
SECTION 1.1

Exercise 1.1

(a+ b)(~x+ ~y) = (a+ b)~x+ (a+ b)~y (Axiom 7)

= (a~x+ b~x) + (a~y + b~y) (Axiom 8)

= a~x+ b~y + b~x+ a~y. (Axioms 1 and 2)

Exercise 1.2

1. (x1, x2) + (y1, y2) = (x1 + y2, x2 + y1) and (y1, y2) + (x1, x2) = (y1 + x2, y2 + x1). Axiom 1
not satisfied.

2. ((x1, x2) + (y1, y2)) + (z1, z2) = (x1 +y2, x2 +y1) + (z1, z2) = (x1 +y2 + z1, x2 +y1 + z1) and
(x1, x2) + ((y1, y2) + (z1, z2)) = (x1, x2) + (y1 + z2, y2 + z1) = (x1 + y2 + z1, x2 + y1 + z2).
Axiom 2 not satisfied.

3. (x1, x2) + (0, 0) = (x1, x2) = (0, 0) + (x1, x2). Axiom 3 satisfied for ~0 = (0, 0).

4. 1(x1, x2) + (−x2, x1) = (0, 0) = (−x2, x1) + (x1, x2). Axiom 4 satisfied.

5. 1(x1, x2) = (1x1, 1x2) = (x1, x2). Axiom 5 satisfied.

6. a(b(x1, x2)) = a(bx1, bx2) = (a(bx1), a(bx2)) = ((ab)x1, (ab)x2) = (ab)(x1, x2). Axiom 6
satisfied.

7. (a+ b)(x1, x2) = ((a+ b)x1, (a+ b)x2) = (ax1 + bx1, ax2 + bx2) and a(x1, x2) + b(x1, x2) =
(ax1, ax2) + (bx1, bx2) = (ax1 + bx2, ax2 + bx1). Axiom 7 not satisfied.

8. a(x1, x2)+a(y1, y2) = (ax1, ax2)+(ay1, ay2) = (ax1+ay2, ax2+ay1) = a(x1+y2, x2+y1) =
a((x1, x2) + (y1, y2)). Axiom 8 satisfied.

Exercise 1.3

1. (x1, x2) + (y1, y2) = (x1 + y1, 0) = (y1 + x1, 0) = (y1, y2) + (x1, x2). Axiom 1 satisfied.

2. ((x1, x2) + (y1, y2)) + (z1, z2) = (x1 + y1, 0) + (z1, z2) = (x1 + y1 + z1, 0) and (x1, x2) +
((y1, y2) + (z1, z2)) = (x1, x2) + (y1 + z1, 0) = (x1 + y1 + z1, 0). Axiom 2 satisfied.

3. (x1, x2) + any vector = (x, 0) 6= (x1, x2). Axiom 3 not satisfied.

4. By no ~0, Axiom 4 does not make sense.

5. 1(x1, x2) = (1x1, 1x2) = (x1, x2). Axiom 5 satisfied.

6. a(b(x1, x2)) = a(bx1, 0) = (a(bx1), 0) = ((ab)x1, 0) = (ab)(x1, x2). Axiom 6 satisfied.



7. (a+ b)(x1, x2) = ((a+ b)x1, 0) = (ax1 + bx1, 0) = (ax1, 0) + (bx2, 0) = a(x1, x2) + b(x1, x2).
Axiom 7 satisfied.

8. a(x1, x2) + a(y1, y2) = (ax1, 0) + (ay1, 0) = (ax1 + ay1, 0) = a(x1 + y1, 0) = a((x1, x2) +
(y1, y2)). Axiom 8 satisfied.

Exercise 1.4
By Axiom 1, we know (x1, x2) + (y1, y2) = (x1 + ky1, x2 + ly2) and (y1, y2) + (x1, x2) =

(y1 + kx1, y2 + lx2) are equal. Therefore we have x1 + ky1 = y1 + kx1 and x2 + ly2 = y2 + lx2
for all x1, x2, y1, y2. This implies k = l = 1.

Conversely, if k = l = 1, then by Exercises 1.1.2, we have the Euclidean space, satisfying
all axioms.

Exercise 1.5

(xn) + (yn) = (xn + yn) = (yn + xn) = (yn) + (xn);

((xn) + (yn)) + (zn) = ((xn + yn) + zn) = (xn + (yn + zn)) = (xn) + ((yn) + (zn));

(xn) + (0) = (xn + 0) = (xn);

(xn) + (−xn) = (xn + (−xn)) = (0);

1(xn) = (1xn) = (xn);

a(b(xn)) = a(bxn) = (a(bxn)) = ((ab)xn) = (ab)(xn);

(a+ b)(xn) = ((a+ b)xn) = (axn + bxn) = (axn) + (bxn) = a(xn) + b(xn);

a((xn) + (yn)) = a(xn + yn) = (a(xn + yn)) = (axn + ayn) = (axn) + (ayn) = a(xn) + a(yn).

Exercise 1.6
If f(t) and g(t) are smooth, then f(t) + g(t) and af(t) are smooth. If f(t) and g(t) are

even, then f(t) + g(t) is even by f(−t) + g(−t) = f(t) + g(t), and af(t) is even by (af)(−t) =
a(f(−t)) = a(f(t)) = (af)(t). Moreover, the zero function is even, and −f(t) is also even.
Then the eight axioms are verified juts like for all functions.

Exercise 1.7
Let us use

A =

(
a11 a12 a13
a21 a22 a23

)
, B =

(
b11 b12 b13
b21 b22 b23

)
,

as example. The following shows (A+B)T = AT +BT .

(A+B)T =

(
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

)T
=

a11 + b11 a21 + b21
a12 + b12 a22 + b22
a13 + b13 a23 + b23

 ,

AT +BT =

a11 a21
a12 a22
a13 a23

+

b11 b21
b12 b22
b13 b23

 =

a11 + b11 a21 + b21
a12 + b12 a22 + b22
a13 + b13 a23 + b23

 .



The following verifies (cA)T = cAT

(cA)T =

(
ca11 ca12 ca13
ca21 ca22 ca23

)T
=

ca11 ca21
ca12 ca22
ca13 ca23

 = c

a11 a21
a12 a22
a13 a23

 = cAT .

The following verifies (AT )T = A

(AT )T =

a11 a21
a12 a22
a13 a23

T

=

(
a11 a12 a13
a21 a22 a23

)
= A.

Exercise 1.9
Suppose ~v1 and ~v2 are two negative vectors. Then we have

~u+ ~v1 = ~0 = ~v1 + ~u,

~u+ ~v2 = ~0 = ~v2 + ~u.

This implies

~v1 = ~v1 +~0 = ~v1 + (~u+ ~v2)

= (~v1 + ~u) + ~v2 = ~0 + ~v2 = ~v2.

We have
~u+ (−1)~u = 1~u+ (−1)~u = (1 + (−1))~u = 0~u = ~0.

The last equality is by Proposition 1.1.4. We have (−1)~u + ~u = ~0 by the similar argument.
This means (−1)~u is the negative vector in Axiom 4.

Finally, the equality ~u + ~v = ~0 = ~v + ~u in Axiom 4 is symmetric in ~u and ~v. Therefore
the equality is the definition of ~v = −~u, and is also the definition of ~u = −~v. Then we have
−(−~u) = −~v = ~u.

Exercise 1.10
By Exercise 1.9, we have

a~v = b~v ⇐⇒ ~0 = a~v − b~v = a~v + (−1)(b~v) = a~v + ((−1)b)~v = a~v + (−b)~v = (a− b)~v.

Then by Proposition 1.1.4, this is equivalent to a− b = 0 or ~v = 0.

Exercise 1.11
Let ~w be the negative of ~u. Then

~u+ ~v1 = ~u+ ~v2 =⇒ ~w + (~u+ ~v1) = ~w + (~u+ ~v2)

=⇒ (~w + ~u) + ~v1 = (~w + ~u) + ~v2 (Axiom 2)

=⇒ ~0 + ~v1 = ~0 + ~v2 (Axiom 4)

=⇒ ~v1 = ~v2. (Axiom 3)



Exercise 1.12
Using −~u = (−1)~u, we get

−(~u− ~v) = (−1)(~u+ (−1)~v) = (−1)~u+ ((−1)(−1))~v = −~u+ ~v.

We also get

−(~u+ ~v) = (−1)(~u+ ~v) = (−1)~u+ (−1)~v = −~u+ (−~v) = −~u− ~v.



SECTION 1.2

Exercise 1.13
If ~u = c~v, then a~u+ b~v = (a+ bc)~u. Therefore the linear combinations is the line R~v in the

direction of ~v.

