SECTION 2.1

EXERCISE 2.1
(1) Linear transformation.

L(a(zy, xe,x3) + b(y1, y2,y3)) = L(axy + by, axy + bys, axs + bys)
= (az1 + by, (axs + bys) + (az3 + bys))
= a(x1, s + x3) + b(y1, Y2 + y3)
= aL(x1, 2, x3) + bL(Y1, Y2, Y3).

(2) Not linear transformation. The following two results are not equal.

L(0,1,1) = (0,1-1) = (0,1),
L(0,1,0) + L(0,0,1) = (0,1 -0) + (0,0 - 1) = (0,0).

(3) Linear transformation.

L(a(w1, z9, x3) + b(y1, Y2, y3)) = Lax1 + by1, axz + bys, axs + bys)
= (axs + byz, axy + by, axs + bys)
= a(w3, 21, 22) + b(ys, y1,Y2)
= al(xy,z9,23) + bL(y1, Y2, y3)-

(4) Linear transformation.

L(a(w1, x9, x3) + b(y1, Y2, y3)) = Llax1 + byr, axz + bys, axs + bys)
= (azy + by1) + 2(axy + byz) + 3(axs + bys)
= a(x1,2x9,323) + b(y1, 2y2, 3y3)
= aL(x1,22,23) + 0L(y1, Y2, y3).

EXERCISE 2.2

(1) Not linear transformation. L(2) = 2% = 4 and L( )+ L(1) = 1? + 12 = 2 are not equal.
(2) Linear transformation. L(af + bg) = (af + bg)(t?) = af(t?) + bg(t*) = aL(f) + bL(g).
(3) Linear transformation. L(af + bg) = (af + bg)"(t*) = af” + bg" = aL(f) + bL(g).

(4) Linear transformation. L(af + bg) = (af + bg)(t —2) = af(t —2) + bg(t — 2) =
aL(f) + bL(g).
(5) Linear transformation. L(af + bg) = (af + bg)(2t) = af(2t) + bg(2t) = aL(f) + bL(g).
(6) Linear transformation. L(af+bg) = (af+bg) +2(af+bg)(t?) = af +bg +2af +2bg =
a(f" +2f) +b(g' +29) = aL(f) + bL(g).
(7) Linear transformation. L(af+0bg) = ((af+bg)(0)+(af+bg)(1), (af+bg)(2)) = (af(0)+
bl0) 0 (1) 5(1).2/2) +19(2) = a((0)+ 1), ) g(0)49(1),9(2) = aL1) L0

(8) Not linear transformation. L(2) =2-2=4and L(1)+ L(1)=1-141-1= 2 are not
equal.



(9) Linear transformation. L(af + bg) = fol(af(t) + bg(t))dt = afol f(t)dt + bfol g(t)dt =
aL(f) + bL9). t t t

(10) Linear transformation. L(af+bg) = [, 7(af(7)+bg(7))dr = a [, 7 f(T)dr+b [, Tg(T)dT =
aL(f)+bL(g).

EXERCISE 2.3
The two statements are contrapositive of each other. We only need to prove the second
statement. Suppose L(07), L(¥y), ..., L(%,) are linearly independent. Then

T10 + -+ Uy = Y101 + -+ YUy
— T =Y, T2 =Y, ..., Tpn = Yn.
The first = is by applying L and using the lear property of L. The second = is by the
linear independence of L(v}), L(v), ..., L(¥,).

EXERCISE 2.4
We carry out column operations

1 0 1 0 10
L2 2o 2| o ot
1 -3 -2 -3 -2 3
0
2

O = N =
— O = W

3
The matrix of the linear transformation is ( 1 _21 )
2

EXERCISE 2.5

Using the idea of Example 2.1.13, for v) = (1,—1,0), oo = (1,0,—1), 5 = (1,1,1), the
reflection F satisfies F'(¢) = vy, F(vh) = U, F(U3) = —03. Then by the calculation in Example
2.1.13, we get

Wl

| o |
wiN

I

wWINwW N
wiN

The matrix can also be obtained from P = £(F + I).

