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1 Introduction

Among numerous important mathematical contributions of Kowalevski, the
following two are fundamental: The first is her doctoral dissertation, “On
the theory of partial differential equations”, appeared in 1875 [8]. The main
result is what we now call the Cauchy-Kowalevski theorem. The second
is “On the problem of the rotation of a solid body about a fixed point”,
appeared in 1889 [9] and won her the famous Prix Bordin of the French
Academy of Sciences. The main result is the discovery of what we now call
the Kowalevski top, which completes a program implicit in the works of Euler
and Lagrange - to solve in an analytic manner the equations of motion of a
rotating rigid body.

It is rather interesting to compare the two contributions from the techni-
cal perspective. The first work shows that the formal power series solution
to the initial value problem (along a noncharacteristic manifold for PDE) of
an analytic differential equation must be convergent (and analytically depen-
dent on the initial data). In particular, Cauchy-Kowalevski theorem justifies
the formal power series solutions as being realistic. In the second work,
Kowalevski determined the integrability of a dynamical system by formally
testing Laurent series solutions with movable singularity location and enough
number (five for a system of six first order equations) of free parameters. The
method is what we now call the Painlevé test [2] [11] and is still the most
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effective way of detecting integrability. Being the formal process, however,
the convergence (i.e., the realism) of the series is not considered in the test.

In this note, we will explain that the following two are equivalent for a
differential equation

1. The equation passes the Painlevé test in the most strict sense (see the
end of Section 2 for the precise meaning), as the Kowalevski top does;

2. There is a (usually meromorphic) change of dependent variables that
converts the equation to an analytic system of equations, and converts
the Laurent series in the Painlevé test to power series.

In particular, if we can apply the Cauchy-Kowalevski theorem to the power
series solution, then we conclude the convergence of the Laurent series in the
Painlevé test.

An example of such changes of variables already appeared a century ago
in Painlevé’s proof [10] that all solutions of of the first Painlevé equation u′′ =
6u2 + t are meromorphic functions on the whole complex plane. However,
it did not appeared to have been noticed that the existence of such changes
of variables is a general property for equations passing the Painlevé test.
This note explained the key ideas for finding the changes of variables. More
discussions and examples can be found in our series of papers [3] through [6].

Both the power series and the Laurent series are local by nature. There-
fore it is not reasonable to expect a global link between the two. Even though
our change of variables does not directly tell us anything about the global
questions such as whether singularities accumulate, it can be a potentially
useful tool for studying the integrable equations, especially on problems re-
lated to singularity analysis. Basically, near regular points of a solution, we
may use the original equation to study the behavior of the solution. Near
movable pole singularities, we may regularize the situation by applying our
changes of variables and then study the system of equations for the new
variables. Sometimes the two studies can be combined together and provide
us a global understanding of the solution. Painlevé had successfully applied
the idea in his proof. We also used the idea in a much better proof of the
Painlevé property for certain equations [7].
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2 Key Idea

We illustrate our key idea through the simple example of Painlevé’s first
equation:

u′′ = 6u2 + t. (1)

Consider a (regular) initial value problem

u(t0) = r, u′(t0) = s. (2)

Formally, through a recursive relation, the initial value problem is equivalent
to the following power series solution

u = r + s(t − t0) +
(
3r2 +

t0
2

)
(t − t0)

2 +
(
2rs +

1

6

)
(t − t0)

3 + · · · . (3)

Cauchy-Kowalevski theorem then concludes that (3) is indeed a convergent
series, and u is analytically dependent on t0, r, s.

Now consider pole-like solutions of (1), with movable location of the pole.
By dominant balance, the order of the pole must be 2. Therefore we postulate
u = u0(t − t0)

−2 + u1(t − t0)
−1 + · · · and get a recursive relation for the

coefficients. The result is a formal Laurent series solution

u = (t− t0)
−2 − t0

10
(t− t0)

2 − 1

6
(t− t0)

3 + r(t− t0)
4 +

t20
18

(t− t0)
6 + · · · (4)

with r arbitrary. Note that the existence of Laurent series solution together
with one free parameter r (in general, the number is the degree of the equation
minus one) in the series imposes a highly non-trivial condition on the shape
of the equation. For example, the equation u′′ = 6u2 + t2 has no Laurent
series solutions. Moreover, the Chazy’s equation u′′′ = 2uu′′ − 3u′2 has two
Laurent series solutions and they can never contain free parameters. Through
a similar but much more complicated process, Kowalevski discovered her top
by studying the conditions derived from the existence of five free parameters
in Laurent series solutions in the system of six equations. More discussion
can be found on [1] and [2].