Exercise 1.14 problem changed to the following
Find the condition on a, such that the last vector can be expressed as a linear combination

of the previous ones.

1. (1, 2, 3), (4, 5, 6), (7, a, 9), (10, 11, 12).

2. (1, 2, 3), (7, a, 9), (10, 11, 12).

3. 1 + 2t+ 3t2, 7 + at+ 9t2, 10 + 11t+ 12t2.

4. t2 + 2t+ 3, 7t2 + at+ 9, 10t2 + 11t+ 12.

5.

(
1 2
2 3

)
,

(
4 5
5 6

)
,

(
7 a
a 9

)
,

(
10 11
11 12

)
.

6.

(
1 2
3 3

)
,

(
7 a
9 9

)
,

(
10 11
12 12

)
.

(1) By the row operation1 4 7 10
2 5 a 11
3 6 9 12

→
1 4 7 10

0 −3 a− 14 −8
0 −6 −12 −18

→
1 4 7 10

0 1 2 3
0 −3 a− 14 −8

→
1 4 7 10

0 1 2 3
0 0 a− 8 1

 ,

The last column is not pivot if and only if a 6= 8. This is the condition for the last vector to be
a linear combination of the first three.

(2) By the row operaiton in (1), we have1 7 10
2 a 11
3 9 12

→
1 7 10

0 2 3
0 a− 8 1

→
1 7 10

0 2 3
0 0 1

2
(26− 3a)

 .

The last column is not pivot if and only if a 6= 26
3

. This is the condition for the last vector to
be a linear combination of the first two.

(3) By a0 +a1t+a2t
2 ↔ (a0, a1, a2), the problem is translated into (2). The condition is a 6= 26

3
.

(4) By a0t
2 +a1t+a2 ↔ (a0, a1, a2), the problem is translated into (2). The condition is a 6= 26

3
.

(5) The problem is the existence of x1, x2, x3, such that(
10 11
11 12

)
= x1

(
1 2
2 3

)
+ x2

(
4 5
5 6

)
+ x3

(
7 a
a 9

)
=

(
x1 + 4x2 + 7x3 2x1 + 5x2 + ax3
2x1 + 5x2 + ax3 3x1 + 6x2 + 9x3

)
.



This is equivalent to the system

x1 + 4x2 + 7x3 = 10, 2x1 + 5x2 + ax3 = 11, 3x1 + 6x2 + 9x3 = 12.

Then we are back to (1), and the condition is a 6= 8.

(6) Similar to (5), the problem is translated to (2), by

(
x y
y z

)
↔ (x, y, z). The condition is

a 6= 26
3

.

Exercise 1.15
Applying Ri ↔ Rj and Ri ↔ Rj again, the i-th and j-th rows are changed as follows (the

marks (i) and (j) indicate the i-th and j-th positions)

(Ri
(i)
, Rj
(j)

)→ (Rj
(i)

, Ri
(j)

)→ (Ri
(i)
, Rj
(j)

).

The other rows are not changed.
Applying cRi and c−1Ri, the i-th row is changed as follows

Ri
(i)
→ cRi

(i)
→ c−1cRi

(i)
= Ri

(i)
.

The other rows are not changed.
Applying Ri + cRj and Ri − cRj, the i-th and j-th rows are changed as follows

(Ri
(i)
, Rj
(j)

)→ (Ri + cRj
(i)

, Rj
(j)

)→ ((Ri + cRj)− cRj
(i)

, Rj
(j)

) = (Ri
(i)
, Rj
(j)

).

The other rows are not changed.

Exercise 1.16
Suppose x1, . . . , xn satisfy the i-th and j-th equations

a1x1 + a2x2 + · · ·+ anxn = p,

b1x1 + b2x2 + · · ·+ bnxn = q.

Then

1. They satisfy

b1x1 + b2x2 + · · ·+ bnxn = q,

a1x1 + a2x2 + · · ·+ anxn = p.

This shows the solution is still solution after the first row operation.

2. They satisfy

ca1x1 + ca2x2 + · · ·+ canxn = c(a1x1 + a2x2 + · · ·+ anxn) = cp,

b1x1 + b2x2 + · · ·+ bnxn = q.

This shows the solution is still solution after the second row operation.



3. They satisfy

(a1 + cb1)x1 + (a2 + cb2)x2 + · · ·+ (an + cbn)xn = (a1x1 + a2x2 + · · ·+ anxn)

+ c(b1x1 + b2x2 + · · ·+ bnxn) = p+ cq,

b1x1 + b2x2 + · · ·+ bnxn = q.

This shows the solution is still solution after the third row operation.

By Exercise 1.15, the row operations can be reversed, and the reverses are also row operations.
Therefore row operations do not change the solutions.

Exercise 1.17 (1)0 • ∗ ∗
0 0 0 0
• ∗ ∗ ∗

 R2↔R3−−−−→

0 • ∗ ∗
• ∗ ∗ ∗
0 0 0 0

 R1↔R2−−−−→

• ∗ ∗ ∗0 • ∗ ∗
0 0 0 0

 .

Exercise 1.17 (2)
For suitable c, we have• ∗ ∗ ∗• ∗ ∗ ∗

0 0 0 0

 R2+cR1−−−−→

• ∗ ∗ ∗0 ∗ ∗ ∗
0 0 0 0

 =

• ∗ ∗ ∗0 • ∗ ∗
0 0 0 0

 or

• ∗ ∗ ∗0 0 • ∗
0 0 0 0

 or · · · .

Exercise 1.17 (3)
For suitable c, we have0 • ∗ ∗

0 • ∗ ∗
• ∗ ∗ ∗

 R2↔R3
R1↔R2−−−−→

• ∗ ∗ ∗0 • ∗ ∗
0 • ∗ ∗


R3+cR2−−−−→

• ∗ ∗ ∗0 • ∗ ∗
0 0 • ∗

 or

• ∗ ∗ ∗0 • ∗ ∗
0 0 0 •

 or

• ∗ ∗ ∗0 • ∗ ∗
0 0 0 0

 .

Exercise 1.17 (4) 0 • ∗ ∗
0 0 • ∗
• ∗ ∗ ∗

 R2↔R3
R1↔R2−−−−→

• ∗ ∗ ∗0 • ∗ ∗
0 0 • ∗

 .

Exercise 1.18
2× 2 row echelon forms (

• ∗
0 •

)(
• ∗
0 0

)(
0 •
0 0

)(
0 0
0 0

)



3× 3 row echelon forms• ∗ ∗0 • ∗
0 0 •

• ∗ ∗0 • ∗
0 0 0

• ∗ ∗0 0 •
0 0 0

• ∗ ∗0 0 0
0 0 0

0 • ∗
0 0 •
0 0 0

0 • ∗
0 0 0
0 0 0

0 0 •
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0


Exercise 1.19

First we consider the n × n case. It can be easily found out that, after the pivot columns
are chosen to be fixed, we are able to determine one unique row echelon form (the pivot of the
first pivot column has to lie on the first row, and the pivot of the second pivot column has to
lie on the second row, and so on). Therefore, the number of row echelon forms is equal to the
number of ways to choose pivot columns, which is:(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n.

When m ≥ n, we can choose at most n pivot columns, so the case is the same as mentioned
above, the number of row echelon forms is 2n; when m < n, we should notice that we can only
choose at most m pivot columns, thus the number of row echelon forms is(

n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

m

)
.

Exercise 1.20
2× 2 reduced row echelon forms(

1 0
0 1

)(
1 0
0 0

)(
0 1
0 0

)(
0 0
0 0

)
3× 3 reduced row echelon forms1 0 0

0 1 0
0 0 1

1 0 ∗
0 1 ∗
0 0 0

1 ∗ 0
0 0 1
0 0 0

1 ∗ ∗
0 0 0
0 0 0

0 1 0
0 0 1
0 0 0

0 1 ∗
0 0 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0


Exercise 1.21

(1) x1 = b1 − a1x2, x3 = b2, x2 arbitrary.
(2) x1 = −a1x2 − b1x4, x3 = −b2x4, x2, x4 arbitrary.
(3) x1 = b1, x2 = b2, x3 = b3.
(4) x1 = b1 − a1x2 − a2x3, x2, x3 arbitrary.
(5) x1 = −a1x2 − a2x3 − b1x4, x2, x3, x4 arbitrary.
(6) x1 = b1 − a1x2 − a2x4, x3 = b2 − a3x4, x2, x4 arbitrary.
(7) x1 = b1 − a1x3 − a2x4, x2 = b2 − a3x3 − a4x4, x3, x4 arbitrary.
(8) x1 = b1 − a1x3, x2 = b2 − a2x3, x3 arbitrary.
(9) x2 = b1 − a1x4, x3 = b2 − a2x4, x1, x3 arbitrary.



