y. So the change of variable is
also given by the formula

x1 = − 1√
6
y1 +

1√
2
y2 −

1√
3
y3,

x2 = − 2√
6
y1 +

1√
3
y3,

x3 =
1√
6
y1 +

1√
2
y2 +

1√
3
y3.

(3.1) Let the 1-dimensional line be the span of unit length vector ~v. Then

projR~v~x = (~x · ~v)~v = ~v(~v · ~x) = ~v(~vT~x) = (~v~vT )~x.

Here (~x · ~v)~v is the vector ~v multiplied by a scalar ~x · ~v, and ~v(~v · ~x) is n × 1 matrix ~v
multiplied to 1×1 matrix ~v ·~x. The last (~v~vT )~x is a matrix multiplication, and the matrix
of projR~v is ~v~vT .

(3.2) A matrix A is positive semi-definite if and only if A~x · ~x ≥ 0 for all ~x. Then for
positive semi-definite A and B, we have

(A+B)~x · ~x = (A~x+B~x) · ~x = A~x · ~x+B~x · ~x ≥ 0.

Therefore A+B is positive semi-definite.

(3.3) If A is positive semi-definite, then we have orthonormal basis ~v1, . . . , ~vn of eigenvec-
tors with non-negative eigenvalues d1, . . . , dn. We have

A(x1~v1 + · · ·+ xn~vn) = d1x1~v1 + · · ·+ dnxn~vn.

Using the first part, this means that

A = d1projR~v1+· · ·+dnprojR~vn = d1~v1~v
T
1 +· · ·+dn~vn~vTn = ~w1 ~w

T
1 +· · ·+~wn ~w

T
n , ~wi =

√
di~vi.

Conversely, by second part, we only need to show that the matrix ~v~vT is positive
semi-definite. This follows from

(~v~vT~x) · ~x = (~v~vT~x)T~x = ~xT~v~vT~x = (~v · ~x)2 ≥ 0.

A more conceptual proof of the converse is that any orthogonal projection P = projH
is positive semi-definite. Any vector ~x can be written ~x = ~h + ~w, ~h ∈ H and ~w ∈ H⊥.
Then P~x = ~h, and

〈P~x, ~x〉 = 〈~h,~h+ ~w〉 = 〈~h,~h〉 = ‖~h‖2 ≥ 0.

The second equality uses ~h ⊥ ~w. Note that if ~v = a~u, where ~u has unit length, then
~v~vT = a2~u~uT = a2projR~u. As non-negative constant multiple of a projection, ~v~vT is
therefore positive semi-definite.



(4.1) The eigenspaces are

Ker(I − L) = {a1t+ a3t
3 + a5t

5 + · · · },
Ker(−I − L) = {a0 + a2t

2 + a4t
4 + · · · }.

We have Pn = Ker(I −L)⊕Ker(−I −L), and L is diagonalisable. The dimensions of the
eigenspaces are

d+ = dim Ker(I − L) =

{
n+1
2
, n odd

n
2
, n even

d− = dim Ker(−I − L) =

{
n+1
2
, n odd

n+2
2
, n even

The characteristic polynomial of L is

(t− 1)d+(t+ 1)d− =

{
(t− 1)

n+1
2 (t+ 1)

n+1
2 , n odd

(t− 1)
n
2 (t+ 1)

n+2
2 , n even

(4.2) We know L2 is identity on both eigenspaces. Therefore L2 is identity on the whole
space. We get L2 − I = O.

(4.3) Using binomial expansion, we have

L((t− 1)k) = L(tk)−
(

k

k − 1

)
L(tk−1) +

(
k

k − 2

)
L(tk−2)+

· · ·+ (−1)k−1
(
k

1

)
L(t) + (−1)k

(
k

0

)
L(1)

= (−1)k
[
tk +

(
k

k − 1

)
tk−1 +

(
k

k − 2

)
tk−2 + · · ·+

(
k

1

)
t+

(
k

0

)]
= (−1)k(t+ 1)k = (−1)k((t− 1) + 2)k

= (−1)k
[
(t− 1)k +

(
k

k − 1

)
2(t− 1)k−1 +

(
k

k − 2

)
22(t− 1)k−2+

· · ·+
(
k

1

)
2k−1(t− 1) +

(
k

0

)
2k

]
.

