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Abstract

We present a direct and elementary proof that all the solutions of the
Painlevé Equations I, II and IV are meromorphic functions on the whole
complex plane. The proof uses some ideas from the existing proofs but applies
the ideas in a different setting.
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1 Introduction

The six Painlevé equations have played a very important role in mathematics and
physics. A fundamental property of these equations is that all solutions are mero-
morphic on the whole complex plane except at the fixed singularities. In particu-
lar, the equations have the Painlevé property, i.e., all the movable singularities are
single-valued.

Although the fundamental property is widely accepted to be true, the history
of the proofs has been messy (see the section on historical background in [1], for
example). In the literature on the subject, one often finds conflicting comments
on whether certain proofs are rigorous or whether the Painlevé property has been
rigorously proved for certain Painlevé equations.

From a broader perspective, not only rigorous proofs, but good and clean proofs
are also desirable since the property is considered as closely related to the integrabil-
ity. In fact, the property is the heuristic reason behind the Painlevé test, the most
widely used technique for detecting integrability. A good proof that relies mostly
on the Painlevé test itself but not much else would help us better understand the
relation. Among the existing proofs, Painlevé’s original elementary and direct ap-
proach for the first equation in [5], which was later extended to the second equation
in [1], the fourth equation in [6], and a modified version of the third equation in [2],
is probably the closest to this purpose.

In this paper, we present another elementary and direct proof that all solutions
of the following Painlevé equations

(PI) u′′ = 6u2 + x,

(PII) u′′ = 2u3 + xu+ α,

(PIV) u′′ =
1

2u
u′2 +

3

2
u3 + 4xu2 + 2(x2 − α)u+

β

u
,

are meromorphic functions defined on the whole complex plane. The key is the
analysis of the behavior of the solution near movable singularities. The original
Painlevé equations are no longer suitable for such analysis. Instead, some changes of
variables that convert the Painlevé equations to regular systems at the singularities
are used. These regular systems are well known and have been used in many proofs
of the Painlevé property before, such as [1] [2] [5] [6]. However, the regular systems
are used in different context in our proof. In the other proofs, the regular systems
are used at the singularities. We use the regular systems near the singularities.
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We would like to remark that it has been demonstrated in [3] [4] that the exis-
tence of the regularizations in the proofs is equivalent to passing the Painlevé test
in a rigorous sense.

Finally, we would like to thank I. Laine and M. Kruskal for helpful discussions.
We would also like to thank the referee for correcting many errors in the original
manuscript and making many helpful suggestions.

2 The First Painlevé Equation

Let us consider a solution u of the first Painlevé equation u′′ = 6u2 + x, with given
finite initial data u(x0) and u′(x0) at a given location x0. Let λ be a straight line
segment with x0 as one end and length B > max{|x0|, 1}. We will prove that u
extends to a meromorphic function in a neighborhood of λ. By taking all choices
of directions and lengths for λ, such neighborhoods cover the whole complex plane.
Therefore we conclude that u extends to a meromorphic function on the whole
complex plane.

We fix a number A sufficiently large compared with |u(x0)|, B, and |k|, where

k = u′(x0)
2 − 4u(x0)

3 − 2x0u(x0)

depends only on the solution u and the initial location x0. The specific size of A
will be clear from subsequent discussions. By B > max{|x0|, 1}, we have |x| < 2B
for x ∈ λ. We also denote by λx0,x the segment of λ between x0 an x.

Since the first Painlevé equation is regular, we may analytically extend u along
λ as long as u is bounded. If we can extend u so that |u| ≤ A along whole λ, then
we are done. Otherwise, we may analytically extend u along λ until x1, such that

|x1| ≤ B, |u(x1)| = A; and |u(x)| ≤ A for all x on λx0,x1 . (1)

Expecting u to be near a pole in the vicinity of x1, we introduce the indicial nor-
malization u = θ−2 near x1. There are two choices of θ that differ by a sign. We fix
one choice now and may modify the choice later on if necessary.

Now we will carry out some estimations. We will often write X < cY to indicate
that X is dominated by Y with a specific number c (fixed once a large A is fixed)
as the factor. See the remark after the inequality (4) for a concrete example. Basi-
cally this means that we abuse the notation by not writing c1, c2, · · ·, for different
inequalities.

