SECTION 1.1

EXERCISE 1.1

(a+b0)(Z+7)=(a+b)T+ (a+ b)Yy (Axiom 7)
= (aZ + bZ) + (ay + bY) (Axiom &)
= aZ + by + bZ + ay. (Axioms 1 and 2)

EXERCISE 1.2

1.

(@1, 22) + (y1,y2) = (1 + Yo, 22 + 11) and (y1,y2) + (21, 22) = (Y1 + 22, Y2 + 21). Axiom 1
not satisfied.

(21, 22) + (y1,¥2)) + (21, 22) = (x1+ Y2, x2 +y1) + (21, 22) = (@1 + Y2+ 21, T2+ y1 + 21) and
(1, 22) + (Y1, 92) + (21, 22)) = (21, 22) + (Y1 + 22,92 + 21) = (1 + Y2 + 21, T2 + Y1 + 22).
Axiom 2 not satisfied.

(1, 22) + (0,0) = (21, 22) = (0,0) + (1, x,). Axiom 3 satisfied for 0 = (0, 0).

1(xy,x9) + (—x2,21) = (0,0) = (=g, 1) + (21, 22). Axiom 4 satisfied.

- Wz, 29) = (1xq, lag) = (21, 22). Axiom 5 satisfied.

a(b(zy,x2)) = a(bxy,brs) = (a(bxy),a(bzy)) = ((ab)zy, (ab)xs) = (ab)(x1,z2). Axiom 6
satisfied.

(a+0b)(z1,72) = ((a+b)z1, (a+b)xa) = (axy + bxy, axs + bxs) and a(xy, o) + b(x1, x2) =
(ax1,axse) + (bxy, bxe) = (axy + bxs, axy + bxy). Axiom 7 not satisfied.

a(ry, v2)+a(yr, y2) = (ar1, axs)+(ayr, ays) = (axy+ays, axs+ay:) = a(@1+y, To+y1) =
a((x1,m2) + (y1,y2)). Axiom 8 satisfied.

EXERCISE 1.3

x1,22) + (y1,y2) = (1 +11,0) = (11 + 21,0) = (y1,y2) + (21, 22). Axiom 1 satisfied.

(y1,92) + (21, 22)) = (1, 22) + (1 + 21,0) = (21 + y1 + 21,0). Axiom 2 satisfied.

(
. E(Ih@) (y1,92)) + (21, 22) = (1 + v1,0) + (21,22) = (1 + 11 + 21,0) and (21, 29) +
(

x1,%2) + any vector = (z,0) # (21, x2). Axiom 3 not satisfied.
By no 0, Axiom 4 does not make sense.
Wz, 29) = (1q, lag) = (21, 22). Axiom 5 satisfied.

a(b(xy,z2)) = a(bxy,0) = (a(bz1),0) = ((ab)xy,0) = (ab)(x1,z2). Axiom 6 satisfied.



7. (a+0b)(x1,22) = ((a+b)x1,0) = (axy + bx1,0) = (axy,0) + (bxa, 0) = a(xy, x2) + b(z1, z2).
Axiom 7 satisfied.

8. alz1,x2) + a(y,y2) = (ax1,0) + (ay1,0) = (az1 + ay1,0) = a(x1 + y1,0) = a((z1, 22) +
(y1,v2)). Axiom 8 satisfied.

EXERCISE 1.4

By Axiom 1, we know (x1,22) + (y1,%2) = (21 + ky1, 22 + ly2) and (y1,y2) + (21, 22) =
(y1 + kx1,ys + lxs) are equal. Therefore we have x1 + ky; = y; + kxy and x9 + lys = yo + lao
for all x1, 29, y1,yo. This implies &k =1 = 1.

Conversely, if kK =1 = 1, then by Exercises 1.1.2, we have the Euclidean space, satisfying
all axioms.

EXERCISE 1.5

(@) + (Yn) = (@0 + Yn) = W + 20) = (Yn) + (T0);

((@n) + (yn)) + (20) = (0 + Yn) + 20) = (@0 + Wn + 20)) = (@) + ((yn) + (20));
(#n) +(0) = (zn + 0) = (zn);
(zn) + (=2a) = (20 + (—2a)) = (0);
W) = (1zy) = (zn);
a(b(z,)) = albr,) = (a(bz,)) = ((ab)z,) = (ab)(zn);
(a+b)(z,) = ((a+b)zy,) = (ax, + bxy,) = (ax,) + (bx,) = a(x,) + b(x,);
a((zn) + (yn)) = alzn +yn) = (a(zn + yn)) = (azn + ayn) = (azn) + (ayn) = a(za) + a(yn)-

EXERCISE 1.6

If f(t) and g(t) are smooth, then f(t) + ¢g(t) and af(t) are smooth. If f(t) and g(t) are
even, then f(t) 4+ g(t) is even by f(—t) + g(—t) = f(t) + g(t), and af(t) is even by (af)(—t) =
a(f(—=t)) = a(f(t)) = (af)(t). Moreover, the zero function is even, and —f(¢) is also even.
Then the eight axioms are verified juts like for all functions.

EXERCISE 1.7
Let us use

A= a1; aiz2 i3 . B= bi1 bz big :
Q21 Q22 Q23 ba1 oo bos
as example. The following shows (A + B)T = AT + BT,

ay; + b1 aip + bz aiz+bis

A+ B) = _ ) !
(4+5) <021+bz1 Q9o + bag a9z + bag a2 + big asge + bas |,

>T ay; + b ag + ba
a13 + bis  ags + ba

aip Qo1 b1 by ayp + b1 ag + boy
AT+ BT = [ ayp age | + | b2 bao | = | a2 +bia ag + by
a13 a3 biz Do a3 + b1z agz + bas



The following verifies (cA)T = cAT

ca ca ca T cayr  Cazy apl a2
(cA)" = ( H 2 13) = |carz cas | =c|ap amn | =cA".
Cag1 Ca29 CA93
Cay1z Cagg a3 @23
The following verifies (AT)T = A
an as\
11 a2
(AT)T — | apy _ (an a2 &13) — A
G21 Q22 Q23
aiz Q23
EXERCISE 1.9
Suppose ©; and v, are two negative vectors. Then we have
'LL+’U1 :6: _)1+'L_l:,
U+ =0=1, +1.
This implies
U = _’1—1—6:171-1-(1_[4— _)2)
= (0h + @) + ¥y = 0+ ¥y = Uy
We have
U+ (-Du=1i+(-1)u= 1+ (-1)u=0u=0.
The last equality is by Proposition 1.1.4. We have (—1)u + @ = 0 by the similar argument.

This means (—1)u is the negative vector in Axiom 4.