The coefficients form the column of the matrix of L with respect to the basis 1, (t−1), (t−
1)2, . . . , (t− 1)n

[L] =



(
0
0

)
−
(
1
1

) (
2
2

)
−
(
3
3

)
· · · (−1)n

(
n
n

)
0 −

(
1
0

)
2
(
2
1

)
2 −

(
3
2

)
2 · · · (−1)n

(
n

n−1

)
2

0 0
(
2
0

)
22 −

(
3
1

)
22 · · · (−1)n

(
n

n−2

)
22

...
...

...
...

...
0 0 0 0 · · · (−1)n

(
n
0

)
2n

 .

A conceptual way of seeing L((t − 1)k) = (−1)k(t + 1)k is that the eigenvector as-
sumption on L means L(tk) = (−t)k. Therefore L is an isomorphism of the polynomial



algebra R[t] by sending t to −t. This means that L(p(t)) = p(−t), and in particular,
L((t− 1)k) = (−t− t)k = (−1)k(t+ 1)k.
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(1) Express the symmetric matrix  3 2 −2
2 0 4
−2 4 0


as UDU−1, where D is a diagonal matrix, and U is an orthogonal matrix.
(2) Consider the inner product on R2 (see Example 4.1.2)

〈~x, ~y〉 = x1y1 + 2x1y2 + 2x2y1 + 5y1y2 = ~x ·Q~y, Q =

(
1 2
2 5

)
.

1. Express 〈~x, ~x〉 as (a11x1 + a12x2)
2 + (a21x1 + a22x2)

2.

2. Find the matrix P of a linear operator that gives isometry R2
〈·,·〉 → R2

dot.

3. Show that P TP = Q.

4. Find an orthonormal basis of R2 with respect to the new inner product.

5. Suppose the matrix of a linear operator L on R2 is A. What is the matrix of the
adjoint L∗ with respect to the new inner product on R2?

(3) Let P be the orthogonal projection of R3 to the subspace H given by x + y + z = 0.
Let L be a linear operator on R3 satisfying

1. L is self-adjoint.

2. LP = PL.

3. L has three eigenvalues 0, 1, 2.

4. L(1,−1, 0) = ~0.

What can be the matrix of L? (It is enough to give PDP−1. No need to calculate the
matrix itself.)
(4) Suppose L = L1 ⊕ L2 with respect to V = V1 ⊕ V2.

1. Prove that L is diagonalisable if and only if L1 and L2 are diagonalisable.

2. If V is an inner product space and V1 ⊥ V2, prove that L is orthogonally diagonal-
isable if and only if L1 and L2 are orthogonally diagonalisable.
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(1) We have

det(tI − A) = det

t− 3 −2 2
−2 t −4
2 −4 t

 = det

t− 3 −2 2
−2 t −4
0 t− 4 t− 4


= det

t− 3 −4 2
−2 t+ 4 −4
0 0 t− 4

 = [(t− 3)(t+ 4)− 8](t− 4) = (t− 4)2(t+ 5).

Then (try to construct orthogonal solutions, instead of finding solution and then apply
Gram-Schmidt)

A− 4I =

−1 2 −2
2 −4 4
−2 4 −4

 , Ker(A− 4I) = R(0, 1, 1) ⊥ R(4, 1,−1),

and (this can be more easily obtained by orthogonal to Ker(A− 4I))

A+ 5I =

 8 2 −2
2 5 4
−2 4 5

 , Ker(A+ 5I) = R(1,−2, 2),

After dividing the length, we get

A = UDU−1, D =

4 0 0
0 4 0
0 0 −5

 , U =

 0 4√
18

1
3

1√
2

1√
18

−2
3

1√
2
− 1√

18
2
3

 .

(2.1) 〈~x, ~x〉 = x21 + 4x1x2 + 5x22 = (x1 + 2x2)
2 + x22.

(2.2) By (2.1), we see that P =

(
1 2
0 1

)
satisfies 〈~x, ~x〉 = P~x · P~x. This implies 〈~x, ~y〉 =

P~x · P~y, and can be interpreted as P : R2
〈·,·〉 → R2

dot being an isometry.

(2.3) We have
~x ·Q~y = 〈~x, ~y〉 = P~x · P~y = ~x · P TP~y.