EXERCISE 2.6



We carry out the column operations

1 1 1 1 1 3
-1 0 1 -1 0 0
7o ow) |0 11 0 -1 0
(1 0 6)_ oo 112
-1 0 0 -1 0 -1
0 -1 0 0 -1 -1
1 0 0 1 0 0
0 -1 0 0 1 0
0 0 -1 0 0 1
1z 1 17| 2 _1 _1
S T2 1 S A
S G A I G R
3 3 3 3 3 3
2 _1 _1
. o 5, 3§
Then matrix of the projection is the lower half —% s -3
1 1 2
~3 T3 3

EXERCISE 2.7
We carry out the same column operations as in Exercise 2.6

1 1 1 11 1 1 0
-1 0 1 0 -1 0 0 —1
5 G T 0 -1 1 0 0 -1 0 0
(_, q a): 1 2 3l=12 1 2|—=|2 -1
o 0 2 3 4 3 2 3 3 -1
8 8 1
) Uaoa)
3 3 3
2 1 0
. : 3 1 0
Then matrix of L is the lower half | g 1 4
i85 4
3 ~3 3

EXERCISE 2.8

whn O O

W ==

WNwle W N O O =

—_= 0 = O

WU =

|
wle

OO = OO

Ll

By ao + a1t + ast? + azt® < (ag, a1, as,a3), we identify P with R%. Then the problem

becomes Exercise 2.7. Then

L(z,y,2z) = x(2+ 3t + 5 + 1t°) + y(1 4+ 1t — 3% — 26°) + 2(—31* + 3¢%)
2z +y) + Bz + y)t + 5(8z — y — H)t* + +(7Tz — 5y + 4)¢°.

EXERCISE 2.9
We have linear transformations

Li(f) = £(0), La(f) = ', Ls(f) = /0 F(r)dr: €= = O,



The Newton-Leibniz formula means [ = L; + Lz o Ls.

EXERCISE 2.10
For A = (a;;) and B = (b;;), we have cA + dB = (ca;; + db;;). Then the following verifies
the trace is a liner function (transformation)

tI‘(CA -+ dB) = (CCLH + dbn) + (Ca22 + db22) + -+ (CCLnn + dbnn)
= c(a11 + oo+ -+ ann) + d(bll 4+ bog + -+ bnn) = ctrA + dtrB.

Alternatively, for each 4, j, we know the map A — a;; of picking the (7, j)-entry is linear.
Then the sum of the linear functions of picking (7, 7)-entries is still linear.
Since A and AT have the same diagonal entries a;;, we have trA”T = trA.

EXERCISE 2.11
Denote the evaluation map by E(L) = L(7). Then the following verifies E is linear

E(aL 4+ bK) = (aL + bK)(V)) = aL(V) + bK (V) = aE(L) + bE(K).
Exercise 2.13 becomes the following: Let L: V' — W be a linear transformation.
1. Prove that (K; + Ky)oL=K; oL+ Kyo L and (aL)o K = a(Lo K).
2. Prove that L* = - o L: Hom(W,U) — Hom(V,U) is a linear transformation.
3. Prove that I* =1, (L+ K)*=L"+ K*, (aL)* =aL* and (Lo K)* = K* o L*.

4. Prove that L — L*: Hom(V, W) — Hom(Hom(W,U), Hom(V,U)) is a linear transfor-
mation.

We do Exercises 2.12 and 2.13 together.

EXERCISE 2.12 (1)
Let Ky, Ky: U — V be linear transformations. Then for any « € U, we have

(L o (aky + b)) (@) = L{(aK: + bEy) (@) = Laky () + b ()
= aL(K1(1)) + bL(K (1)) = a(L o K1)(1) + b(L o K>)(4)
= (aL o K, + bL o K»)(@).

EXERCISE 2.13 (1)
For any v € V| we have

((aK + bK>) o L)(7) = (aK, + bEy)(L(7)) = aK (L(7)) + bKo(L(7))
= a(K, o L)(¥) + b(K o L)(7) = (aK) o L + bk, o L)(7).

EXERCISE 2.12 (2)
By L, = Lo, the equality Lo (aK; +bKs) = alL o K; +bL o K5 in Exercise 2.12(1) becomes
L.(aKy +bK3) = aL,(K;) + bL,(K5). This means L, is a linear transformation.