Comparing the two solutions (3) and (4), we have the following observa-
tions:

1. In addition to t0, there are two free parameters in (3). Such parame-
ters are exactly the initial data in (regular) initial value problems (2).
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The number of such parameters is always the order of the equation.
Moreover, they always appear explicitly as the initial coefficients in
(3);

2. In addition to t0, there is one free parameter in (4). Such parameters
can be considered as the “initial data” in some imaginary singular initial
value problems. The number of such parameters is always at most the
order of the equation, and may be fewer. Moreover, they often do not
appear as the initial coefficients in (3), but rather buried deep in the
series.

In order to convert Laurent series solutions such as (4) to power series so-
lutions such as (3), therefore, we need to bring the free parameters “buried
deep” in the Laurent series “to the front”. The most naive way to bring r to
the front is to truncate at the place where r first appears

u = (t − t0)
−2 − t0

10
(t − t0)

2 − 1

6
(t − t0)

3 + v(t − t0)
4, (5)

by introducing a new variable

v = r +
t20
18

(t − t0)
2 + · · · . (6)

However, it is not clear what the transformation between u and v is. It is
also not clear what equation and the corresponding initial value problem for
v is.

Thus we need to do the truncation in a more clever way, and we also need
to get a transformation between the old and the new variables at the end.
We consider the equation (1) as a system for the variables u and u′. Then
we introduce a new variable θ through indicial normalization

u = θ−2, (7)

so that θ behaves just like t − t0:

θ = (t − t0) +
t0
20

(t − t0)
5 +

1

12
(t − t0)

6 − r

2
(t − t0)

7 − t20
36

(t − t0)
9 + · · ·

= (t − t0) +
t

20
(t − t0)

5 +
1

30
(t − t0)

6 − r

2
(t − t0)

7 − t2

36
(t − t0)

9 + · · · .(8)
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On the other hand, we have the Laurent series for (another variable) u′:

u′ = −3(t − t0)
−2 − t0

5
(t − t0) −

1

2
(t − t0)

2 + 4r(t − t0)
3 +

t20
3

(t − t0)
5 + · · ·

= −3(t − t0)
−2 − t

5
(t − t0) −

3

10
(t − t0)

2 + 4r(t − t0)
3 +

t2

3
(t − t0)

5 + · · ·(9)

From (8), we may rewrite t−t0 as a series in powers of θ. Then we substitute
this series into (9) and obtain

u′ = −2θ−3 − t

2
θ − 1

2
θ2 + 7rθ3 +

t2

16
θ5 + · · · . (10)

Now we may truncate at the first place where the free parameter r appears

u′ = −2θ−3 − t

2
θ − 1

2
θ2 + ξθ3, (11)

by introducing a new variable ξ, which must satisfy

ξ = 7r +
t2

16
θ2 + · · · = 7r +

t20
16

(t − t0)
2 + · · · . (12)

The equations (7) and (11) form a change of variables between (u, u′) and
(θ, ξ). This converts the original equation (1) into a regular system

θ′ = 1 +
t

4
θ4 +

1

4
θ5 − 1

2
ξθ6,

ξ′ =
t2

8
θ +

3t

8
θ2 +

(
1

4
− tξ

)
θ3 − 5

4
ξθ4 − 3

2
ξ2θ5.

Moreover, the formal Laurent series for (u, u′) are converted to the for-
mal power series (8) and (12) for (θ, ξ). Note that we may apply Cauchy-
Kowalevski theorem to the initial value problem

θ(t0) = 0, ξ(t0) = 7r

to conclude the convergence of the series (8) and (12). Then we may apply
the transformation to see that the Laurent series (4) is also convergent.