Finally, the equality @4+ ¢ = 0 = @ + @ in Axiom 4 is symmetric in @ and @. Therefore
the equality is the definition of ¥ = —u, and is also the definition of @ = —¢. Then we have
_(_
EXERCISE 1.10

By Exercise 1.9, we have

—

—

u.

at = b <= 0=ab — bt = at + (=1)(b?) = a¥ + ((—1)b)T = a¥ + (—b)T = (a — b)7.

Then by Proposition 1.1.4, this is equivalent to a — b =0 or v = 0.

EXERCISE 1.11
Let @ be the negative of . Then

U4+ =U+0 = W+ (U+0) =0+ (4 + 0s)
= (U+U)+ 0 = (0+ 1) + Uy (Axiom 2)
— 6+ 171 :6+ ’172 (Axiom 4)

— 171 :172‘

(Axiom 3)



EXERCISE 1.12
Using —u = (—1), we get

—(@=9) = (=D)(@+ (=1)9) = (=Da + ((=1)(=1))v =

We also get

— (i + V)

I
N
[a—
N—
—
S
+
S]
~—



SECTION 1.2

EXERCISE 1.13
If & = c¥, then atl 4+ b’ = (a + be)d. Therefore the linear combinations is the line R7 in the

direction of 7.

EXERCISE 1.14 problem changed to the following
Find the condition on a, such that the last vector can be expressed as a linear combination
of the previous ones.

1. (1,2,3),(4,5,6),(7,a,9), (10,11, 12).
2. (1,2,3),(7,a,9), (10,11, 12).
3. 142t +3t3, 7+ at + 92,10 + 11t + 12¢%

4. t2 42t + 3,7t + at +9,10t% + 11t + 12.
s (12 4 5 7 a 10 11
“\2 3)°\5 6/ \a 9/)7\11 12)
6 (L2 7 a 10 11

“\3 3)'\9 9/)\12 12/

(1) By the row operation

1 4 7 10 1 4 7 10 1 4 7 10 14 7 10
25 a 11l =10 =3 a-14 8| —={0 1 2 31 =101 2 3
3 6 9 12 0 -6 —-12 -18 0 -3 a—14 -8 0 0 a—8 1

The last column is not pivot if and only if @ # 8. This is the condition for the last vector to be
a linear combination of the first three.

(2) By the row operaiton in (1), we have

1 7 10 1 7 10 17 10
2 0 11| >0 2 3|02 3
3.9 12 0 a—8 1 0 0 (26— 3a)

The last column is not pivot if and only if a # %. This is the condition for the last vector to
be a linear combination of the first two.

(3) By ag+ait+ast? <+ (ao, a1, az), the problem is translated into (2). The condition is a # 2.
(4) By agt®+ait+as <> (ag, a1, az), the problem is translated into (2). The condition is a # 23—6.

(5) The problem is the existence of xy, x5, x3, such that

)

)
10 11 _ . 1 2 L 4 5 4z 7 a\ [ xi+4re+Tws 23 + dwe + axs
11 12)  "t\2 3 2\5 6 S\a 9)  \2zy 4529+ axs 3z + 629 + 925 )



This is equivalent to the system
r1 + 4z + Ty = 10, 221 + 529 + axz =11, 3z + 629 + 923 = 12.

Then we are back to (1), and the condition is a # 8.

(6) Similar to (5), the problem is translated to (2), by (;; ’Z
a # 23—6.
EXERCISE 1.15

Applying R; <> R; and R; <> R; again, the i-th and j-th rows are changed as follows (the

marks (i) and (j) indicate the i-th and j-th positions)

) < (z,y,z). The condition is

(Bi, Rj) — (R}, Ri) — (Ri, Rj).
() () (3) () @ ()

The other rows are not changed.
Applying cR; and ¢ 'R;, the i-th row is changed as follows

R, — cR; — C_ICRZ‘ = R;.
G RO RN

The other rows are not changed.
Applying R; + cR; and R; — cRj, the i-th and j-th rows are changed as follows

(Ri7 R]> — (RZ + CR]', RJ) — ((Rz + CRj) — CRj, R]) = (R27 R])
@ () 0] () 0] () @ ()

The other rows are not changed.

EXERCISE 1.16
Suppose x1, ..., x, satisfy the i-th and j-th equations

a1x1 + sy + - - - + a, T, =P,
b1I1 +b2$2—|— +bnl’n = (.

Then
1. They satisty

bix1 + bexs + - -+ + by, = q,

Ty + AT + -+ ApTy = P.
This shows the solution is still solution after the first row operation.
2. They satisfy

cayry + casTs + - + capr, = (a1 + asxs + - + apx,) = cp,
b1$1 + b2$2 + -+ bn$n =4q.

This shows the solution is still solution after the second row operation.



3. They satisfy

(a1 + cby)zy + (ag + cba)xg + - - - + (ay + cby)xy, = (@121 + agxe + + - + apy)
+ c(bixy + boxg + - - - + byxy,) = p + cq,
bll‘l + bQI‘Q + -+ anL’n = (.

This shows the solution is still solution after the third row operation.

By Exercise 1.15, the row operations can be reversed, and the reverses are also row operations.
Therefore row operations do not change the solutions.

EXERCISE 1.17 (1)

0O e x x ® x x ° *
00 00 M) ® x *x X M 0 * %
o x x % 00 00 0O 00O
EXERCISE 1.17 (2)
For suitable ¢, we have
® x x X ® x x o x ® x
o***MO***:()o**orOOo*or--‘.
0 000 0O 00O 0 00O 0 0 00O
EXERCISE 1.17 (3)
For suitable ¢, we have
0 e *x %\ RyoRs ° *
R1<—>R2
0 ¢ x x| —= 10 *
® X x 0 *
o x * ® x ® x x %
M 0 e ¥ or |0 e =x or |0 e x =x
00 * 0 0O 00 00

EXERCISE 1.17 (4)

Ro<>R3 [ ]
R1 <—>R2

e O O
* O @
* @ %
* % %
)
[

EXERCISE 1.18
2 x 2 row echelon forms

GOEHE 6



3 x 3 row echelon forms

o x % e x e x x o x x 0 e = 0 e x 0 0 e 0 00
0 e x 0 e x 0 0 e 0 0O 0 0 e 00O 00O 00O
0 0 e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0O 0 0 0 0O

EXERCISE 1.19

First we consider the n x n case. It can be easily found out that, after the pivot columns
are chosen to be fixed, we are able to determine one unique row echelon form (the pivot of the
first pivot column has to lie on the first row, and the pivot of the second pivot column has to
lie on the second row, and so on). Therefore, the number of row echelon forms is equal to the
number of ways to choose pivot columns, which is:

)+ () () e ()=

When m > n, we can choose at most n pivot columns, so the case is the same as mentioned
above, the number of row echelon forms is 2"; when m < n, we should notice that we can only
choose at most m pivot columns, thus the number of row echelon forms is

0)=()=C)r+ ()

2 x 2 reduced row echelon forms

060606 0)

3 x 3 reduced row echelon forms

1 00 1 0 =% 1 % 0 1 % = 010 0 1 =x 0 01 000
010 0 1 = 001 000 0 01 0 00 0 00 0 00
001 000 000 000 000 000 000 000

EXERCISE 1.21
(1) 1 = by — ajx2, x3 = by, x5 arbitrary.