3



We already know |θ(x1)| = A−1/2. To estimate θ′(x1), we multiply u′ to the first
Painlevé equation and integrate to get

u′2 = 4u3 + 2xu− 2
∫ x

x0

udx+ k. (2)

Then we substitute u = θ−2 into (2)

θ′2 = 1 +
x

2
θ4 − 1

2
θ6

∫ x

x0

udx+
k

4
θ6. (3)

By

|x1θ(x1)
4| ≤ BA−2,∣∣∣∣θ(x1)

6
∫ x1

x0

udx
∣∣∣∣ < A−3(4BA) = 4BA−2,

|kθ(x1)
6| = |k|A−3,

we have

|θ′(x1)
2 − 1| ≤ 1

2
BA−2 + 2BA−2 +

1

4
|k|A−3 < cBA−2. (4)

Specifically, if we have chosen A > |k| at the beginning, then we actually have
|θ′(x1)

2 − 1| < 3BA−2.
The inequality (4) implies that either |θ′(x1) − 1| < cBA−2 or |θ′(x1) + 1| <

cBA−2. By changing the sign of θ if necessary, we may assume |θ′(x1)−1| < cBA−2.
Then we may introduce another variable ξ by

u′ = −2θ−3 − x

2
θ − 1

2
θ2 + ξθ3. (5)

The transform (u, u′) ↔ (θ, ξ) given by u = θ−2 and (5) converts the first Painlevé
equation to the following regular system




θ′ = 1 +
x

4
θ4 +

1

4
θ5 − ξ

2
θ6,

ξ′ =
x2

8
θ +

3x

8
θ2 +

(
1

4
− xξ

)
θ3 − 5ξ

4
θ4 +

3ξ2

2
θ5.

(6)

The system appeared first on page 229 of [5] and was used in essentially every
elementary proof of the Painlevé property for the first Painlevé equation. See (3.2)
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on page 349 of [1] and (Ia), (Ib) on page 372 of [6]. What is new here is the context
in which the system is used. We have carefully set up the location to apply the
system, so that the subsequent argument becomes quite straightforward.

We estimate ξ(x1) by making use of (3):
∣∣∣∣∣θ′(x1)

2 −
(
1 +

x1

4
θ(x1)

4 +
1

4
θ(x1)

5
)2

∣∣∣∣∣
≤

∣∣∣∣θ′(x1)
2 − 1− x1

2
θ(x1)

4 − 1

2
θ(x1)

5

∣∣∣∣ +
∣∣∣∣14x1θ(x1)

4 +
1

4
θ(x1)

5

∣∣∣∣
2

≤ 1

2

∣∣∣∣θ(x1)
6

∫ x1

x0

udx

∣∣∣∣ +
1

4
|kθ(x1)

6|+ 1

2
|θ(x1)

5|+ 1

16
(|x1|+ |θ(x1)|)2 |θ(x1)|8

≤ 2BA−2 +
1

4
|k|A−3 +

1

2
A−5/2 +

1

16
(B + A−1/2)2A−4

< cBA−2.

Since for large A, θ′(x1) is very close to 1 and θ(x1) is very small, the inequality
above implies ∣∣∣∣θ′(x1)− 1− x1

4
θ(x1)

4 − 1

4
θ(x1)

5

∣∣∣∣ < cBA−2

and

|ξ(x1)| = 2|θ(x1)|−6

∣∣∣∣θ′(x1)− 1− x1

4
θ(x1)

4 − 1

4
θ(x1)

5

∣∣∣∣ < cBA.

Thus u is converted to a solution of the system (6) around x1, with

|θ(x1)| = A−1/2, |ξ(x1)| < cBA. (7)

This helps us to analyze the behavior of (θ, ξ) around x1. The key for such an
investigation is the following general result on ODE systems.

Lemma Consider the initial value problem

w′ = f(x,w), w(x0) = w0,

where f = (f1, · · · , fn) and w = (w1, · · · , wn). Suppose there are positive numbers
ε, ρi, Li,Mi, Nij, ai, such that

1. If |x− x0| ≤ ε and |wi − wi0| ≤ ρi, then

|fi(x,w)| ≤ Li, |∂xfi(x,w)| ≤Mi, |∂wjfi(x,w)| ≤ Nij;
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2. εLi ≤ ρi, ε(
∑
i aiNij) < aj.

Then the initial value problem has a unique solution w(x) for |x−x0| ≤ ε. Moreover,
the solution satisfies

|wi(x)− wi0 − fi(x0, w0)(x− x0)| ≤
1

2
(Mi + L1Ni1 + · · ·+ LnNin)|x− x0|2.

The lemma may be proved by showing that

Φ(w) = w0 +
∫ x

x0

f(x,w(x))dx

is a contracting operator on the complete metric space of analytic functions w(x) =
(w1(x), · · · , wn(x)) defined on the closed disk |x − x0| ≤ ε and satisfying |wi(x) −
wi0| ≤ ρi for all x in the disk, and with the metric

d(w, u) =
∑
i

ai max
|x−x0|≤ε

|wi(x)− ui(x)|.