(10) x1 = b1 − a1x3, x2 = b2 − a2x3, x3 arbitrary.
(11) x1 = b1 − a1x3 − a2x5, x2 = b2 − a3x3 − a4x5, x3 = b3 − a5x5, x3, x5 arbitrary.
(12) x1 = −a1x3 − a2x5 − b1x6, x2 = −a3x3 − a4x5 − b2x6, x3 = −a5x5 − b3x6, x3, x5, x6

arbitrary.

Exercise 1.22(
1 0 1 0
0 1 −1 1

)(
1 0 1 0 0
0 1 −1 0 1

)(
0 1 0 1 0
0 0 1 −1 1

)(
0 1 0 1 0 0
0 0 1 −1 1 0

)
1 1 0 0 −2 1

0 0 1 0 −2 1
0 0 0 1 −1 −3

(1 −2 0 −3 0 1
0 0 1 −5 −6 4

)(
1 −2 0 −3 0 1 0
0 0 1 −5 −6 4 0

)



SECTION 1.3

Exercise 1.23
For a general matrix in M3×2, we havex1 x4
x2 x5
x3 x6

 = x1

1 0
0 0
0 0

+ x2

0 0
1 0
0 0

+ x3

0 0
0 0
1 0

+ x4

0 1
0 0
0 0

+ x5

0 0
0 1
0 0

+ x6

0 0
0 0
0 1

 .

This shows every vector in M2×3 is a lienar combination of six matrices. Moreover, if the linear
combination above is equals another linear combinationy1 y4
y2 y5
y3 y6

 = y1

1 0
0 0
0 0

+ y2

0 0
1 0
0 0

+ y3

0 0
0 0
1 0

+ y4

0 1
0 0
0 0

+ y5

0 0
0 1
0 0

+ y6

0 0
0 0
0 1

 ,

then we get the equality of matricesx1 x4
x2 x5
x3 x6

 =

y1 y4
y2 y5
y3 y6

 .

This means x1 = y1, . . . , x6 = y6. This shows the uniqueness of the coefficients in the linear
combination of six matrices. Therefore the six matrices form a basis.

In general, a basis of Mm×n consists of m× n matrices, such that one entry is 1 and all the
other entries are 0. There are mn such matrices.

Exercise 1.24
By ~vi = 0~v1 + · · ·+ 0~vi−1 + 1~vi + 0~vi+1 + · · ·+ 0~vn, we have

[~vi]α = (0, . . . , 0, 1
(i)
, 0, . . . , 0) = ~ei.

Exercise 1.25
We have

x1~vπ(1) + x2~vπ(2) + · · ·+ xn~vπ(n) = xπ−1(1)~v1 + xπ−1(2)~v2 + · · ·+ xπ−1(n)~vn.

Therefore the coefficients are related by the inverse permutation. This does not change the
existence and uniqueness of linear combination expression. Therefore π(α) is still a basis.
Moreover, the equality shows

[~x]π(α) = (x1, x2, . . . , xn) ⇐⇒ [~x]α = (xπ−1(1), xπ−1(2), . . . , xπ−1(n)) = π−1([~x]π(α)).

Exercise 1.26
We have x(1, 2) + y(2, 4) = (x + 2y, 2x + 4y) = (a, 2a), where a = x + 2y. Therefore (1, 1)

is not a linear combination of (1, 2) and (2, 4).



Exercise 1.27
If (c, d) 6= (0, 0), then ad = bc implies (a, b) = λ(c, d) for some λ. Then x(a, b) + y(c, d) =

(λx+y)(c, d). We can easily find a vector that is not a scalar multiple of (c, d). Then the vector
is not a linear combination of (a, b) and (c, d).

Exercise 1.28 (1)1 2 3 1
2 3 1 2
3 1 2 3

→
1 2 3 1

0 −1 −5 0
0 −5 −7 0

→
1 2 3 1

0 1 5 0
0 0 −18 0


Since all rows are pivot, the four column vectors span R3.

Exercise 1.28 (2) 
1 2 3
2 3 1
3 1 2
1 2 3

→


1 2 3
0 −1 −5
0 −5 −7
0 0 0

→


1 2 3
0 1 5
0 0 −18
0 0 0


Since not all rows are pivot, the three column vectors do not span R4.

Exercise 1.28 (3) 1 2 3
2 3 4
3 4 5

→
1 2 3

1 1 1
1 1 1

→
1 1 1

0 1 2
0 0 0


Since not all rows are pivot, the three column vectors do not span R3.

Exercise 1.28 (4)1 2 3 4
2 3 4 5
3 4 5 a

→
1 2 3 4

1 1 1 1
1 1 1 a− 5

→
1 1 1 1

0 1 2 3
0 0 0 a− 6


All rows are pivot if and only if a 6= 6, which is the condition for the four column vectors to
span R3.

Exercise 1.28 (5) 
1 2 3
2 3 4
3 4 5
4 5 a

→


1 2 3
1 1 1
1 1 1
1 1 a− 5

→


1 1 1
0 1 2
0 0 a− 6
0 0 0


Since not all rows are pivot, the three column vectors do not span R4.

Exercise 1.28 (6)
0 2 −1 4
−1 3 0 1
2 −4 −1 2
1 1 −2 7

→

−1 3 0 1
0 2 −1 4
0 2 −1 4
0 4 −2 8

→

−1 3 0 1
0 2 −1 4
0 0 0 0
0 0 0 0





Since not all rows are pivot, the four column vectors do not span R4.

Exercise 1.28 (7)
1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1

→


1 0 0 1
0 1 1 0
0 0 1 −1
0 0 −1 1

→


1 0 0 1
0 1 1 0
0 0 1 −1
0 0 0 0


Since not all rows are pivot, the four column vectors do not span R4.

Exercise 1.28 (8)
1 0 0 1
0 1 1 0
1 0 1 a
0 1 a b

→


1 0 0 1
0 1 1 0
0 0 1 a− 1
0 0 a− 1 b

→


1 0 0 1
0 1 1 0
0 0 1 −1
0 0 0 b− (a− 1)2


All rows are pivot if and only if b 6= (a− 1)2, which is the condition for the four column vectors
to span R4.

Exercise 1.29
If ~v1, ~v2, . . . , ~vn span V , then any vector ~x ∈ V is a linear combination of the vectors

~x = x1~v1 + x2~v2 + · · ·+ xn~vn = x1~v1 + x2~v2 + · · ·+ xn~vn + 0~w.

The right side is also a linear combination of ~v1, ~v2, . . . , ~vn, ~w.
Note: Exercises 1.29, 1.30, 1.31 can also be p roved by using Proposition 1.2.1, without

calculation.

Exercise 1.30
Suppose ~w = a1~v1 + a2~v2 + · · ·+ an~vn.
If ~v1, ~v2, . . . , ~vn, ~w span V , then any vector ~x ∈ V is a linear combination of the vectors

~x = x1~v1 + x2~v2 + · · ·+ xn~vn + y ~w

= x1~v1 + x2~v2 + · · ·+ xn~vn + y(a1~v1 + a2~v2 + · · ·+ an~vn)

= (x1 + ya1)~v1 + (x2 + ya2)~v2 + · · ·+ (xn + yan)~vn.

The right side is also a linear combination of ~v1, ~v2, . . . , ~vn. Therefore ~v1, ~v2, . . . , ~vn also span
V .

The converse follows from Exercise 1.29.

Exercise 1.31
By Exercise 1.29, we know ~w1, ~w2, . . . , ~wm spanning V implies ~v1, ~v2, . . . , ~vn, ~w1, ~w2, . . . , ~wm

spanning V . Then by ~w1, ~w2, . . . , ~wm being linear combinations of ~v1, ~v2, . . . , ~vn, we may apply
Exercise 1.30 one by one. We find ~v1, ~v2, . . . , ~vn, ~w1, ~w2, . . . , ~wm spanning V implies ~v1, ~v2, . . . , ~vn
spanning V .



Exercise 1.32
1 ⇐⇒ 2 is trivial.
For 1 =⇒ 3, if any vector is a linear combination of ~v1, . . . , ~vi, . . . , ~vn, then any vector

~x ∈ V is
~x = x1~v1 + · · ·+ xi~vi + · · ·+ xn~vn = x1~v1 + · · ·+ xi

c
c~vi + · · ·+ xn~vn.