We summarize the key steps in the computation above:

1. First introduce a new variable θ through the indicial normalization of
some variable, so that θ behaves like (a nonzero multiple of) t − t0.
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2. Use θ to substitute t − t0, so that t0 will not appear in the Laurent
series for the other variables. Because the change of variables we try
to find should be independent of specific solutions, we should eliminate
any trace of t0, which depends on specific solutions.

3. Introduce more new variables by successively truncating at the free
parameters in the θ-Laurent series obtained in the second step. This
brings the hidden free parameters to the front - the initial term in the
power series for the new variables.

Finally, note that in order to get enough number of new variables (so that we
have a change of equal number of variables at the end), the number of free
parameters appearing in the Laurent series must be the order of the equation
minus one. The condition is exactly what we mean by passing the Painlevé
test in the most strict sense.

3 The Algorithm

The change of variables (7) and (11) already appeared in Painlevé’s proof
[10] that all solutions of (1) are meromorphic functions on the whole complex
plane. In fact, the method we used to derive them in the last section closely
resembles Painlevé’s original. Next we present a more direct and systematic
way of deriving such changes of variables, for equations of the form

u(n) = f(t, u, u′, · · · , u(n−1)).

We will still illustrate our algorithm with the example of the first Painlevé
equation (1).

Step 1: Indicial Normalization

This is the same as the Painlevé test. We use the dominant balance to
find the order k of the pole. Then we introduce the indicial normalization
u = θ−k. For the first Painlevé equation, we have k = 2 and u = θ−2.

Step 2: Laurent Series

We compute the Laurent series in powers of θ for the derivatives of u.
First postulate a θ-power series

θ′ = A = a0 + a1θ + a2θ
2 + · · · , (13)
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where a∗ are functions of t. Thinking of A as functions of t and θ, we denote

At = a′0 + a′1θ + a′2θ
2 + · · · ,

Aθ = a1 + 2a2θ + 3a3θ
2 + · · · ,

At2 = a′′0 + a′′1θ + a′′2θ
2 + · · · ,

Atθ = a′1 + 2a′2θ + 3a′2θ
2 + · · · ,

Aθ2 = 3a2 + 6a3θ + 12a4θ
2 + · · · ,

...

Then we have

u′ = −kθ−k−1A

= −ka0θ
−k−1 − ka1θ

−k − ka2θ
−k+1 + · · · ,

u′′ = (−k)(−k − 1)θ−k−2A2 − kθ−k−1At − kθ−k−1AAθ

= k(k + 1)a2
0θ

−k−2 + [k(2k + 1)a0a1 − ka′0]θ
−k−1

+[2k2a0a2 − ka′1 + k2a2
1]θ

−k + · · · ,
...

u(n) = (−k) · · · (−k − n + 1)θ−k−nAn + · · ·
= (−1)nk · · · (k + n − 1)an

0θ
−k−n + · · · .

These are θ-Laurent series, with functions of t, a∗, and derivatives of a∗ as
coefficients. Moreover, these series actually do not depend on the equation.
They are formal series depending only on k.

Now we substitute u = θ−k and the θ-Laurent series of u′, u′′, · · ·, u(n−1)

to the right side of the equation, so that the right side becomes a θ-Laurent
series. Compared with the θ-Laurent series of u(n) on the left side, we get
a recursive relation. Solving the recursive relation will determine the coeffi-
cients a∗ and the θ-Laurent series of the derivatives of u.

For the first Painlevé equation, the θ-Laurent series on the right side is
simply 6θ−4 + t. Therefore the recursive relation becomes

2(2 + 1)a2
0 = 6, 2(4 + 1)a0a1 − 2a′0 = 0, 8a0a2 − 2a′1 + 4a2

1 = 0, · · · .

We fix a solution a0 = 1 of the first equation and then recursively determine
the later coefficients:

a0 = 1, a1 = 0, a2 = 0, · · · .
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As in the Painlevé test, we found that a6 can be an arbitrary, and the θ-power
series for θ′ is

θ′ = 1 +
t

4
θ4 +

1

4
θ5 + a6θ

6 − t2

32
θ8 + · · · .

This easily gives rise to the θ-Laurent series (10) for u′.