The estimation for |wi(x)−wi0−fi(x0, w0)(x−x0)| can be derived from the following
remainder formula for Taylor series

g(x)− g(x0)− g′(x0)(x− x0) = (x− x0)
2

∫ 1

0
tg′′(tx0 + (1− t)x)dt.

and
|w′′i | = |∂xfi +

∑
j

(∂wjfi)fj| < Mi + L1Ni1 + · · ·+ LnNin.

Now we apply the lemma to system (6) with initial data satisfying (7). We denote
the two functions on the right side of (6) as f1(x, θ, ξ) and f2(x, θ, ξ). Moreover, we
take

ε = 3A−1/2, ρ1 = c1A
−1/2, ρ2 = c2BA,

where c1 and c2 are absolute constants to be determined by (8) and (9).
For |x− x1| ≤ ε, |θ − θ(x1)| ≤ ρ1, and |ξ − ξ(x1)| ≤ ρ2, we have

|x| < 2B, |θ| ≤ (c1 + 1)A−1/2, |ξ| < cBA.
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This implies

|f1| < 1 + c
(
B((c1 + 1)A−1/2)4 + ((c1 + 1)A−1/2)5 +BA((c1 + 1)A−1/2)6

)
< 2,

|f2| < c
(
B2((c1 + 1)A−1/2) +B((c1 + 1)A−1/2)2

+(1 +BBA)((c1 + 1)A−1/2)3 +BA((c1 + 1)A−1/2)4

+(BA)2((c1 + 1)A−1/2)5
)

< c
(
(c1 + 1) + (c1 + 1)3 + (c1 + 1)5

)
B2A−1/2,

|∂xf1| < cA−2,

|∂θf1| < cBA−3/2,

|∂θf2| < cB2,

|∂ξf1| < cA−3,

|∂ξf2| < cBA−3/2,

where the numbers c in the first two inequalities do not depend on c1 and c2 (and
the later ones may depend on c1 and c2). The first condition of the lemma is met
by taking

L1 = 2, L2 = c
(
(c1 + 1) + (c1 + 1)3 + (c1 + 1)5

)
B2A−1/2,

M1 = cA−2, N11 = cBA−3/2, N21 = cB2, N12 = cA−3, N22 = cBA−3/2

for various specific choices of c’s. With a1 = a2 = 1, the second condition will also
be satisfied if the inequalities labeled ? in the following are satisfied

εL1 = 6A−1/2 ?
< c1A

−1/2 = ρ1, (8)

εL2 < 3c
(
(c1 + 1) + (c1 + 1)3 + (c1 + 1)5

)
B2A−1/2 ?

< c2BA = ρ2,(9)

ε(a1N11 + a2N21) < cA−1/2(BA−3/2 +B2) < cB2A−1/2 ?
< 1 = a1,

ε(a1N12 + a2N22) < cA−1/2(A−3 +BA−3/2) < cBA−2 ?
< 1 = a2.

The first is satisfied by choosing c1 = 7. Then the second is satisfied by choosing
c2 = 1 and a sufficiently large A. After substituting c1 and c2 into the c’s, the third
and the fourth inequalities are satisfied by choosing a sufficiently large A.
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The conditions of the lemma are verified, and we conclude that (θ, ξ) is analytic
(and u = θ−2 is meromorphic) on the disk |x− x1| ≤ 3A−1/2. Moreover, from

M1 + L1N11 + L2N12 < c
(
A−2 +BA−3/2 + (B2A−1/2)A−3

)
< cBA−3/2,

we have
|θ − θ(x1)− θ′(x1)(x− x1)| < cBA−3/2|x− x1|2

on the disk. Since θ′(x1) is very close to 1 and |θ(x1)| = A−1/2 (see (7)), if |x−x1| =
3A−1/2, then

|θ| ≥ |θ′(x1)|3A−1/2 − A−1/2 − cBA−3/2(3A−1/2)2 > A−1/2.

In terms of u = θ−2, this means |u| < A for |x− x1| = 3A−1/2.
We have shown that u is meromorphic on the disk |x− x1| ≤ 3A−1/2. Moreover,

we also know |u| < A on the boundary of the disk. Denote by x+
1 and x−1 the two

points of intersection of λ and the boundary |x−x1| = 3A−1/2, with x+
1 further from

x0 than x−1 . Then we can start from x+
1 , move along λ, and repeat the argument

again. The only difference now is that when we take the integral from x0 to x (a
point on λ further than x+

1 ), the integration path is not the straight line but modified
by replacing the line segment connecting x−1 to x+

1 with the half circle connecting
the two points. Note that we still have |u| < A along the modified path, and the
length of the modified path is ≤ 2πB. This means that the estimations we have
carried out still work, except the bound for the length of the path of integration
needs to be increased from 2B to 2πB. For example, the estimation (4) will now
become

|θ′(x1)
2 − 1| ≤ 1

2
BA−2 + 2πBA−2 +

1

4
|k|A−3 < cBA−2.