Therefore any ~x ∈ V is a linear combination of ~v1, . . . , c~vi, . . . , ~vn.
For 1 =⇒ 4, if any vector is a linear combination of ~v1, . . . , ~vi, . . . , ~vj, . . . , ~vn, , then any

vector ~x ∈ V is

~x = x1~v1+· · ·+xi~vi+· · ·+xj~vj+· · ·+xn~vn = x1~v1+· · ·+xi(~vi+c~xj)+· · ·+(xj−cxi)~vj+· · ·+xn~vn.

Therefore any ~x ∈ V is a linear combination of ~v1, . . . , ~vi + c~xj, . . . , ~vj, . . . , ~vn,
For the converse, we know that 3 =⇒ 1 is 1 =⇒ 3 with c−1 in place of c, and 4 =⇒ 1 is

1 =⇒ 4 with −c in place of c.

Exercise 1.33
If m > n, then n vectors in Rm cannot span Rm. Moreover, if A is an m× n matrix, then

A~x = ~b has no solution for some ~b.

Exercise 1.34
(1) 3 vectors cannot span R5. This means the following system of linear equations has no

solution for some right side

10x1 + 8x3 = b1,

−2x1 + 8x2 − 9x3 = b2,

3x1 − 2x2 + 3x3 = b3,

7x1 + 5x2 + 6x3 = b4,

2x1 − 4x2 + 5x3 = b5.

(2) 4 vectors cannot span R5. This means the following system of linear equations has no
solution for some right side

10x1 + 8x3 + 7x4 = b1,

−2x1 + 8x2 − 9x3 − 9x4 = b2,

3x1 − 2x2 + 3x3 + 3x4 = b3,

7x1 + 5x2 + 6x3 − 5x4 = b4,

2x1 − 4x2 + 5x3 + 6x4 = b5.

(3) The linear combination of the five vectors is always (0, ∗, ∗, ∗, ∗). Therefore (1, 0, 0, 0, 0)
is not a linear combination of the five vectors. This means the following system of linear



equations has no solution

0 = 1,

−2x1 + 8x2 − 9x3 − 5x4 + 4x5 = 0,

3x1 − 2x2 + 3x3 + 4x4 − x5 = 0,

7x1 + 5x2 + 6x3 + 2x4 + 3x5 = 0,

2x1 − 4x2 + 5x3 − 7x4 − 6x5 = 0.

(4) The linear combination of the five vectors is always (2a, ∗, a, ∗, ∗). Therefore (1, 0, 1, 0, 0)
is not a linear combination of the five vectors. This means the following system of linear
equations has no solution

6x1 − 4x2 + 6x3 + 8x4 − 2x5 = 1,

−2x1 + 8x2 − 9x3 − 5x4 + 4x5 = 0,

3x1 − 2x2 + 3x3 + 4x4 − x5 = 1,

7x1 + 5x2 + 6x3 + 2x4 + 3x5 = 0,

2x1 − 4x2 + 5x3 − 7x4 − 6x5 = 0.

Exercise 1.35
(1) Since not all columns are pivot, the four vectors are linearly dependent.
(2) Since all columns are pivot, the three vectors are linearly independent.
(3) Since not all columns are pivot, the three vectors are linearly dependent.
(4) Since not all columns are pivot, the four vectors are linearly dependent.
(5) All columns are pivot if and only if a 6= 6, which is the condition for the three vectors

to be linearly independent.
(6) Since not all columns are pivot, the four vectors are linearly dependent.
(7) Since not all columns are pivot, the four vectors are linearly dependent.
(5) All columns are pivot if and only if b 6= (a − 1)2, which is the condition for the four

vectors to be linearly independent.

Exercise 1.36
1 ⇐⇒ 2 is trivial.
For 1 =⇒ 3, suppose ~v1, . . . , ~vi, . . . , ~vn are linearly independent. Then

x1~v1 + · · ·+ xi(c~vi) + · · ·+ xn~vn = y1~v1 + · · ·+ yi(c~vi) + · · ·+ yn~vn

means
x1~v1 + · · ·+ cxi~vi + · · ·+ xn~vn = y1~v1 + · · ·+ cyi~vi + · · ·+ yn~vn.

By ~v1, . . . , ~vi, . . . , ~vn linearly independent, this implies

x1 = y1, . . . , cxi = cyi, . . . , xn = yn.

By c 6= 0, this is the same as

x1 = y1, . . . , xi = yi, . . . , xn = yn.



This verifies ~v1, . . . , c~vi, . . . , ~vn are linearly independent.
For 1 =⇒ 4, suppose ~v1, . . . , ~vi, . . . , ~vj, . . . , ~vn are linearly independent. Then

x1~v1 + · · ·+xi(~vi+c~xj)+ · · ·+xj~vj + · · ·+xn~vn = y1~v1 + · · ·+yi(~vi+c~vi)+ · · ·+yj~vj + · · ·+yn~vn

means

x1~v1 + · · ·+xi~vi+ · · ·+(cxi+xj)~vj + · · ·+xn~vn = y1~v1 + · · ·+yi~vi+ · · ·+(cyi+yj)~vj + · · ·+yn~vn

By ~v1, . . . , ~vi, . . . , ~vn linearly independent, this implies

x1 = y1, . . . , xi = yi, . . . , cxi + xj = cyi + yj, . . . , xn = yn.

This is the same as
x1 = y1, . . . , xi = yi, . . . , xj = yj, . . . , xn = yn.

This verifies ~v1, . . . , ~vi + c~vj, . . . , ~vj, . . . , ~vn are linearly independent.
For 1 =⇒ 4, if any vector is a linear combination of ~v1, . . . , ~vi, . . . , ~vj, . . . , ~vn, , then any

vector ~x ∈ V is

~x = x1~v1+· · ·+xi~vi+· · ·+xj~vj+· · ·+xn~vn = x1~v1+· · ·+xi(~vi+c~xj)+· · ·+(xj−cxi)~vj+· · ·+xn~vn.

Therefore any ~x ∈ V is a linear combination of ~v1, . . . , ~vi + c~xj, . . . , ~vj, . . . , ~vn,
For the converse, we know that 3 =⇒ 1 is 1 =⇒ 3 with c−1 in place of c, and 4 =⇒ 1 is

1 =⇒ 4 with −c in place of c.

Exercise 1.37
If m < n, then n vectors in Rm are linearly dependent. Moreover, if A is an m× n matrix,

then the solution of A~x = ~b is not unique.

Exercise 1.38 (1)
The 6 vectors in R3 are always linearly dependent. This means the solution of the following

system is not unique

x1 + 2x2 + 3x3 + x4 + 3x5 + 2x6 = b1,

2x1 + 3x2 + x3 + 3x4 + 2x5 + x6 = b2,

3x1 + 1x2 + 2x3 + 2x4 + x5 + 3x6 = b3.

Exercise 1.38 (2)
The 5 vectors in R4 are always linearly dependent. This means the solution of the following

system is not unique

x1 + 10x2 + 8x4 + 7x5 = b1,

3x1 − 2x2 + 8x3 − 9x4 − 9x5 = b2,

2x1 + 3x2 − 2x3 + 3x4 + 3x5 = b3,

−4x1 + 7x2 + 5x3 + 6x4 − 5x5 = b4.



Exercise 1.38 (3)
The 4 vectors in R4 are linearly dependent, because the last vector is π multiple of the first.

This means the solution of the following system is not unique

x1 + 10x2 + πx4 = b1,

3x1 − 2x2 + 8x3 + 3πx4 = b2,

2x1 + 3x2 − 2x3 + 2πx4 = b3,

−4x1 + 7x2 + 5x3 − 4πx4 = b4.

Exercise 1.38 (4)
The 5 vectors in R5 are linearly dependent. The reason is that the last row of the associated

5× 5 matrix is all 0. Therefore the matrix has at most 4 pivots. Therefore not all five columns
are pivot. The linearly dependene means the solution of the following system is not unique

x1 + 10x2 + 8x4 + 7x5 = b1,

3x1 − 2x2 + 8x3 − 9x4 − 9x5 = b2,

2x1 + 3x2 − 2x3 + 3x4 + 3x5 = b3,

−4x1 + 7x2 + 5x3 + 6x4 − 5x5 = b4

0 = b5.

Exercise 1.39
Suppose a > b and xeat + yebt = 0. Then x + ye(b−a)t = 0. By b − a < 0 and taking

limt→+∞m we get x = 0. Then we have yebt = 0. This implies y = 0. By Proposition 1.3.7,
this proves eat and ebt are linearly independent.