(2) 1 = —a1x9 — bixy, x3 = —baxy, xo, x4 arbitrary.

(3) Ty = b17 T = bQ, T3 = bg.

(4) ©1 = by — a1z9 — asxs, T2, 3 arbitrary.

(5) 1 = —a1x2 — asxy — by, x9, 3, T4 arbitrary.

(6) 1 = by — a1x92 — asxy, T3 = by — azxy, Ta, x4 arbitrary.

(7) 1 = by — a1x3 — asxy, xo = by — agrs — a4xy4, T3, x4 arbitrary.
(8) 1 = by — ajx3, x93 = by — asxs, x3 arbitrary.

(9) xo = by — a4, T3 = by — agxy, T1,x3 arbitrary.



(10) 21 = by — ayx3, 2 = by — agxs, x3 arbitrary.

(11) T = bl — Q13 — Ax5, Tg = b2 — A3T3 — Ay4x5, T3 = bg — a5xs5, T3, X5 arbitrary.

(12) o1 = —a123 — agxs — b1we, T2 = —a3xs — asT5 — bake, T3 = —asxs — bsTs, T3, Ts, Tg
arbitrary.

EXERCISE 1.22
1 0 1 0 10 1 0O 01 0 1 0 010 1 00O
01 -1 1 01 -1 0 1 001 —-11 001 -1 10

:;1 1 =20 -3 0 1\(/1l =20 -3 0 10
1 gJ\0 01 -5 —64/\0 0 1 -5 640

_ o O

11
00
0 0

o = O



SECTION 1.3

EXERCISE 1.23
For a general matrix in M3y, we have

T1 T4 10 0 0 0 0 01 0 0 0 0
o 5| =21 (0 O 4+22(1 O 4+23{0 O] 4+24|0 O 4+25{0 1| 4+26{0 O
T3 T 0 0 0 0 10 0 0 0 0 01

This shows every vector in My, 3 is a lienar combination of six matrices. Moreover, if the linear
combination above is equals another linear combination

Y1 Ya 1 0 00 0 0 0 1 00 00
Y2 Ys | =y |0 O +wye |l O +ys [0 Of +5a {0 Of+ys {0 1| +y |0 O],
Ys  Ys 00 00 10 00 00 01
then we get the equality of matrices
L1 T4 Y1 Ya
Lo Ts | = | Y2 Us
T3 Tg Y3 Ys
This means 1 = ¥y1,...,26 = yg. 1This shows the uniqueness of the coefficients in the linear

combination of six matrices. Therefore the six matrices form a basis.
In general, a basis of M,,«, consists of m x n matrices, such that one entry is 1 and all the
other entries are 0. There are mn such matrices.

EXERCISE 1.24
Byﬁzzoﬁl—i——1—0171,1—1—117@—1—0171“4—+017n, we have

[@]az(0,...,07(1),0,...,0)25.

EXERCISE 1.25
We have

T1Ur(1) + ToUr2) + - + TnUr(n) = Tr1()U1 + Tr-1(2)V2 + - + Tpo1(n) U

Therefore the coefficients are related by the inverse permutation. This does not change the
existence and uniqueness of linear combination expression. Therefore m(«) is still a basis.
Moreover, the equality shows

— —

[I]W(a) = (.Tl, Loy ... ,xn) <= [Z‘]a = (xﬂ.—l(l), Tr=1(2)y - - - ,:C,r—l(n)) = 771([1']#(&)).

EXERCISE 1.26
We have z(1,2) 4+ y(2,4) = (z + 2y, 2z + 4y) = (a,2a), where a = = + 2y. Therefore (1, 1)
is not a linear combination of (1,2) and (2,4).



EXERCISE 1.27

If (¢,d) # (0,0), then ad = bc implies (a,b) = A(c,d) for some X\. Then z(a,b) + y(c,d) =
(Az+y)(c,d). We can easily find a vector that is not a scalar multiple of (¢, d). Then the vector
is not a linear combination of (a,b) and (¢, d).

EXERCISE 1.28 (1)

1 2 31 1 2 3 1 12 3 1
2312|—-10 -1 =50]—=1(01 5 0
31 2 3 0 =5 =7 0 0 0 —18 0
Since all rows are pivot, the four column vectors span R3.
EXERCISE 1.28 (2)
1 2 3 1 2 3 12 3
2 31 0 -1 =5 01 5
3 1 2 0 =5 -7 0 0 —18
1 2 3 0 0 0 00 O
Since not all rows are pivot, the three column vectors do not span R*.
EXERCISE 1.28 (3)
1 23 1 2 3 111
234l —-(1111]—=-101 2
3 45 111 000
Since not all rows are pivot, the three column vectors do not span R3.
EXERCISE 1.28 (4)
1 2 3 4 123 4 111 1
2345 —-(111 1 - 10 1 2 3
345 a 1 11 a-5 000 a—©6

All rows are pivot if and only if a # 6, which is the condition for the four column vectors to
span R3.

EXERCISE 1.28 (5)

12 3 12 3 11 1
2 3 4 11 1 01 2
3450711 1 |7 |oo0 a-6
15 a 11 a—5 00 0

Since not all rows are pivot, the three column vectors do not span R*.
EXERCISE 1.28 (6)

0 2 -1 4 13 0 1 13 0 1
1 3 0 1 0 2 —1 4 0 2 —1 4
9 —4 -1 2] 7o 21470 0 0 o
1 1 -2 7 0 4 —2 8 0 0 0 0



Since not all rows are pivot, the four column vectors do not span R*,

EXERCISE 1.28 (7)

1 0 01 1 0 0 1 1 00 1
0110 N 01 1 0 . 011 0
1010 00 1 -1 001 -1
0101 00 —1 1 000 O
Since not all rows are pivot, the four column vectors do not span R*,
EXERCISE 1.28 (8)
1 001 10 0 1 1 00 1
0110 _ 01 1 0 _ 01 1 0
101 a 00 1 a—1 0 01 -1
01 a b 0 0 a—1 b 000 b—(a—1)>

All rows are pivot if and only if b # (a — 1)?, which is the condition for the four column vectors
to span R%.

EXERCISE 1.29
If v1,,,...,U, span V', then any vector & € V is a linear combination of the vectors

f:$1?71+$2?72+"'+$n17n:$1171+$2172+"'+$n17n+0117.

—

The right side is also a linear combination of ¥y, Us, . .., ¥,, W.
Note: Exercises 1.29, 1.30, 1.31 can also be p roved by using Proposition 1.2.1, without
calculation.