EXERCISE 2.13 (2)
By L* = oL, the equality (aK; +bKs3)o L = aK; o0 L+bKso0 L in Exercise 2.13(1) becomes
L*(aK) 4+ bKy) = aL*(K,) + bL*(K3). This means L* is a linear transformation.

EXERCISES 2.12 and 2.13 (3)

We have I,(K) =10 K = K. This means [, = I.

We also have I"(K) = K oI = K. This means [* = [.

The equality L o (aK; + bK5)) = aL o Ky + bL o K, in Exercise 2.12(1) is the same as
(aK14+bK5)* (L) = aK{(L)+bK; (L) = (aK{+bK3)(L). This means (aK;+bK5)* = aK]+bKj
in Exercise 2.13(3).

The equality (aK; + bK3) o L = aKy o L + bKy o L in Exercise 2.13(1) is the same as
(K1 + bK3).(L) = aK1.(L) + bKo(L) = (aKy. + bK3,)(L). This means (aK; + bK»), =
aK1. + bKs, in Exercise 2.12(3).

Let L: V — W and K: U — V be linear transformations. For any linear transformation
M: X — U, we have

(LoK).(M)=(LoK)oM=Lo(KoM)=L.K.M))= (L. o K,)(M).

Therefore (Lo K), = L, o K.,.
For any linear transformation M: W — X, we have

(LoK)*(M)=Mo(LoK)=(MoL)oK =K"(L"(M))=(K"oL")(M).

Therefore (Lo K)* = K* o L*.

EXERCISE 2.12 (4)
The equality (aK; + bKs), = aKq, + bKs, in Exercise 2.12(3) means K +— K, is a linear
transformation.

EXERCISE 2.13 (4)
The equality (aK; + bK3)* = aK™ + bK* in Exercise 2.13(3) means K — K* is a linear
transformation.

EXERCISE 2.14
Let f: Y —- Z and g: X — Y. Then for any ¢: W — X, we have

(fog)d)=(fog)od=Ffol(god)= fig(d)) = (fsog)(d)
This verifies (f 0 g)« = f« 0 g«. For any ¢: Z — W, we also have
(fog)(¢)=do(fog)=(dof)og=yg"(f"(9))=(g"0[)()

This verifies (f o g)* = g* o f*.

EXERCISE 2.15
In Examples 2.1.10, we get the matrix of reflection

r_ cos2p sin2p
P~ \sin2p —cos2p)’



The equality

F?_ cos2p sin2p cos2p sin2p
P \sin2p —cos2p/ \sin2p —cos2p

~ (cos®2p + sin® sin 2p 0 (L0
N 0 cos?2p+sin®sin2p) 7 \0 1

means cos? @ 4 sin? @ = 1 for § = 2p.

EXERCISE 2.16

We have Ry o F, = Fp+§7 and F,o Ry = Fp_% and F, o F,, = Ro(p,—p,)-

F)(#) FyRo(d) Ful@)
RyF,(7) - p1 Fp Fp, (T)
9 //p’// //l /ﬁf//
S ; g /,//// 2(p1 — p2)
///// Rﬁ(f) ///// //
T / T
Then we get

cosf —sinf\ (cos2p sin2p \  [(cos(2p+0) sin(2p+0)
sinf  cosd sin2p —cos2p)  \sin(2p+6) —cos(2p+6)
cos2p sin2p cosf —sinf\  [cos(2p—0) sin(2p—0)
sin2p —cos2p) \sinf cos@ ) \sin(2p—0) —cos(2p—10))’

cos2(p1 — p2)  sin2(p1 — p2)
sin2(p; — p2) —cos2(py —p2))

cos2p;  sin2p; cos2ps  sin2py
sin2p; —cos2py sin2py  —cos 2psy

The first equality means

cos 0 cos 2p — sin fsin 2p = cos(2p + ),
cosfsin2p + sin 6 cos 2p = sin(2p + 6).

The second equality means

cos 2pcos @ + sin2psinf = cos(2p + 6),
sin2pcos ) — cos2psinf = sin(2p — 0).