Suppose a, b, c are distinct. Then we may assume a > b > c. If xeat + yebt + zect = 0. Then
x+ ye(b−a)t + ze(c−a)t = 0. By b− a < 0, c− a < 0, and taking limt→+∞m we get x = 0. Then
xeat + yebt + zect = 0 becomes yebt + zect = 0. We are back to the linear independence of two
functions ebt and ect, which we already proved.

Exercise 1.40
Assume that x1 cos t + x2 sin t + x3e

t = 1. If x3 6= 0, then let t goes to ∞, then we have
∞ = 1, which is a contradiction. Thus x3 = 0. And then let t = 0, π, we have x1 = 1, x1 = −1,
which is a contradiction.

Exercise 1.41 (1)
Suppose x cos2 t + y sin2 t = 0. Taking t = 0, we get x = 0. Taking t = π

2
, we get y = 0.

The two functions are linearly independent.
We have 1 = cos2 t+ sin2 t. Therefore 1 is a linear combination of cos2 t, sin2 t.
Suppose x cos2 t + y sin2 t = t. Taking t = 0, π

4
, π
2
, we get x = 1, 1

2
x + 1

2
y = π

4
, y = π

4
. Then

we get 1
2

+ 1
2
π
4

= π
2
, a contradiction. Therefore t is not a linear combination of cos2 t, sin2 t.

Exercise 1.41 (2)
By cos2 t+ sin2 t− 1 = 0, the three functions are linearly dependent.
We have cos 2t = cos2 t− sin2 t. Therefore cos 2t is a linear combination of cos2 t, sin2 t.



Since 1 is a linear combination of cos2 t, sin2 t, by Exercise 1.30, we know t is a linear
combination of cos2 t, sin2 t, 1 if and only if it is a linear combination of cos2 t, sin2 t. By part (1),
however, t t is not a linear combination of cos2 t, sin2 t. Therefore t is not a linear combination
of cos2 t, sin2 t, 1.

Exercise 1.41 (3)
Suppose x1 + x2t + x3e

t + x4te
t = 0. Taking t = 0, we get x1 = 0. Therefore x2t + x3e

t +
x4te

t = 0. This implies x2 + x3t
−1et + x4e

t = 0. Taking limt→+∞, we get x2 = 0. Therefore
x3e

t + x4te
t = 0. This implies x3 + x4t = 0. Taking t = 0, we get x3 = 0. There3fore x4t = 0.

Taking t = 1, we get x4 = 0. This shows 1, t, et, tet are linearly independent.
By (1 + t)et = 01 + 0t+ 1et + 1tet, we know (1 + t)et is a linear combination of 1, t, et, tet.
By ((1 + t)et)′ = 2et + tet, we know ((1 + t)et)′ is a linear combination of 1, t, et, tet.

Exercise 1.41 (4)
Suppose x cos2 t + y cos 2t = 0. Taking t = 1

2
π, we get −y = 0, and y = 0. Therefore

x cos2 t = 0. Taking t = 0, we get x = 0. The two functions are linearly independent.
By cos 2t = 2 cos2 t− 1, we have 1 = 2 cos2 t− cos2 t. Then a = 2a cos2 t− a cos2 t is a linear

combination of cos2 t, cos 2t.
By a+sin2 t = a+1−cos2 t = (a+1)(2 cos2 t−cos2 t)−cos2 t = 2(a+1) cos2 t−(a+2) cos2 t,

we find a+ sin2 t is a linear combination of cos2 t, cos 2t.

Exercise 1.42
Suppose ~v1, ~v2, . . . , ~vn, ~w are linearly independent. By Proposition 1.3.8, we know ~w is not

a linear combination of ~v1, ~v2, . . . , ~vn. Moreover, to see the linear independence of ~v1, ~v2, . . . , ~vn,
we consider

x1~v1 + x2~v2 + · · ·+ xn~vn = y1~v1 + y2~v2 + · · ·+ yn~vn.

This is the same as

x1~v1 + x2~v2 + · · ·+ xn~vn + 0~w = y1~v1 + y2~v2 + · · ·+ yn~vn + 0~w.

Since ~v1, ~v2, . . . , ~vn, ~w are linearly independent, this implies

x1 = y1, x2 = y2, . . . , xn = yn, 0 = 0.

This proves that ~v1, ~v2, . . . , ~vn are linearly independent.
Conversely, suppose ~v1, ~v2, . . . , ~vn are linearly independent, and ~w is not a linear combination

of ~v1, ~v2, . . . , ~vn. For the linear independence of ~v1, ~v2, . . . , ~vn, ~w, we use Proposition 1.3.7 and
consider

x1~v1 + x2~v2 + · · ·+ xn~vn + xn+1 ~w = ~0.

If xn+1 6= 0, then we have

~w = − x1
xn+1

~v1 −
x2
xn+1

~v2 + · · · − xn
xn+1

~vn.

This contradicts the assumption that ~w is not a linear combination of ~v1, ~v2, . . . , ~vn. Therefore
xn+1 = 0, and we get

x1~v1 + x2~v2 + · · ·+ xn~vn = ~0.



Then by ~v1, ~v2, . . . , ~vn linearly independent, we get x1 = x2 = · · · = xn = 0. Together with
xn+1 = 0, this proves ~v1, ~v2, . . . , ~vn, ~w are linearly independent.

Exercise 1.43
Suppose ~vi is a linear ~v1, ~v2, . . . , ~vi−1. Then ~vi is also a linear ~v1, ~v2, . . . , ~vi−1, ~vi+1, . . . , ~vn.

By Proposition 1.3.8, this implies ~v1, ~v2, . . . , ~vn are linearly dependent.
Suppose ~v1, ~v2, . . . , ~vn are linearly dependent. Then by Proposition 1.3.8, we have

x1~v1 + x2~v2 + · · ·+ xn~vn = ~0,

in which some xi 6= 0. Let i be the biggest index, such that xi 6= 0. Then we have

x1~v1 + x2~v2 + · · ·+ xi~vi = ~0.

This implies

~vi = −x1
xi
~v1 −

x2
xi
~v2 + · · · − xi−1

xi
~vi−1.

Therefore ~vi is a linear combination of the previous vectors.

Exercise 1.44
Since all four rows are pivot, by Proposition 1.3.4, the six columns span R4.
Applying the same row operations to the 1st, 3rd, 4th, 6th columns, we get

(~v1, ~v3, ~v4, ~v6)→


• ∗ ∗ ∗
0 • ∗ ∗
0 0 • ∗
0 0 0 •

 .

We find all four row pivot. Therefore the four vectors still span R4.
Applying the same row operations to the 1st, 3rd, 4th columns, we get

(~v1, ~v3, ~v4)→


• ∗ ∗
0 • ∗
0 0 •
0 0 0

 .

We find the last row not pivot. In fact, if we apply the same row operations to any three
columns, we get at most three pivots. Therefore the last row can never be pivot. Therefore the
three vectors cannot span R4.

Exercise 1.45 (1)
By x0 + x1t + x2t

2 + x3t
3 ↔ (x0, x1, x2, x3), the vectors become the column vectors of a

matrix, and we carry out row operation
1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

→


1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
1 1 1 0 0 0

→


1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 −2 −2 −2





Since all rows are pivot, the six polynomials span P3. A minimal spanning set is given by the
first four columns, corresponding to 1 + t, 1 + t2, 1 + t3, t+ t2.

Exercise 1.45 (2)
By x0 + x1t + x2t

2 + x3t
3 ↔ (x0, x1, x2, x3), the vectors become the column vectors of a

matrix, and we carry out row operation
0 0 1 1 1 1
1 −1 0 −1 1 1
2 −2 2 0 0 2
3 −3 3 0 3 0

→


0 0 1 1 1 1
1 −1 0 −1 1 1
0 0 2 2 −2 0
0 0 3 3 0 −3



→


1 −1 0 −1 1 1
0 0 1 1 1 1
0 0 0 0 −4 −2
0 0 0 0 −3 −6

→


1 −1 0 −1 1 1
0 0 1 1 1 1
0 0 0 0 1 2
0 0 0 0 0 −1


Since all rows are pivot, the six polynomials span P3. A minimal spanning set is given by the
1st, 3rd, 5th, 6th columns, corresponding to t+ 2t2 + 3t3, 1 + 2t2 + 3t3, 1 + t+ 3t3, 1 + t+ 2t2.

Exercise 1.46 (1)
Linearly independent subset is given by first three columns (1, 2, 3), (2, 3, 1), (3, 1, 2). They

already form a basis of R3.