EXERCISE 1.30
Suppose W = a U] + asty + - -+ + An Uy,
If v1,,,...,U,,w span V', then any vector & € V is a linear combination of the vectors

f:m1171+x2272+---+xn17n+yw
= 10y + Tl + - -+ + T, Uy, + y(ar Ty + agty + - - - + a, )
= (x1 + ya1)vy + (x2 + yag)tvh + - - - + (2, + ya,)v,.
The right side is also a linear combination of ¢, ¥s, ..., v,. Therefore v, vs, ..., v, also span

V.

The converse follows from Exercise 1.29.

EXERCISE 1.31

By Exercise 1.29, we know iy, W, . . ., W, spanning V' implies vy, U, . .., Uy, Wy, Wa, . . . , Wy,
spanning V. Then by ), ws, . .., wW,, being linear combinations of v, s, ..., ¥,, we may apply
Exercise 1.30 one by one. We find v, v, . . ., Uy, Wy, Wa, . . . , W, spanning V implies o, Ua, . . ., Uy,

spanning V.



EXERCISE 1.32
1 <= 2 is trivial.
For 1 = 3, if any vector is a linear combination of #y,...,;,...,t,, then any vector
reVis .
T=mil 44 20 oo 0Ty = @i+ oo T4
Therefore any & € V is a linear combination of vy, ..., ct;, ..., U,.

For 1 = 4, if any vector is a linear combination of vy,...,7;,...,7;,...,¥,, , then any
vector & € V is

T =0+ 0+ a0+ +2, 0, = 2101+ - (Vi) + - (xj—c) T+ - 4xn Uy,

Therefore any & € V' is a linear combination of 0y,...,7; +cZj, ..., U, ..., Uy,
For the converse, we know that 3 = 1is 1 = 3 with ¢! in place of ¢, and 4 = 1is
1 = 4 with —c in place of c.

EXERCISE 1.33
If m > n, then n vectors in R™ cannot span R™. Moreover, if A is an m X n matrix, then
AZ = b has no solution for some b.

EXERCISE 1.34
(1) 3 vectors cannot span R®. This means the following system of linear equations has no
solution for some right side

10z, + 8x3 = by,
—2x1 + 8z — 923 = b9,
3ry — 229 + 323 = b3,
Tx1 4 Hxo + 623 = by,
211 — 4xy + Hxs = bs.

(2) 4 vectors cannot span R®. This means the following system of linear equations has no
solution for some right side

102, + 8x3 + Txy = by,
—2x1 + 8x9 — 913 — 94 = b9,
3x1 — 229 + 313 + 314 = b3,
Tx1 + dxo + 613 — Dy = by,
2x1 — 4x9 + dx3 + 614 = bs.

(3) The linear combination of the five vectors is always (0, *, , %, %). Therefore (1,0,0,0,0)
is not a linear combination of the five vectors. This means the following system of linear



equations has no solution

0=1,
—21’1 + 85(32 — 91’3 - 5ZL‘4 + 41‘5 = 0,
3x1 — 2209+ 3x3 + 424 — 25 =0,
71‘1 + 5$2 + 613 + 2274 + 3{23'5 = 0,
2x1 — 4x9 + bxs — Try — 625 = 0.
(4) The linear combination of the five vectors is always (2a, *, a, *, *). Therefore (1,0, 1,0, 0)

is not a linear combination of the five vectors. This means the following system of linear
equations has no solution

621 — 429 4+ 623 + 84 — 225 =1,
—2x1 + 8x9 — 93 — dxy + 45 = 0,
3x1 — 2200+ 3x3+ 44 — 25 =1,
Tx1 + 9% + 623 + 224 + 325 = 0,
211 — 4x9 + Dxg — Txy — 625 = 0.

EXERCISE 1.35
(1) Since not all columns are pivot, the four vectors are linearly dependent.
(2) Since all columns are pivot, the three vectors are linearly independent.
(3) Since not all columns are pivot, the three vectors are linearly dependent.
(4) Since not all columns are pivot, the four vectors are linearly dependent.
(5) All columns are pivot if and only if a # 6, which is the condition for the three vectors
to be linearly independent.
(6) Since not all columns are pivot, the four vectors are linearly dependent.
(7) Since not all columns are pivot, the four vectors are linearly dependent.
(5) All columns are pivot if and only if b # (a — 1)?, which is the condition for the four
vectors to be linearly independent.

EXERCISE 1.36
1 < 2 is trivial.
For 1 = 3, suppose vy, ...,7;,..., U, are linearly independent. Then

means
BT+ - BT Tl = DT e YT+ -+ YT
By v,...,4;, ..., 7, linearly independent, this implies
T = Y1y oy CT; = CYsy ooy Ty = Yp-

By ¢ # 0, this is the same as

L1 =Yy Ti = Yiy- oy Tn = Yn-



This verifies v7,...,ct;, ..., U, are linearly independent.
For 1 = 4, suppose vy, ...,%,...,Tj,..., 0, are linearly independent. Then

Ty U+ A2 (U4 @)+ a0+ A Uy = YO 4y (U ) oy 04y,
means
T+ (em )T T Ty = T YT (Y )T Y
By v1,...,4;, ..., U, linearly independent, this implies

TI =Yy Tg = Yiy -, CT + X5 = CYi +Yjy -+ s Ty = Yn-

This is the same as

xl:yl,...,xi:yi,...,xj:yj,...,xn:yn.
This verifies v, ...,7; + ¢Uj,..., 7}, ..., U, are linearly independent.
For 1 = 4, if any vector is a linear combination of #y,...,0;,...,0;,...,7,, , then any

vector £ € V is

Therefore any # € V' is a linear combination of 0y, ...,7; + ¢Z;,..., U, ..., Uy,
For the converse, we know that 3 = 1is 1 = 3 with ¢! in place of ¢, and 4 = 1 is
1 = 4 with —c in place of c.

EXERCISE 1.37
If m < n, then n vectors in R™ are linearly dependent. Moreover, if A is an m X n matrix,
then the solution of AZ = b is not unique.

EXERCISE 1.38 (1)
The 6 vectors in R? are always linearly dependent. This means the solution of the following
system is not unique

r1 + 2x9 + 323 + x4 + 315 + 226 = by,
21‘1 + 3372 —|—[E3 —|—3ZL‘4 + 21‘5 +.176 = bg,
333‘1 + 1272 + 2%3 + 2&34 + x5 + 333‘6 = bg.

EXERCISE 1.38 (2)
The 5 vectors in R* are always linearly dependent. This means the solution of the following
system is not unique

21 + 1029 + 8xy + Tws = by,
3x1 — 29 + 8x3 — 914 — 925 = b9,
2x1 + 3y — 2w3 + 34 + 375 = b,
—4x1 + Twy + dxg + 614 — S5 = by.