Step 3: New Variables

We introduce the new variables (in addition to θ introduced in the first
step) by truncating the derivatives of u at the places where free coefficients
of the θ-power series of θ′ appear. Let ai, aj, · · ·, i < j < · · ·, be free
coefficients in (13). Then we introduce a new variable ξ by truncating the
θ-Laurent series of u′ at θ−k+i−1:

u′ = u1,0θ
−k−1 + u1,1θ

−k + · · · + u1,i−1θ
−k+i−2 + ξθ−k+i−1.

Note that since i is the first index where a free coefficient appears (i.e., i is
the smallest resonance), the coefficients u1,0, u1,2, · · ·, u1,i−1 are functions of
t only.

For the first Painlevé equation, we simply truncate (10) at θ3 to obtain
(11), and the whole algorithm is complete.

If n > 2, then we need to further introduce a new variable η by truncating
the θ-series of u′′ at θ−k+j−2. However, we cannot do this immediately because
the θ-series of u′′ we have at the moment has ai appearing in the coefficients.
We need to update the θ-series of u′′ by replacing ai with the “equivalent”
variable ξ. Here we say ai and ξ are equivalent because we have brought
the hidden arbitrary choice ai to the front, as the initial coefficient of ξ in a
power series expansion. Specifically, from

ξ = u1,i + u1,i+1θ + u1,i+2θ
2 + · · · , u1,i = −kai + · · · ,

we may rewrite ai as a θ-series, with −k−1ξ as the initial term and functions
of t, ξ, aj, · · ·, as coefficients of the subsequent terms. Then we substitute
the θ-power series for ai into the θ-Laurent series for u′′ and introduce a new
variable η by truncating at θ−k+j−2:

u′′ = u2,0θ
−k−2 + u2,1θ

−k−1 + · · · + u2,j−1θ
−k+j−3 + ηθ−k+j−2.

The coefficients u2,0, u2,2, · · ·, u2,i−1 are functions of t only, and the coefficients
u2,i, u2,i+1, · · ·, u2,j−1 are functions of t and ξ only.

The process continues until we introduce the final new variable by trun-
cating the (updated) θ-series of u(n−1).
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4 Comments

The first two steps in our algorithm closely resembles the Painlevé test. Ba-
sically the only new ingredient is the use of θ instead of t− t0 as the basis of
expansion. The extra computation this causes is not much: Whenever taking
derivatives, we need to substitute θ′ by (13). It is quite easy to set up an
equivalence between the coefficients of the θ-power series of θ′ in our algo-
rithm and the coefficients of the ordinary Laurent series of u′ in the Painlevé
test. We emphasis that the algorithm does not require any computational
result from the Painlevé test. The first two steps involve about the same
amount of computation as the Painlevé test and is equivalent to the Painlevé
test.

Because of the equivalence, the free coefficients in our algorithm corre-
spond to the free coefficients in the Painlevé test, and their numbers are the
same. Note that in order for the number of new variables (θ and the ones
introduced in the third step) to be n, the number of free coefficients must
be n − 1. In other words, the third step of our algorithm produces a change
of variables if and only if the equation passes the Painlevé test (in the sense
that there are enough number of non-negative integral resonances).

The new system for θ, ξ, η, · · ·, must be regular, due to the fact that we
have brought all the free parameters to the front. See [6] for a complete and
rigorous proof. Here we only mention that the essence of the proof is the
following general fact: Suppose a first order system of differential equations
has functions meromorphic in θ and analytic in ξ, η, · · · on the right side.
Suppose the system has formal power series solutions of the form

θ = a(t − t0) + b(t − t0)
2 + · · ·

ξ = ξ0 + ξ1(t − t0) + ξ2(t − t0)
2 + · · ·

η = η0 + η1(t − t0) + η2(t − t0)
2 + · · ·

...

where a is some fixed nonzero number and t0, ξ0, η0, · · ·, can be arbitrary.
Then the functions on the right side are also analytic in θ (near θ = 0).

Our algorithm is also applicable to systems of equations as well as partial
differential equations [3] [4]. We have also demonstrated that, for Hamil-
tonian systems, it is possible construct the change of variables so that it is
canonical [5]. All these have been theoretically established under suitable
conditions [6].
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There are still many open questions. One particular question is to find
suitable changes of variables in less than ideal situation, especially in case
some resonances are negative. These include the so called lower balances in
the Painlevé test.
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