The third equality means

oS 21 €os 2p; + sin 2p; sin 2ps = cos 2(p1 — pa),
sin 2p; cos 2p; — cos 2pp sin2py = sin2(p; — p2).



EXERCISE 2.17

In Exercise 2.16, we see Rgo F, = F 0, and Fj,0o Ry = F_ o are different. For example, if

+%
we take 0 = %77 and p = %7?, then we get R%ﬂ o F%Tr # F%Tr o R%ﬂ, which means

0 —1 —107&i—10 0 —1
1 0 0 1 v2\0 1 1 0/
EXERCISE 2.18
Let A = (aij), B= (bij); C = (bZ]) Then

A+ B = (ai; + bij) = (bij + aij) = B+ A,

and
(A + B) + C = ((aij + b”) + Cij) = (CLij + (sz + C,’j)) =A + (B + C)

EXERCISE 2.20

We have Lo (Ky 4+ K;) = Lo Ky + Lo Ky and Lo (aK) = a(L o K) in Exercise 2.12(1).
Let the matrices of L, Ky, Ky be A, B,C, then Lo (K; + Ky) = Lo Ky + L o Ky becomes
A(B + C) = AB + AC. Let the matrices of L, K be A, B, then Lo (aK) = a(L o K) becomes
A(aB) = a(AB).

Consider the transformation L4(X) = AX of matrices by multiplying A to the left. We
have

La(aX +0Y)=A(aX +bY) = A(aX) + A(BY) = a(AX) + b(AY) = aLA(X) + bLA(Y).

This shows L4 is a linear transformation.

EXERCISE 2.21

We have (K; + Ky)oL = KyoL+ KyoL and (aK) o L = a(K o L) in Exercise 2.13(1).
et the matrices of K, Ky, L be A, B,C, then (K; + K)o L = K; o L + Ky o L becomes
(A+ B)C = AC + BC'. Let the matrices of K, L be A, B, then (aK) o L = a(K o L) becomes
(aA)B = a(AB).

Explain that Exercise 2.13 means that the matrix multiplication satisfies (A + B)C' =
AC + BC, (cA)B = ¢(AB), and the right multiplication X +— X A is a linear transformation.

Consider the transformation R4(X) = XA of matrices by multiplying A to the right. We
have

Ra(aX +bY) = (aX +bY)A = (aX)A+ (bY)A = a(XA) + b(Y A) = aRA(X) + bRA(Y).

This shows R4 is a linear transformation.

EXERCISE 2.22

Using the notation in Exercises 2.20 and 2.21, we have trAXB = (tro L, o Rp)(X). By
Exercises 2.10, 2.20, 2.21, we know tr, L4, Rp are lienar transformations. Their composition is
still a linear transformation.



EXERCISE 2.23
Let A = (a;j) and B = (bj;), where i = 1,2,...,m and j = 1,2,...,n. Then the (¢, j)-entry
of AB is aﬂblj + CLingj + -+ (lmbnj = ZZ:I aikbkj. Therefore

m m n

tr(AB) = Z(ailbli + ighyi + -+ + Ainbni) = Z i pi-

i=1 i=1 k=1
The (j,)-entry of BA is bjiay; + bjaag; + -+ - + bjmami = > 1y bjrag;. Therefore

n

tr(AB) = Z(bﬂalj + bj2a2j + -+ bjmamj) = Z Z bjk@kj'

j=1 j=1 k=1
By changing notations of the indices (i, k& changed to k, j), we have
DD awbi =3 3 b= > buaw
i=1 k=1 k=1 i=1 j=1 k=1

EXERCISE 2.24

(@)
N————
+
N
O =
_ = O
O =
Il
— =
— =
O =
~_

—_

w =
=~ DN
wW =
N———

—_

e}

— o
Ls o
-
g
VRS
_o = O W
(@] =~ DN
N~ N~
Il
/\/\/\'\/\
Ol\')
|
)
~__

O = O
_ o =
SN——————
N
W =
IS V)
N———
Il
—
W = W
IS NCRTAN
o
O = O
—_ O = =
SN—————
VOEERS
S
)_||
[\
N~
Il
/-~
| |
w w
_ =
[\

— )
o = O
— O =
N~
I
VRS
—_ O
o =
~—__

(010> (1)(1)_<1 0) (101)

1o 1\, 0 1 010

01 101 0 1 010
10(?5?):010, 10(3?5):101,
01 101 0 1 010
(010)111_(111) (101)11}_(222)
Lo 1)\ {1 2 2 2 010)\, 111
111\ /01 1 2

11 1]f(ro]=1]12

111/\01 1 2



EXERCISE 2.25
(1) The matrix is rotation by 6. Applying the rotation n times is the rotation by nf.