EXERCISE 1.38 (3)
The 4 vectors in R* are linearly dependent, because the last vector is 7 multiple of the first.
This means the solution of the following system is not unique

z1 + 102, + mxy = by,
3r1 — 219 + 8x3 + 3wy = bo,
2wy + 3x9 — 223 + 2wy = b3,
—4x1 + Txo + Drg — 4wy = ba.

EXERCISE 1.38 (4)

The 5 vectors in R® are linearly dependent. The reason is that the last row of the associated
5 x b matrix is all 0. Therefore the matrix has at most 4 pivots. Therefore not all five columns
are pivot. The linearly dependene means the solution of the following system is not unique

r1 + 102, + 8x4 + Txs = by,
3r1 — 2x9 + 8x3 — 91y — 925 = b9,
2x1 4 3x9 — 223 + 314 + 315 = b3,
—4x1 + Txo + dxs + 624 — D5 = by
0 = bs.

EXERCISE 1.39

Suppose @ > b and ze® + ye” = 0. Then z + ye® ' = 0. By b —a < 0 and taking
lim_,,oom we get = 0. Then we have ye® = 0. This implies y = 0. By Proposition 1.3.7,
this proves e and e are linearly independent.

Suppose a, b, ¢ are distinct. Then we may assume a > b > c. If ze® + ye? + ze® = 0. Then
x4 yet= 4 zele=)t = 0. By b—a <0, ¢ —a < 0, and taking lim;_, ;,om we get 2 = 0. Then
ze®™ 4 yebt + ze = 0 becomes ye’ + ze® = 0. We are back to the linear independence of two
functions e and e, which we already proved.

EXERCISE 1.40

Assume that z; cost + xosint + xzet = 1. If x3 # 0, then let ¢ goes to co, then we have
oo = 1, which is a contradiction. Thus z3 = 0. And then let ¢t = 0, 7, we have 1y = 1,2, = —1,
which is a contradiction.

EXERCISE 1.41 (1)

Suppose x cos?t + ysin®t = 0. Taking ¢t = 0, we get + = 0. Taking ¢t = 5, we get y = 0.
The two functions are linearly independent.

We have 1 = cos?t + sin®¢t. Therefore 1 is a linear combination of cos? ¢, sin?t.

Suppose x cos®t + ysin®t = t. Taking ¢t = 0, T 5, we get x =1, %x + %y =71,y =7 Then
we get % + %% = 7, a contradiction. Therefore ¢ is not a linear combination of cos?t,sin?t.
EXERCISE 1.41 (2)

By cos?t +sin®t — 1 = 0, the three functions are linearly dependent.
We have cos 2t = cos?>t — sin?t. Therefore cos 2t is a linear combination of cos? ¢, sin®t.



Since 1 is a linear combination of cos?t,sin?t, by Exercise 1.30, we know t is a linear
combination of cos? t,sin? ¢, 1 if and only if it is a linear combination of cos? ¢, sin?t. By part (1),
however, ¢ t is not a linear combination of cos? ¢, sin?¢. Therefore ¢ is not a linear combination
of cos?t,sin’t, 1.

EXERCISE 1.41 (3)

Suppose 1 + xat + x3et + x4te! = 0. Taking t = 0, we get x; = 0. Therefore xot + x3e! +
xyte! = 0. This implies @y + w3t te! + x4e’ = 0. Taking lim,_, ., we get x5 = 0. Therefore
xze! + xyte! = 0. This implies x5 + x4t = 0. Taking ¢ = 0, we get x5 = 0. There3fore x4t = 0.
Taking t = 1, we get x4 = 0. This shows 1,t, e, te! are linearly independent.

By (1+t)e! =01+ 0t + let + 1te', we know (1 + ¢)e’ is a linear combination of 1,¢, ef, te'.

By ((1+t)e') = 2¢' + te, we know ((1 4 t)e') is a linear combination of 1,¢, e’, te'.

EXERCISE 1.41 (4)

Suppose xcos’t + ycos2t = 0. Taking t = %7‘(‘, we get —y = 0, and y = 0. Therefore
xcos’t = 0. Taking t = 0, we get x = 0. The two functions are linearly independent.

By cos2t = 2cos?t — 1, we have 1 = 2cos?t — cos?t. Then a = 2a cos®>t — acos®t is a linear
combination of cos?t, cos 2t.

By a+sin®t = a+1—cos’t = (a+1)(2cos?t —cos? t) —cos? t = 2(a+1) cos’ t — (a+2) cos? t,
we find a + sin?¢ is a linear combination of cos®t, cos 2t.

EXERCISE 1.42
Suppose v, Us, . . ., Uy, W are linearly independent. By Proposition 1.3.8, we know @ is not
a linear combination of ¥, v5, ..., v,. Moreover, to see the linear independence of ¥, vs, . . . , Uy,
we consider
1'1171 + .1'2'172 + -+ .I'nUn = y1171 + y2272 +--F yn'ﬁn

This is the same as
131’171+I2172+"‘+In77n+0117:y1171+y2172+"'+yn17n+0117.
Since v, Vs, . . ., Uy, w are linearly independent, this implies

1 =Y, L2 =Y2, -, Tn = Yn, 0=0.

This proves that vy, vs, ..., U, are linearly independent.

Conversely, suppose vy, U, . . . , U, are linearly independent, and 0 is not a linear combination
of U1, ,,...,u,. For the linear independence of v}, v, ..., ¥,, W, we use Proposition 1.3.7 and
consider

X101 + ToUs + + -+ + Tp Uy + Ty W = 0.

If ,,41 # 0, then we have

- T S Zo Tn
w = — v — Ug+ - — Un.
Tn41 Tn41 Tn41
This contradicts the assumption that @ is not a linear combination of ¥y, v, ..., v,,. Therefore

Tny1 = 0, and we get .
2101 + Uy + -+ + 20, = 0,



Then by v, ¥, ..., 9, linearly independent, we get ©; = 29 = --- = x, = 0. Together with
ZTnye1 = 0, this proves U7, ¥, ..., U,,w are linearly independent.

EXERCISE 1.43

Suppose v; is a linear v, vs,...,7;—1. Then v; is also a linear 0, Vs, ..., Uj_1,Uis1, .- -, Up-
By Proposition 1.3.8, this implies ¢, v, . . ., ¥, are linearly dependent.
Suppose ¥y, Vs, . . ., U, are linearly dependent. Then by Proposition 1.3.8, we have

.T1171 + 5172172 + -+ .Cljnl_;n = 6,
in which some z; # 0. Let ¢ be the biggest index, such that z; # 0. Then we have
2101 + 2ol + -+ + 20 = 0.

This implies
- H N X2 Ti—1
Ui:——’Ul——U2+..._

Therefore v; is a linear combination of the previous vectors.