Exercise 1.46 (2)
Linearly independent subset is given by the three columns (1, 2, 3, 1), (2, 3, 1, 2), (3, 1, 2, 3).

The following shows adding (0, 0, 0, 1) gives a basis of R4.
1 2 3 0
2 3 1 0
3 1 2 0
1 2 3 1

→


1 2 3 0
0 −1 −5 0
0 −5 −7 0
0 0 0 1

→


1 2 3 0
0 1 5 0
0 0 −18 0
0 0 0 1


Exercise 1.46 (3)

Linearly independent subset is given by first two columns (1, 2, 3), (2, 3, 4). They do not
form a basis of R3. The following shows adding (0, 0, 1) gives a basis of R3.1 2 0

2 3 0
3 4 1

→
1 2 0

1 1 0
1 1 1

→
1 1 0

0 1 0
0 0 1


Exercise 1.46 (4)

Linearly independent subset is given by (1, 2, 3), (2, 3, 4) in case a = 6, and given by
(1, 2, 3), (2, 3, 4), (4, 5, a) in case a 6= 6. In case a = 6, by (3), adding (0, 0, 1) gives a basis
of R3. In case a 6= 6, (1, 2, 3), (2, 3, 4), (4, 5, a) is a basis of R3.

Exercise 1.46 (5)



Linearly independent subset is given by (1, 2, 3, 4), (2, 3, 4, 5) in case a = 6, and given by
(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, a) in case a 6= 6.

In case a 6= 6, the following shows adding (0, 0, 1, 0) to (1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, a) gives
a basis of R4 (note that adding (0, 0, 0, 1) does not give a basis).

1 2 3 0
2 3 4 0
3 4 5 1
4 5 a 0

→


1 2 3 0
1 1 1 0
1 1 1 1
1 1 a− 5 0

→


1 1 1 0
0 1 2 0
0 0 a− 6 0
0 0 0 1


In case a = 6, by taking a = 7 6= 6, we know adding (3, 4, 5, 7), (0, 0, 1, 0) to (1, 2, 3, 4), (2, 3, 4, 5)

gives a basis of R4.

Exercise 1.46 (6)
Linearly independent subset is given by (0,−1, 2, 1), (2, 3,−4, 1). The following shows

adding (−1, 0, 1, 0), (4, 1, 0, 1) (modifications of original columns 3 and 4) to (0,−1, 2, 1), (2, 3,−4, 1)
gives a basis of R4.

0 2 −1 4
−1 3 0 1
2 −4 1 0
1 1 0 1

→

−1 3 0 1
0 2 −1 4
0 2 1 2
0 4 0 2

→

−1 3 0 1
0 2 −1 4
0 0 2 −2
0 0 2 −6

→

−1 3 0 1
0 2 −1 4
0 0 2 −2
0 0 0 −4


Exercise 1.46 (7)

Linearly independent subset is given by (1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0). The following shows
adding (1, 0, 0, 0) gives a basis of R4.

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 0

→


1 0 0 1
0 1 1 0
0 0 1 −1
0 0 −1 0

→


1 0 0 1
0 1 1 0
0 0 −1 0
0 0 0 −1


Exercise 1.46 (8)

Linearly independent subset is given by (1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0) in case b = (a −
1)2, and given by (1, 0, 1, 0), (0, 1, 0, 1), (1, 0, a, b) in case b 6= (a − 1)2. In case b 6= (a − 1)2,
the four vectors form a basis of R4. By taking a = 0 and b = 1, adding (1, 0,−1, 1) to
(1, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 0) gives a basis of R4.

Exercise 1.47
Suppose x1t

2(t−1)+x2t(t
2−1)+x3(t

2−4) = 0. Taking t = 0, we get −4x3 = 0. Therefore
x3 = 0, and x1t

2(t − 1) + x2t(t
2 − 1) = 0. This implies x1t(t − 1) + x2(t

2 − 1) = 0 for t 6= 0.
Taking limt→0, we get −x2 = 0. Therefore x2 = 0, and x1t(t− 1) = 0. Then we get x1 = 0. By
Proposition 1.3.7, this verifies t2(t− 1), t(t2 − 1), t2 − 4 are linearly independent.

To extend to a basis of P3, we add a polynomial that is not a linear combination of t2(t−
1), t(t2 − 1), t2 − 4. Suppose 1 = x1t

2(t − 1) + x2t(t
2 − 1) + x3(t

2 − 4). By taking t = 0, 1, we



get 1 = −4x3 and 1 = −3x3. This is a contradiction. Therefore 1 is not a linear combination
of the three polynomials. Then t2(t − 1), t(t2 − 1), t2 − 4, 1 are linearly independent and form
a basis of P3.

Exercise 1.48
(1) 3 polynomials cannot span the 4 dimensional P3.
(2) 3 matrices cannot span the 4 dimensional M2×2

(3) The four matrices are of the form

(
a ∗
∗ 2a

)
. Their linear combination is also of the form(

a ∗
∗ 2a

)
. Therefore the matrix

(
1 0
0 1

)
is not their linear combinations. The four matrices do

not span M2×2.

Exercise 1.49 Explain that the vectors are linearly dependent.

1. 3 +
√

2t− πt2, e+ 100t+ 2
√

3t2, 4πt− 15.2t2,
√
π + e2t2.

2.

(
3 8
4 9

)
,

(
2 8
6 5

)
,

(
1 0
−2 4

)
.

3.

(
π
√

3
1 2π

)
,

(√
2 π

−10 2
√

2

)
,

(
3 100
−77 6

)
,

(
sin 2 π√

2π 2 sin 2

)
.

Exercise 1.50
Suppose α spans V . By Theorem 1.3.10, α contains a basis α′ of V . Then #α ≥ #α′ =

dimV .
Suppose α is a linearly independent set V . By Theorem 1.3.11, α can be enlarged to a basis

α′ of V . Then #α ≤ #α′ = dimV .

Exercise 1.51
Under the asumption the number of vectors in α is dimV , by Theorem 1.3.14, we know (1)

α spans V , and (2) α is linearly independent are equivalent. Then it is a simple logic that, if
(1) ⇐⇒ (2), then (1) ⇐⇒ (2) ⇐⇒ (1 + 2). We note that (3) is (1+2).

Exercise 1.52 (1)
We have row operation1 1 0

1 0 1
0 1 1

→
1 1 0

0 −1 1
0 1 1

→
1 1 0

0 −1 1
0 0 2

 .

Since all row and columns are pivot, the three vectors form a basis.

Exercise 1.52 (2)
We have row operation 1 1 −1

1 −1 1
−1 1 1

→
1 1 −1

2 0 0
0 0 2

→
2 0 0

0 1 −1
0 0 2

→
 1 1 1
−2 0 0
0 −2 0





Since all row and columns are pivot, the three vectors form a basis.

Exercise 1.52 (3)
We have row operation

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

→


3 3 3 3
1 1 0 1
1 0 1 1
0 1 1 1

→


1 1 1 1
0 0 −1 0
0 −1 0 0
−1 0 0 0

→

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


Since all row and columns are pivot, the three vectors form a basis.

Exercise 1.53 (1)
Suppose x1(1 + t) + x2(1 + t2) + x3(t + t2) = 0. Taking t = −1, we get x2 = 0. Then

x1(1 + t) + x3(t + t2) = 0. Compare coefficient of t2, we get x3 = 0. Then x1(1 + t) = 0.
This implies x3 = 0. By Proposition 1.3.7, the three polynomials are linearly independent. By
dimP2 = 3 and Theorem 1.3.15 (also see Exercise 1.51), the three vectors form a basis of P2.

Alternatively, the problem can be translated to Exercise 1.52 (1).

Exercise 1.53 (2)

By

(
a b
c d

)
↔ (a, b, c, d), the problem is translated to Exercise 1.52 (2). The four mattices

form a basis.

Exercise 1.54 (1)
We have row operation1 1 0

1 0 1
0 1 a

→
1 1 0

0 −1 1
0 1 a

→
1 1 0

0 −1 1
0 0 a+ 1

 .

The three vectors form a basis if and only if a 6= −1.

Exercise 1.54 (2)
We have row operation 1 1 0

−1 0 1
0 −1 a

→
1 1 0

0 1 1
0 −1 a

→
1 1 0

0 −1 1
0 0 a+ 1

 .

The three vectors form a basis if and only if a 6= −1.

Exercise 1.54 (3)
We have row operation

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 a

→


1 1 1 0
0 0 −1 1
0 −1 0 1
0 1 1 a

→


1 1 1 0
0 −1 0 1
0 0 −1 1
0 0 0 a+ 2





The three vectors form a basis if and only if a 6= −2.