Therefore .
cosf —sinf\  (cosnf —sinnd
sinf  cos@ ~ \sinnf cosnb

(2) The matrix is reflection with respect to the line of angle 6. Applying the reflection even

times is the identity
cosf sind 2k (1 0
—sinf cosf - \0 1

Applying the reflection odd times is the reflection itself

cosf) sinf 2k+1_ cosf sind
—sinf cosf ~ \—sinf cosé

(3) Direct calculation

ag 0 0 0 a@ 0 0 0
00 aa 0 0| [0 ar 0 0
0 0 az 0] — [0 0 a 0
0 0 0 ay 0 0 0 a
(4) Direct calculation
0 a 0 0\ 00 a2 0 000 a
00ao0| |00 0 a , looo o -
000al “looo ol ¥=looo o 4 =¢
000 0 00 0 0 000 0

(5) Let the matrix in (4) be B, with a replaced by b. Then A = al + B, and
A’ =a’l +2aB + B

1000 0b 00 00 b 0 a> 2ab »* 0
2 0100 4% 000bO n 00 0 ®| |0 & 2ab b
N 0010 0000 000 O0f [0 0 a 2a]|°
0001 0000 00 0 0 0 0 0 a
a® 3a*b 3ab® b
0 a® 3a®b 3ab?
3_ 3 2 2 3 _
A’ =a’l +3a°B + 3aB” + B’ = 0 0 2 342 |
0 0 0 a’
A" =a"l +na" " 'B + (Z) a"?B% + (g) a"*B?
a™ nan—lb (;L) an—2b2 (;L) an—3b3
10 a" na" b (5)a""?b? n
= 0 o 1 (B" = O for n > 3)
0 0 0 a”



EXERCISE 2.26
(1) We have row operations

1237 8) (1 2 3 7 8\ (10 -1-4 -
456 9 10 0 -3 —6 —19 —22 01 2 W 2/

We get
17 23 17 23
RIS I e I I R
X=|5-2x T-2y|=|35 5 |+|-2v -2
x Y 0 0 T Y

(2) We have row operations

1 4 7 10 1 0 -1 -2
25 8 111 =101 2 3
3 6 a b 00 a—9 b—12

The solution exists if and only if a = 9 and b = 12 (both augmented matrices have solutions).
The solution is
-1 -2
(1)

(3) We have row operations

1 2 3 4 10 -1 =2
5 6 7 81 —+101 2 3
9 10 11 b 00 0 b—12

The solution exists if and only if b = 12. The solution is

=(3F)

EXERCISE 2.27

We have
AB — aip a2 b1 bio a11011 + a12ba1  a11b12 + ajobas
Qo1 Q23 ba1 Do az1b11 4 abar  az1bia + ageby )’
BTAT _ bii b ail as1 bi1ain + baraia  biiasy + boyags
b1z bao a1z 99 bigar1 + bagara  bi2agr + basase

Comparing the two, we get (AB)T = BT AT.

(1) The equality X (; i) = ((1) (1)> is the same as (; i) XT = (é (1)) We carry out
3
4

row operation



Then 5
-2 2 -2 1
o=V 0) 2= (V)
2 2 2

. 1 2 1 0 .
(2) First, we solve (3 4) Y = (0 1) by row operation

1210y (10 -2 1 v (=21
3401 01 3 1) S\ 1)

4 -3 . 4 =2\ or - -2 3
Then we solve X 9 =Y by taking the transpose X' =YY"= 1 20

So we carry out row operation

4 =2 =2 é) (100—1) T (0 —l) (0 1)
2 _> 4 bl X - 4 ) X = ‘
(—311—% 011 =2 1 -2 -+ =2
EXERCISE 2.28
First, we need X to be 2 x 2 for AX and X A to have the same size. Let X = (xn 9512).