EXERCISE 1.44
Since all four rows are pivot, by Proposition 1.3.4, the six columns span R*.
Applying the same row operations to the 1st, 3rd, 4th, 6th columns, we get

(1717 1737 1747 176) —

S @ X %
® X X ¥

S oo e
o O e %

We find all four row pivot. Therefore the four vectors still span R*.
Applying the same row operations to the 1st, 3rd, 4th columns, we get

® X X

(1717 1737 174) —

S OO e
O O e X
(@)

We find the last row not pivot. In fact, if we apply the same row operations to any three
columns, we get at most three pivots. Therefore the last row can never be pivot. Therefore the
three vectors cannot span R*.

EXERCISE 1.45 (1)
By zo + 21t + 29t? + 23t3 < (19, 21, 9, 23), the vectors become the column vectors of a
matrix, and we carry out row operation

111000 100110 100 1 1 0

100110 01 0101 010 1 0 1
— —

010101 001011 001 0 1 1

001011 111000 000 -2 -2 =2



Since all rows are pivot, the six polynomials span P3. A minimal spanning set is given by the
first four columns, corresponding to 1 +¢, 1+ 2, 1 + 3, ¢ + 2.
EXERCISE 1.45 (2)

By wo + o1t + xot? + 23t < (20, 11, 72, 73), the vectors become the column vectors of a
matrix, and we carry out row operation

00 1 1 11 00 1 1 1 1
1 =10 —1 1 1 1 =10 -1 1 1
2 22 0 02| 7o o0 2 2 —2 o0
3233 0 30 00 3 3 0 -3
1 -1 0 -1 1 1 1 =10 -1 1 1
oo ) foo 11
00 0 0 —4 —2 00 0 0 1 2
00 0 0 -3 —6 00 0 0 0 —1

Since all rows are pivot, the six polynomials span P;. A minimal spanning set is given by the
1st, 3rd, 5th, 6th columns, corresponding to t + 2t2 4+ 3t3, 1+ 2t2 + 33, 1 + ¢ + 3t3, 1 + t + 2t2.

EXERCISE 1.46 (1)
Linearly independent subset is given by first three columns (1,2, 3),(2,3,1),(3,1,2). They
already form a basis of R3.

EXERCISE 1.46 (2)
Linearly independent subset is given by the three columns (1,2,3,1),(2,3,1,2),(3,1,2,3).
The following shows adding (0,0,0,1) gives a basis of R*.

1230 1 2 3 0 12 3 0
2310 0 -1 -5 0 _ 01 5 0
31 20 0 -5 =70 0 0 —18 0
1 2 31 0 0 0 1 00 0 1

EXERCISE 1.46 (3)
Linearly independent subset is given by first two columns (1,2,3),(2,3,4). They do not
form a basis of R3. The following shows adding (0,0, 1) gives a basis of R?.

1 20 1 20 110
23 0] =11 1O0]—=10120
3 41 1 11 0 01

EXERCISE 1.46 (4)

Linearly independent subset is given by (1,2,3),(2,3,4) in case a = 6, and given by
(1,2,3),(2,3,4),(4,5,a) in case a # 6. In case a = 6, by (3), adding (0,0, 1) gives a basis
of R3. In case a # 6, (1,2,3),(2,3,4), (4,5, a) is a basis of R>.

EXERCISE 1.46 (5)



Linearly independent subset is given by (1,2,3,4),(2,3,4,5) in case a = 6, and given by
(1,2,3,4),(2,3,4,5),(3,4,5,a) in case a # 6.

In case a # 6, the following shows adding (0,0, 1,0) to (1,2,3,4),(2,3,4,5),(3,4,5,a) gives
a basis of R* (note that adding (0,0,0,1) does not give a basis).

1230 12 3 0 11 1 0
23 4 0 11 1 0 01 2 0
3451|711 1 1] 7|00 a=60
45 a0 11 a=50 00 0 1

In case a = 6, by taking a = 7 # 6, we know adding (3,4, 5,7), (0,0, 1,0) to (1,2, 3,4),(2,3,4,5)
gives a basis of R%.
EXERCISE 1.46 (6)

Linearly independent subset is given by (0,—1,2,1),(2,3,—4,1). The following shows
adding (—1,0,1,0), (4, 1,0, 1) (modifications of original columns 3 and 4) to (0, —1,2,1), (2,3, —4,1)
gives a basis of R*.

0 2 -1 4 13 0 1 13 0 1 13 0 1

1 3 0 1 0 2 —1 4 0 2 —1 4 0 2 —1 4
4 1 0|l 7lo 2 1 270 o0 2 =270 o0 2 -2

1 1 0 1 0 4 0 2 0 0 2 —6 0 0 0 —4

EXERCISE 1.46 (7)
Linearly independent subset is given by (1,0, 1,0), (0,1,0,1), (0,1, 1,0). The following shows
adding (1,0,0,0) gives a basis of R*.

1001 10 0 1 10 0 1
0110 01 1 0 01 1 0
1010l loo 1 =17 loo =1 o
0100 00 -1 0 00 0 —1

EXERCISE 1.46 (8)

Linearly independent subset is given by (1,0,1,0),(0,1,0,1),(0,1,1,0) in case b = (a —
1)%, and given by (1,0,1,0),(0,1,0,1),(1,0,a,b) in case b # (a — 1)%. In case b # (a — 1)?,
the four vectors form a basis of R*. By taking @ = 0 and b = 1, adding (1,0,—1,1) to
(1,0,1,0),(0,1,0,1),(0,1,1,0) gives a basis of R*.

EXERCISE 1.47

Suppose z1t%(t — 1) + 29t (1> — 1) + 23(t* —4) = 0. Taking ¢t = 0, we get —4x3 = 0. Therefore
x3 = 0, and z,t3(t — 1) + 29t(t> — 1) = 0. This implies z1t(t — 1) + x5(t* — 1) = 0 for ¢ # 0.
Taking lim,_,q, we get —z5 = 0. Therefore x5 = 0, and z1t(t — 1) = 0. Then we get x; = 0. By
Proposition 1.3.7, this verifies t2(t — 1), ¢(t* — 1), t* — 4 are linearly independent.

To extend to a basis of P3, we add a polynomial that is not a linear combination of #*(¢ —
1),t(t* — 1),¢* — 4. Suppose 1 = z1t2(t — 1) + xot(t* — 1) + x3(t* — 4). By taking t = 0,1, we



get 1 = —4x3 and 1 = —3x3. This is a contradiction. Therefore 1 is not a linear combination
of the three polynomials. Then t?(t — 1),¢(t> — 1),t*> — 4,1 are linearly independent and form
a basis of Ps.