The first equality is the definition of the new inner product, the second is from (2.2), and
the third is that the usual adjoint with respect to the dot product is transpose. Compare
the two sides, we get Q = P TP .
(2.4) If we take the standard basis of R2, then

P−1~e1 =

(
1 −2
0 1

)(
1
0

)
=

(
1
0

)
, P−1~e2 =

(
1 −2
0 1

)(
0
1

)
=

(
−2
1

)
is an orthonormal basis with respect to the new inner product.
(2.5) Let B be the adjoint of A with respect to the new inner product on R2. This means
〈A~x, ~y〉 = 〈~x,B~y〉, or A~x · Q~y = ~x · QB~y. By the usual adjoint with respect to the dot



product being transpose, this means ~x · ATQ~y = ~x · QB~y. Therefore ATQ = QB, or
B = Q−1ATQ.

(3) By the geometric meaning of P , the eigenspaces of P are

KerP = R(1, 1, 1), Ker(P − I) = R(1,−1, 0) ⊥ R~v,

where (1, 1, 1) is the coefficient of x + y + z = 0, (1,−1, 0) is the vector in item (4), and
{(1, 1, 1), (1,−1, 0), ~v} form an orthogonal basis. Since LP = PL, the eigenspaces are
invariant subspaces of L. This means that (1, 1, 1) is an eigenvector of L. By item (4),
also know (1,−1, 0) is an eigenvector of L of eigenvalue 0. Since L is self-adjoint, it has
an orthogonal basis of eigenvectors. This implies that ~v is also an eigenvector of L.

So we know {(1, 1, 1), (1,−1, 0), ~v} is an orthogonal basis of eigenvectors of L, with
the second vector having eigenvalue 0. By item (3), we know (1, 1, 1), ~v have eigenvalues
1, 2.

It is easy to get ~v = (1, 1,−2) (see Example 4.2.10). If L(1, 1, 1) = (1, 1, 1) and
L(~v) = 2~v, then (second line not needed for exam)

[L] =

1 1 1
1 −1 1
1 0 −2

1 0 0
0 0 0
0 0 2

1 1 1
1 −1 1
1 0 −2

−1

=


1√
3

1√
2

1√
6

1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6


1 0 0

0 0 0
0 0 2




1√
3

1√
3

1√
3

1√
2
− 1√

2
0

1√
6

1√
6
− 2√

6

 =
1

3

 2 2 −1
2 2 −1
−1 −1 5

 .

If L(1, 1, 1) = 2(1, 1, 1) and L(~v) = ~v, then

[L] =

1 1 1
1 −1 1
1 0 −2

2 0 0
0 0 0
0 0 1

1 1 1
1 −1 1
1 0 −2

−1 =
1

6

5 5 2
5 5 2
2 2 8

 .

(4) For any vector ~v = ~v1 + ~v2 ∈ V , with ~v1 ∈ V1 and ~v2 ∈ V2, we have

L(~v) = L(~v1) + L(~v2), λ~v = λ~v1 + λ~v2.

By the direct sum V1⊕ V2, we find L(~v) = λ~v if and only if L(~v1) = λ~v1 and L(~v2) = λ~v2.
This proves that

Ker(L− λI) = Ker(L1 − λI)⊕Ker(L2 − λI).

Let λ1, λ2, . . . , λk be all the (distinct) eigenvalues of L. Then by the equality above, the
possible eigenvalues of L1 and L2 are also among these. Moreover, we have

Ker(L− λ1I)⊕ · · · ⊕Ker(L− λkI) = (Ker(L1 − λ1I)⊕ · · · ⊕Ker(L1 − λkI))

⊕ (Ker(L2 − λ1I)⊕ · · · ⊕Ker(L2 − λkI)).

The left is a subspace of V , and the right is a direct sum of a subspace of V1 and a
subspace of V2. By V = V1 ⊕ V2, we then get

L is diagonalisable : V = Ker(L− λ1I)⊕ · · · ⊕Ker(L− λkI)



if and only if

L1 is diagonalisable : V1 = Ker(L1 − λ1I)⊕ · · · ⊕Ker(L1 − λkI)

and
L2 is diagonalisable : V2 = Ker(L2 − λ1I)⊕ · · · ⊕Ker(L2 − λkI).

If V1 ⊥ V2, then we have

Ker(L− λI) = Ker(L1 − λI) ⊥ Ker(L2 − λI).

Moreover, the orthogonal diagonalisability means the decomposition of vector space into
orthogonal sum of eigenspaces. Therefore we may change all ⊕ above into ⊥, and con-
clude that L is orthogonally diagonalisable if and only if L1 and L2 are orthogonally
diagonalisable.