Exercise 1.55
(1) Translated into Exercise 1.54 (1), basis if and only if a 6= −1.
(2) Translated into Exercise 1.54 (3), basis if and only if a 6= −2.

Exercise 1.56
If a 6= 0, then we have row operation(

a c
b d

)
→
(
a c
0 d− b

a
c

)
The two vectors form a basis if and only if d− b

a
c 6= 0, i.e., ad 6= bc.

If b 6= 0, then we have row operation(
a c
b d

)
→
(
b d
a c

)
→
(
b d
0 c− a

b
d

)
The two vectors form a basis if and only if c− a

b
d 6= 0, i.e., ad 6= bc.

If a = b = 0, then the two vectors do not form a basis.
Alternatively, the two vectors do not form a basis if and only if the two are linearly depen-

dent. By Example 1.3.13, this means they are parallel, and is equivalent to ad = bc. Therefore
the two vectors form a basis, i.e.e, linearly independent, if and only if ad 6= bc.

Exercise 1.57
All columns and all rows are pivot. This means the reduced row echelon form is the identity

matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

 .

Exercise 1.58
We use α-coordinate to identify the vector space with Euclidean space. Then β is a basis if

and only if [β]α is a basis.



We have row operations

[β]α =

(
1 1
1 −1

)
→
(

1 1
0 −2

)
,

[β]α =

1 1 0
1 0 1
0 1 1

→
1 1 0

0 −1 1
0 1 1

→
1 1 0

0 −1 1
0 0 2

 ,

[β]α =

1 1 1
0 1 1
0 0 1

 ,

[β]α =


1 1 · · · 1
0 1 · · · 1
...

...
...

0 0 · · · 1

 .

All rows and all columns are pivot. Therefore [β]α is a basis. This implies β is a basis.

Exercise 1.59
By Exercises 1.32, the span properties of the four vector sets are equivalent. By Exercises

1.36, the liner independence properties of the four vector sets are equivalent. Since basis means
the span property and the liner independence property, the basis properties of the four vector
sets are also equivalent.

Exercise 1.60 (1)
By (x1, x2) = x2(0, 1) + x1(1, 0), we have [(x1, x2)]α = (x2, x1).

Exercise 1.60 (2)
By (

1 3 1 0
2 4 0 1

)
→
(

1 3 1 0
0 −2 −2 1

)
→
(

1 0 −2 3
2

0 1 1 −1
2

)
We get [(

x1
x2

)]
α

= x1[~e1]α + x2[~e2]α = x1

(
−2
1

)
+ x2

(
3
2

−1
2

)
=

(
−2 3

2

1 −1
2

)(
x1
x2

)
.

Exercise 1.60 (3)
By (x1, x2) = x1

a
(a, 0) + x2

b
(0, b), we have [(x1, x2)]α = (x1

a
, x2
b

).

Exercise 1.60 (4)
By cos2 θ + sinθ = 1, we have

(1, 0) = cos θ(cos θ, sin θ)− sin θ(− sin θ, cos θ),

(0, 1) = sin θ(cos θ, sin θ) + cos θ(− sin θ, cos θ).



Then

(x1, x2) = x1(1, 0) + x2(0, 1)

= x1(cos θ(cos θ, sin θ)− sin θ(− sin θ, cos θ))

+ x2(sin θ(cos θ, sin θ) + cos θ(− sin θ, cos θ))

= (x1 cos θ + x2 sin θ)(cos θ, sin θ) + (−x1 sin θ + x2 cos θ)(− sin θ, cos θ)

Therefore [(
x1
x2

)]
α

=

(
x1 cos θ + x2 sin θ
−x1 sin θ + x2 cos θ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x1
x2

)
.

Exercise 1.60 (5)
We have1 0 0 1 0 0

2 1 0 0 1 0
3 2 1 0 0 1

→
1 0 0 1 0 0

0 1 0 −2 1 0
0 2 1 −3 0 1

→
1 0 0 1 0 0

0 1 0 −2 1 0
0 0 1 1 −2 1


Then x1x2

x3


α

=

 1 0 0
−2 1 0
1 −2 1

x1x2
x3

 .

Exercise 1.60 (6)
This permutes the order of basis vectors in (6). Then we do the same permutation of the

columns x1x2
x3


α

=

 0 0 1
1 0 −2
−2 1 1

x1x2
x3

 .

Exercise 1.60 (7)
We have−1 0 0 1 0 0

1 1 1 0 1 0
2 1 0 0 0 1

→
1 0 0 −1 0 0

0 1 1 1 1 0
0 1 0 2 0 1

→
1 0 0 −1 0 0

0 1 0 2 0 1
0 0 1 −1 1 −1


Then x1x2

x3


α

=

−1 0 0
2 0 1
−1 1 −1

x1x2
x3

 .

Exercise 1.60 (8)



We have
0 2 −1 4 1 0 0 0
−1 3 0 1 0 1 0 0
2 2 −3 2 0 0 1 0
1 1 −2 3 0 0 0 1

→


1 1 −2 3 0 0 0 1
0 2 −1 4 1 0 0 0
0 4 −2 4 0 1 0 1
0 0 1 −4 0 0 1 −2



→


1 1 −2 3 0 0 0 1
0 2 −1 4 1 0 0 0
0 0 1 −4 0 0 1 −2
0 0 0 −4 −2 1 0 1

→


1 1 −2 0 −3
2

3
4

0 1
4

0 2 −1 0 −1 1 0 1
0 0 1 0 2 −1 1 −3
0 0 0 1 1

2
−1

4
0 1

4



→


1 1 0 0 5

2
−5

4
2 −23

4

0 2 0 0 1 0 1 −2
0 0 1 0 2 −1 1 −3
0 0 0 1 1

2
−1

4
0 1

4

→


1 0 0 0 2 −5
4

3
2
−19

4

0 1 0 0 1
2

0 1
2
−1

0 0 1 0 2 −1 1 −3
0 0 0 1 1

2
−1

4
0 1

4


Then 


x1
x2
x3
x4



α

=


2 −5

4
3
2
−19

4
1
2

0 1
2
−1

2 −1 1 −3
1
2
−1

4
0 1

4



x1
x2
x3
x4

 .

Exercise 1.61 (1)
We have1 1 0 1 0 0

1 0 1 0 1 0
0 1 1 0 0 1

→
1 1 0 1 0 0

0 −1 1 −1 1 0
0 0 2 −1 1 1

→
1 0 0 1

2
1
2
−1

2

0 1 0 1
2
−1

2
1
2

0 0 1 −1
2

1
2

1
2


Then x1x2

x3


α

=

 1
2

1
2
−1

2
1
2
−1

2
1
2

−1
2

1
2

1
2

x1x2
x3

 =
1

2

 1 1 −1
1 −1 1
−1 1 1

x1x2
x3

 .

Exercise 1.61 (2)
We have 1 1 −1 1 0 0

1 −1 1 0 1 0
−1 1 1 0 0 1

→
−1 1 1 0 0 1

0 2 0 1 0 1
0 0 2 0 1 1

→
1 0 0 1

2
1
2

0
0 1 0 1

2
0 1

2

0 0 1 0 1
2

1
2


Then x1x2

x3


α

=

1
2

1
2

0
1
2

0 1
2

0 1
2

1
2

x1x2
x3

 =
1

2

1 1 0
1 0 1
0 1 1

x1x2
x3

 .

Exercise 1.61 (3)



We have
1 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1

→


3 3 3 3 1 1 1 1
1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0
0 1 1 1 0 0 0 1



→


1 1 1 1 1

3
1
3

1
3

1
3

0 0 −1 0 −1
3

2
3
−1

3
−1

3

0 −1 0 0 −1
3
−1

3
2
3
−1

3

−1 0 0 0 −1
3
−1

3
−1

3
2
3

→


0 0 0 1 −2
3

1
3

1
3

1
3

0 0 −1 0 −1
3

2
3
−1

3
−1

3

0 −1 0 0 −1
3
−1

3
2
3
−1

3

−1 0 0 0 −1
3
−1

3
−1

3
2
3



→


1 0 0 0 1

3
1
3

1
3
−2

3

0 −1 0 0 1
3

1
3
−2

3
1
3

0 0 −1 0 1
3
−2

3
1
3

1
3

0 0 0 1 −2
3

1
3

1
3

1
3


Then 


x1
x2
x3
x4



α

=
1

3


1 1 1 −2
1 1 −1 1
1 −2 1 1
−2 1 1 1



x1
x2
x3
x4

 .