EXERCISE 1.48
(1) 3 polynomials cannot span the 4 dimensional P;.
(2) 3 matrices cannot span the 4 dimensional My

(3) The four matrices are of the form (Z * ). Their linear combination is also of the form

2a
(Z 2*a> . Therefore the matrix ((1) ?) is not their linear combinations. The four matrices do

not span Msys.

EXERCISE 1.49 Explain that the vectors are linearly dependent.

1. 34 V2t — 7t?, e + 100t 4+ 2v/3t2, dnt — 15.2t%, /7 + €*t>.
5 g8\ /2 8 1 0

“\4 9)°\6 5)0\ -2 4)°
5 V3 V2 o 3 100 sin2 7

‘ or )7\ =10 2v2)' \=77 6 )’ \\V2r 2sin2)

EXERCISE 1.50

Suppose « spans V. By Theorem 1.3.10, « contains a basis o' of V. Then #a > #d' =
dim V.

Suppose « is a linearly independent set V. By Theorem 1.3.11, o can be enlarged to a basis
o of V. Then #a < #a' = dim V.
EXERCISE 1.51

Under the asumption the number of vectors in « is dim V', by Theorem 1.3.14, we know (1)
a spans V', and (2) « is linearly independent are equivalent. Then it is a simple logic that, if
(1) <= (2), then (1) <= (2) < (1 +2). We note that (3) is (1+2).

EXERCISE 1.52 (1)
We have row operation

w

= 3

110 1 1 0 1 1 0
101}—-10 -1 1| —=1(0 -1 1
011 0 1 1 0 0 2

Since all row and columns are pivot, the three vectors form a basis.

EXERCISE 1.52 (2)
We have row operation

1 1 -1 1 1 —1 2 0 0 1 1 1
1 -1 1 - 12 0 0 - 101 -1]—=1-2 0 O
-1 1 1 00 2 00 2 0 -2 0



Since all row and columns are pivot, the three vectors form a basis.

EXERCISE 1.52 (3)
We have row operation

1110 333 3 11 1 1 1 0 0 0
1101 110 1 0 0 -1 0 0 -1 0 0
to11] 7 ]to11!7lo =1 0 o0ol7lo 0o =10
0111 0111 1 0 0 0 0 0 0 1

Since all row and columns are pivot, the three vectors form a basis.

EXERCISE 1.53 (1)

Suppose z1(1 + t) + zo(1 + t?) + x3(t + t?) = 0. Taking t = —1, we get o = 0. Then
z1(1 + t) + x3(t + t*) = 0. Compare coefficient of t*, we get 3 = 0. Then z;(1 +t) = 0.
This implies 3 = 0. By Proposition 1.3.7, the three polynomials are linearly independent. By
dim P, = 3 and Theorem 1.3.15 (also see Exercise 1.51), the three vectors form a basis of Ps.

Alternatively, the problem can be translated to Exercise 1.52 (1).

EXERCISE 1.53 (2)

By @b < (a,b,c,d), the problem is translated to Exercise 1.52 (2). The four mattices
c d

form a basis.

EXERCISE 1.54 (1)
We have row operation

1 10 1 1 0 1 1 0
1 01)]—=10 =1 1} —=10 -1 1
01 a 0 1 a 0 0 a+1

The three vectors form a basis if and only if a # —1.

EXERCISE 1.54 (2)
We have row operation

1 1 0 1 1 0 1 1 0
-1 0 1] —=(0 1 1]—=10 -1 1
0 -1 a 0 -1 a 0 0 a+1

The three vectors form a basis if and only if a # —1.

EXERCISE 1.54 (3)
We have row operation

1110 1 1 1 0 11 1 0
1101 0 0 -1 1 0 -1 0 1
10117 lo=1 0o 1] 7]o 0o -1 1
011 a 01 1 a 00 0 a+2



The three vectors form a basis if and only if a # —2.

EXERCISE 1.55
(1) Translated into Exercise 1.54 (1), basis if and only if a # —1.
(2) Translated into Exercise 1.54 (3), basis if and only if a # —2.

EXERCISE 1.56
If a # 0, then we have row operation

CLC_>(I C
b d 0 d— e

The two vectors form a basis if and only if d — L—lic # 0, i.e., ad # bc.
If b # 0, then we have row operation

(o) ()6 )

The two vectors form a basis if and only if ¢ — $d # 0, i.e., ad # be.

If a = b =0, then the two vectors do not form a basis.

Alternatively, the two vectors do not form a basis if and only if the two are linearly depen-
dent. By Example 1.3.13, this means they are parallel, and is equivalent to ad = bc. Therefore
the two vectors form a basis, i.e.e, linearly independent, if and only if ad # bc.

EXERCISE 1.57
All columns and all rows are pivot. This means the reduced row echelon form is the identity
matrix

10 --- 0
01 0
Ir=1. . :
00 - 1

EXERCISE 1.58
We use a-coordinate to identify the vector space with Euclidean space. Then f is a basis if
and only if [5], is a basis.



We have row operations

1 1 1 1
110 1 1 0 1 1 0
Bla=|101] =10 -1 1| =>f0 -1 1],
011 0 1 1 0 0 2
111
Bla=10 1 1],
001
11 1
0 1 1
[5]&2. '

All rows and all columns are pivot. Therefore [3], is a basis. This implies 3 is a basis.

EXERCISE 1.59

By Exercises 1.32, the span properties of the four vector sets are equivalent. By Exercises
1.36, the liner independence properties of the four vector sets are equivalent. Since basis means
the span property and the liner independence property, the basis properties of the four vector
sets are also equivalent.

EXERCISE 1.60 (1)
By (x1,x2) = x2(0,1) + 21(1,0), we have [(z1, x2)]o = (T2, 21).

EXERCISE 1.60 (2)
By

We get

EXERCISE 1.60 (3)
By (21, 22) = “(a,0) + %2(0,b), we have [(z1,22)]a = (%, 7).
EXERCISE 1.60 (4)

By cos?6 + sin’ = 1, we have

(1,0) = cos f(cos @, sin 0) — sin §(—sin @, cos ),
(0,1) = sin#(cos 0, sin 0) + cos §(—sin 0, cos ).