To1 X22
Then
—x11 —T12 —T11 T12
AX = ., XA= .
T21 X2 —T21 X22

Therefore AX = X A if and only if x15 = x9; = 0. In other words, X is a diagonal matriz.

In general, if ay,as, ..., a, are distinct in
ap 0 -+ 0
a0 U
0 0 - a,

then AX = X A if and only if X is a diagonal matrix.

EXERCISE 2.29

10000 10000
0001O0 01 00O
Toyu=Tw=10010 0], Dic)=]0 01 0 0],
01000 000 ¢c¢cO
0 00O01 00001
10000 10000
01000 01 00O
E35(C) = 0 01 0 ¢ s E53(C) =10 01 00
00010 00010
0 00O01 00 c 01



EXERCISE 2.30
Ti3E13(—2)D2(3)A is a sequence of row operations

14 7 3.6 9 1 -2 —5 1 4 7
95 8| 32 g 15 24| 228 |6 15 24 | 28 |6 15 24
36 9 1 4 7 1 4 7 1 -2 —5

AT 13E13(—2)D5(3) is a sequence of column operations

14 7 741 5 4 1 5 12 1
95 8| L% g 5 2| L2225 (4 5 2] 322 |4 15 2
36 9 9 6 3 36 3 3 18 3

EXERCISE 2.31
The equality TZ% = I means the following (the rows should actually be vertical because each
R; is a row)

RiHRj
AL

(«+“Ri---Rj--) (R]Rl)—>(Rle)

The equality D;(a)D;(b) = D;(ab) means the following
(- Ry ) s (bR ) M (L abRy ).
The equality E;j(a)E;;(b) = E;j(a+ b) means (we omit other rows - - -)

R; +ij R; +(IR]'

(RZ,RJ) (Rl—f—bR],Rj) ((Rz +bR]) ‘f‘CLR],R]) == (Rl‘f‘ (Cl‘l‘b)Rj,R])

The equality Ejj(a) = Eyx(a)Ey;(1)Egx(a) "t Ey;j(1)~! means the following

(Ri, Ry, Ry) Y (R, R, Ry, — R;) & (R, — a(Ry — R;), R;, Ry — R;)
M(RZ — CLRk -+ CLR]‘, Rj, Rk) M) (Rl + &Rj, Rj, Rk)

EXERCISE 2.32

(1) By
1 2 3 1\ me2r, /1 2 3 1 1 2 3 1
2 3 1 2 B2 o -1 —5 o) B2 (o -1 -5 0],
3123 0 =5 —7 0 0 0 18 0
we have



(2) By

—7
0

3
-5

1 2
-1
—5

0 O

0
0

|

Ra—2R,
R3—3R:
(3) By (different choice from the earlier exercise)

R4i—R1
e

™M — A M

AN N — A

— AN ™M —

We have

— O O O

o O O O

o O - O

O -0 O

A M — AN

— O ™

3
0

1 2
0 —1
0 O

R3—2R2
—_—

3
-2
—4

2
-1
-2

1

0
0

(

Ro—2R;
R3—3R
Lo,

o™ < 0
o o <A

— A ™M

we have

—2

o <H 10
o o <A

— O

(6) By

we have

— <t O O
] _OO

M AN O O

oSO — O
— O O O

O — O O

or

— <t O O
] | oS O
M AN O O

_OOO

(7) By

S - — O

O — O -

— O - O



we have

0
0
1

O = O =
_ o = O
SO = = O
_— o O =
O = O =
o O = O
— o O O
o O O

—1

o O = O
O = = O
I
—_

EXERCISE 2.33

Column operation is row operation on A”. The row operation on AT gives AT = LU. Then
A=UTLT. Note that U is lower triangular (actually the column echelon form of A), and LT
is upper triangular. Therefore the column echelon form again gives LU-decomposition of A.
The difference here is that L is the column echelon form, and have the same size as A, while U
is square.