Exercise 1.62 (1)
We form the matrix with the given vectors as column vectors. Then we do R1 + R2, R2 +

R3, . . . and get 

1 0 0 · · · 0 −1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · −1 1


→



1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
0 0 1 · · · 0 −1
...

...
...

...
...

0 0 0 · · · 1 −1
0 0 0 · · · 0 0


.

Since the last row is not pivot, the vectors do not form a basis.
In fact, by (~e1 − ~e2) + (~e2 − ~e3) + · · ·+ (~en−1 − ~en) + (~en − ~e1) = ~0, the vectors are linearly

dependent.

Exercise 1.62 (2)
We form the matrix with the givne vectors as column vectors. Then we do R2 + R1, R3 +

R2, . . . and get 

1 0 0 · · · 0 1
−1 1 0 · · · 0 1
0 −1 1 · · · 0 1
...

...
...

...
...

0 0 0 · · · 1 1
0 0 0 · · · −1 1


→



1 0 0 · · · 0 1
0 1 0 · · · 0 2
0 0 1 · · · 0 3
...

...
...

...
...

0 0 0 · · · 1 n− 1
0 0 0 · · · 0 n


.



The vectors form a basis. The row operation
1 0 · · · 0 1 1 0 · · · 0 0
−1 1 · · · 0 1 0 1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 1 1 0 0 · · · 1 0
0 0 · · · −1 1 0 0 · · · 0 1

→


1 0 · · · 0 1 1 0 · · · 0 0
0 1 · · · 0 2 1 1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 1 n− 1 1 1 · · · 1 0
0 0 · · · 0 n 1 1 · · · 1 1



→


1 0 · · · 0 1 n−1

n
− 1
n
· · · − 1

n
− 1
n

0 1 · · · 0 0 n−2
n

n−2
n
· · · − 2

n
− 2
n

...
...

...
...

...
...

...
...

0 0 · · · 1 0 1
n

1
n
· · · 1

n
−n−1

n

0 0 · · · 0 1 1
n

1
n
· · · 1

n
1
n


We get

[~x]α =


n−1
n
− 1
n
· · · − 1

n
− 1
n

n−2
n

n−2
n
· · · − 2

n
− 2
n

...
...

...
...

1
n

1
n
· · · 1

n
−n−1

n
1
n

1
n
· · · 1

n
1
n

 ~x =
1

n


n− 1 −1 · · · −1 −1
n− 2 n− 2 · · · −2 −2

...
...

...
...

1 1 · · · 1 −(n− 1)
1 1 · · · 1 1

 ~x.

Exercise 1.62 (3)
We form the matrix with the given vectors as column vectors. Then we do R2 − R1, R3 −

R2, . . . and get 

1 0 0 · · · 0 1
1 1 0 · · · 0 0
0 1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
0 0 0 · · · 1 1


→



1 0 0 · · · 0 1
0 1 0 · · · 0 −1
0 0 1 · · · 0 1
...

...
...

...
...

0 0 0 · · · 1 (−1)n

0 0 0 · · · 0 1− (−1)n


.

The vectors form a basis if and only if 1 − (−1)n = 0, or n is odd. In fact, if n = 2k is even,
then we have

(~e1 + ~e2) + (~e3 + ~e4) + · · ·+ (~e2k−3 + ~e2k−2) + (~e2k−1 + ~e2k)

=(~e2 + ~e3) + (~e4 + ~e5) + · · ·+ (~e2k−2 + ~e2k−1) + (~e2k + ~e1).

This shows the vectors are linearly dependent.



For odd n, the row operation

1 0 · · · 0 1 1 0 · · · 0 0
1 1 · · · 0 0 0 1 · · · 0 0
0 1 · · · 0 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 1 0 0 0 · · · 1 0
0 0 · · · 1 1 0 0 · · · 0 1


→



1 0 · · · 0 1 1 0 · · · 0 0
0 1 · · · 0 −1 −1 1 · · · 0 0
0 1 · · · 0 1 1 −1 · · · 0 0
...

...
...

...
...

...
...

...
0 0 · · · 1 −1 −1 1 · · · 1 0
0 0 · · · 0 2 1 −1 · · · −1 1



→



1 0 · · · 0 0 1
2

1
2
· · · 1

2
−1

2

0 1 · · · 0 0 −1
2

1
2
· · · −1

2
1
2

0 1 · · · 0 0 1
2
−1

2
· · · 1

2
−1

2
...

...
...

...
...

...
...

...
0 0 · · · 1 0 −1

2
1
2
· · · 1

2
1
2

0 0 · · · 0 1 1
2
−1

2
· · · −1

2
1
2


We get

[~x]α =
1

2



1 1 −1 · · · −1 1 −1
−1 1 1 · · · 1 −1 1
1 −1 1 · · · −1 1 −1
...

...
...

...
...

...
1 −1 1 · · · 1 1 −1
−1 1 −1 · · · −1 1 1
1 −1 1 · · · 1 −1 1


~x.

The matrix consists of 1-diagonals and (−1)-diagonals, and multiplied by 1
2
.

Exercise 1.62 (4)
The matrix formed by

~v1 = ~e1,

~v2 = ~e1 + 2~e2,

~v3 = ~e1 + 2~e2 + 3~e3,

...

~vn = ~e1 + 2~e2 + · · ·+ n~en,

is already a row echelon form, with all rows and columns pivot. The vectors from a basis.
We have ~e1 = ~v1, ~e2 = 1

2
(~v2 − ~v1), ~e3 = 1

3
(~v3 − ~v3), . . . , ~en = 1

n
(~vn − ~vn−1). Therefore

~x = x1~v1 + x2
1
2
(~v2 − ~v1) + x3

1
3
(~v3 − ~v2) + · · ·+ xn

1
n
(~vn − ~vn−1)

= (x1 − 1
2
x2)~v1 + (1

2
x2 − 1

3
x3)~v2 + (1

3
x3 − 1

4
x4)~v3 + · · ·+ +( 1

n−1xn−1 −
1
n
xn)~vn−1 + 1

n
xn~vn.



Therefore

[~x]α =



x1 − 1
2
x2

1
2
x2 − 1

3
x3

1
3
x3 − 1

4
x4

...
1

n−1xn−1 −
1
n
xn

1
n
xn


=



1 −1
2

0 0 · · · 0 0
0 1

2
−1

3
0 · · · 0 0

0 0 1
3
−1

4
· · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · 1
n−1 −

1
n

0 0 0 0 · · · 0 1
n


~x

Exercise 1.63 (1)
Same as Exercise 1.62 (1).

Exercise 1.63 (2)
Same as Exercise 1.62 (3).

Exercise 1.63 (3)
We have

x0 + x1t+ x2t
2 + · · ·+ xnt

n

=(x0 − x1 − x2 − · · · − xn) + x1(1 + t) + x2(1 + t2) + · · ·+ xn(1 + tn).

Then

[x0 + x1t+ x2t
2 + · · ·+ xnt

n]1,1+t,1+t2,...,1+tn = (x0 − x1 − x2 − · · · − xn, x1, x2, . . . , xn).

Exercise 1.63 (4)
We have

tk = (1 + (t− 1))k =

(
k

0

)
+

(
k

1

)
(t− 1) +

(
k

2

)
(t− 1)2 + · · ·+

(
k

k

)
(t− 1)k.

This implies

[x0 + x1t+ x2t
2 + · · ·+ xnt

n]1,t−1,(t−1)2,...,(t−1)n =



(
0
0

) (
1
0

) (
2
0

)
· · ·

(
n−1
0

) (
n
0

)
0

(
1
1

) (
2
1

)
· · ·

(
n−1
1

) (
n
1

)
0 0

(
2
2

)
· · ·

(
n−1
2

) (
n
2

)
...

...
...

...
...

0 0 0 · · ·
(
n−1
n−1

) (
n
n−1

)
0 0 0 · · · 0

(
n
n

)





x0
x1
x2
...

xn−1
xn


.

Exercise 1.64
For any (x1, x2), we ty to solve y1(a, b) + y2(c, d) = (x1, x2). This is a system

ay1 + cy2 = x1, by2 + dy2 = x2,

in variables y1, y2.



Multiply the first equation by b, multiply the second equation by a, and subtract, we get
(bc − ad)y2 = bx1 − ax2. By ad 6= bc, we get y2 = −bx1+ax2

ad−bc . Similarly, we have y1 = dx1−cx2
ad−bc .

Therefore [(
x1
x2

)]
(a,b),(c,d)

=

(
dx1−cx2
ad−bc
−bx1+ax2
ad−bc

)
=

1

ad− bc

(
d −c
−b a

)(
x1
x2

)
.