Then

(.1’1,1'2) l’l(l,O) +ZL'2(O,1)

1(cosBO(cosd,sinf) — sin O(— sin 0, cos 0))

+ 29(sin f(cos 8, sin @) + cos O(—sin b, cos 0))

= (21 cos 0 + x9sinf)(cos,sin ) + (—x; sin f + x5 cos §)(—sin b, cos #)

T [ wicosO +xesinf \ [ cosf sinf@) [z
Ty a_ —x1sinf +x5cos0)  \—sinf cosO) \zy) "

EXERCISE 1.60 (5)

Therefore

We have
1 001 0O 1 00 1 0O 1 00 1 0 O
210010}—-1010 -21T0)]—-(1010 -2 1 0
321001 021 -3 01 O01 1 —-21
Then

T 1 0 0 I

i) =1-2 1 0 i)

T3 1 -2 1 T3

EXERCISE 1.60 (6)
This permutes the order of basis vectors in (6). Then we do the same permutation of the
columns

T 0 0 1 T
To = 1 0 —2 o
T3 o -2 1 1 xIs3
EXERCISE 1.60 (7)
We have
-1 00 100 100 -1 00 100 —1 0 0
1 11010)]—(011 1 10]—=(010 2 0 1
2 1 0001 010 2 01 001 -1 1 -1
Then
171 _1 0 O l‘l
1‘2 = 2 0 1 332
T3 -1 1 -1 T3

EXERCISE 1.60 (8)



We have
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EXERCISE 1.61 (1)
We have

EXERCISE 1.61 (2)
We have

Then

/-~

O NI
—NO —HN
—S N NO
o O
S — O

— O O

-1 11001
oO)]—-10 20101|—=
1 0 02011

-1 1 0 0
1
0

1
1

Then

O —HINHI
—SNO =N

NN O

EXERCISE 1.61 (3)



We have

11101000 33331111
11010100| 11010100
10110010 10110010
01110001 01110001
- —3 3 3 3 - —3 3 3 3
%0—100—%—%5—2%0—100%—%%—%
1 2 1 2
-1 0 0 0 -5 -5 -3 3 -1 0 0 0 -3 -5 -3 3
1 1 1 2
o -1 0 0 =z = -2 1
- O A
o0 o1 211
00 0 1 -5 35 35 3
Then
2 11 1 =2\ [x
T _111—11 T
sl T3l 1 =2 1 1| |as
4 —2 1 1 1) \ay

«

EXERCISE 1.62 (1)
We form the matrix with the given vectors as column vectors. Then we do R; + Rs, Ry +
Rs3, ... and get

r 0o 0 - 0 -1 100 -+ 0 —1
-1 1 0 --- 0 0 6010 --- 0 —-1
o -1 1 .--- 0 O oo0o1 .- 0 -1
o o0 0 -~ 1 0 o000 -1 -1
o o 0 - =1 1 00O0-- 0 0

Since the last row is not pivot, the vectors do not form a basis.

In fact, by (€7 —é€3) + (62 — €3) + -+ - + (€h—1 — €,) + (€, — €1) = 0, the vectors are linearly
dependent.
EXERCISE 1.62 (2)

We form the matrix with the givne vectors as column vectors. Then we do Ry + Ry, R3 +
Ry, ... and get

10 0 0 1 100 0 1

-1 1 0 0 1 010 0

0 -1 1 0 1 0 01 0 3
— 1.

0 0 0 1 1 000 1 n—-1




The vectors form a basis. The row operation

10 -~ 0 110 00 10 0 1 10 00
-1 .- 0 101 0 0 1 0 11 0 0
: Do : - ; :
0 O 1 100 10 0 0 1 n-111 10
0 O -1 100 01 0 0 0 n 11 11
1 0 0 1 n»n=t _1 -1 _1
01 ... 0022 B 3 3
- : : ; :
00 1 0 1 1 i _nl
00 0 1 1 1 1 1"
We get
e B L R B
n—2 n—z _Z _Z n—92 n—2 ... -9 -9
., n n n n . 1 .
[Z]o = : : : : r=— : x.
n
TR Lo L
1 1 1 1 1 1 1 1

EXERCISE 1.62 (3)
We form the matrix with the given vectors as column vectors. Then we do Ry — Ry, R3 —
Ry, ... and get

100 01 100 0 1

110 0 0 010 0o -1

11 0 0 001 0 1
— .

000 -+ 10 000 -~ 1 (=1

000 -~ 11 000 -+ 0 1—(=1)n

The vectors form a basis if and only if 1 — (—=1)" = 0, or n is odd. In fact, if n = 2k is even,
then we have

(€14 €2) + (€3 +€4) + -+ + (€vp—3 + Eap—2) + (€21 + €2p)
+&3) 4+ (Ex +€5) + -+ -+ (Cop—2 + Ea—1) + (Eax + €1).

This shows the vectors are linearly dependent.



For odd n, the row operation

10-- 0110 -- 00 1001 1T 0 -~ 0 0
11 0 01 00 01 0 -1 -1 1 0 0
0 0000 00 01 0 1 1 -1 0 0
. o - 1. .
0 0 1000 10 00 - 1 -1 -1 1 1 0
0 0 1100 01 00 0 2 1 -1 -1 1
10 00 1 3 T -1
01 00 -1 1 L 1
0 1 00 12 _21 12 _21
N 2 2 2 2
oo _1% %1 %1 %
00 3 T2 —2 2
We get
11 -1 1 -1
1 1 1 -1 1
. 1 1 -1 1 -1
[f]a:§ : .f
1 -1 1 11
-1 1 -1 1
1 -1 1 1 1

The matrix consists of 1-diagonals and (—1)-diagonals, and multiplied by %

EXERCISE 1.62 (4)
The matrix formed by

Un:€1+2€2++n€n,
is already a row echelon form, with all rows and columns pivot. The vectors from a basis.
We have 51 = 171, 52 = %(172 — 171), 53 = %(173 — ’173), ey gn = %(1771 — Un_l). Therefore

—

xr = Ul+$22( 171)4—1‘3;(173—’(72)4- +$n1(_)n 17n_1)

(.Tl — —[L’Q)Tj + (;JIQ - 51’3)1)2 + ( T3 — ZI‘4)U3 + -+ +(ﬁ$n_1 - %xn)ﬁn_l + %l’nﬁn



Therefore

EXERCISE 1.63 (1)
Same as Exercise 1.62 (1).

EXERCISE 1.63 (2)
Same as Exercise 1.62 (3).

EXERCISE 1.63 (3)

We have

To+ 1t + Tot? + - 4 2"
=(mg— 21— @2 — -+ — ) + 21 (L+ ) + 22(1+ ) + -+ + 2, (1 + 7).

Then

EXERCISE 1.63 (4)

We have

tk:(1+(t—1))k:(

This implies

EXERCISE 1.64

For any (1, x2), we ty to solve yi(a,b) + y2(c,d) = (x1,x2). This is a system

in variables y1, y.

o o
8y

= ee e
—_

|

T Tp, L1, T2, .-

ayr +cy2 = 1, by + dys = w9,

) Tn)-

Zo
X1
X2

Tn—1
Ln




Multiply the first equation by b, multiply the second equation by a, and subtract, we get

_ —bxritaxsy de1 —cs

(bc — ad)ys = bxy — axy. By ad # be, we get y, = —=12%2 . Similarly, we have y; = =2=2.
Therefore

1 — dilli:2§2 — 1 d —C I
L2/ 1 (ap),(ed) —butors ad —be \—=b a ) \a5)"