Clearly, such a modification will not affect the whole argument.
The repeat argument may lead us to another point x′1, such that |u| < A between

x+
1 and x′1, and |u(x′1)| = A. The distance between x1 and x′1 is larger than the

distance between x1 and x+
1 , which is the fixed number 3A−1/2. Thus we only need

to repeat the argument finitely many times before we cover the whole line λ.
We would like to emphasize that the estimation around x1 should achieve two

goals. First, it should provide a specific lower bound for the radius of convergence.
Such a lower bound implies that the pole singularities cannot “accumulate” and the
induction involves only finitely many steps. Second, it should enable us to get round
x1 along a specific alternative route (i.e., the half circle) on which |u| < A. This
makes the induction possible.
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x0

x1

x−1

x+
1

x

3A−
1
2

|u|<A |u|<A

u is analytic
in a neighborhood of λx0,x1

u is meromorphic

in a disk around x1

3 The Second Painlevé Equation

In this section, we prove that all solutions of the second Painlevé equation u′′ =
2u3 + xu + α are defined on the whole complex plane and are meromorphic. The
proof is almost identical to the one for the first Painlevé equation. We will present
fairly detailed estimations and skip technical discussions.

Fix u, x0, B, and λ as in the case of the first Painlevé equation. We will also
choose a large number A determined entirely by x0, u(x0), u

′(x0), B, and α. Similar
to the first Painlevé equation (especially noting that the second Painlevé equation
is regular), we continue our discussion by assuming that x1 satisfies (1).

We multiply u′ to the second Painlevé equation and integrate to get

u′2 = u4 + xu2 + 2αu−
∫ x

x0

u2dx+ k, (10)

where
k = u′(x0)

2 − u(x0)
4 − x0u(x0)

2 − 2αu(x0).

We substitute the indicial normalization u = θ−1 into (10) and get

θ′2 = 1 + xθ2 + 2αθ3 − θ4
∫ x

x0

u2dx+ kθ4. (11)

This implies

|θ′(x1)
2 − 1| ≤ |x1θ(x1)

2|+ 2|αθ(x1)
3|+

∣∣∣∣θ(x1)
4

∫ x1

x0

u2dx
∣∣∣∣ + |kθ(x1)

4|

≤ BA−2 + 2|α|A−3 + A−4(2B)A2 + |k|A−4

< cBA−2.
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Here we note that the constants c in this section depend on α, x0, u(x0), and u′(x0).
Thus we have θ′(x1) very close to either 1 or −1. Assuming θ′(x1) is close to 1, we
introduce another variable ξ by

u′ = −θ−2 − 1

2
x−

(
1

2
+ α

)
θ + ξθ2.

Together with u = θ−1, the second Painlevé equation is converted into the system


θ′ = 1 +
1

2
xθ2 +

(
1

2
+ α

)
θ3 − ξθ4,

ξ′ =
(

1

4
+
α

2

)
x+

(
1

4
+ α+ α2 − xξ

)
θ

−
(

3

2
+ 3α

)
ξθ2 + 2ξ2θ3.

(12)

The system (12) is also well known and appeared as (5.7), (5.8) (with µ = 1) on
page 369 of [1] and (IIa), (IIb) on page 372 of [6]. Again the difference here is the
context where the system is used. If θ′(x1) is close to −1 instead, we may introduce
ξ in a similar way (take µ = −1 in [1], for example), so that the new system is still
regular. The subsequent arguments will be the same, and we will not repeat them.

We estimate ξ(x1) by making use of (11):∣∣∣∣∣θ′(x1)
2 −

(
1 +

1

2
x1θ(x1)

2 +
(

1

2
+ α

)
θ(x1)

3
)2

∣∣∣∣∣
≤

∣∣∣θ′(x1)
2 − 1− x1θ(x1)

2 − (1 + 2α)θ(x1)
3
∣∣∣ +

∣∣∣∣12(x1 + (1 + 2α)θ(x1))θ(x1)
2

∣∣∣∣
2

≤ |θ(x1)
3|+

∣∣∣∣θ(x1)
4

∫ x1

x0

u2dx
∣∣∣∣ + |kθ(x1)

4|+ 1

4
(|x1|+ (1 + 2|α|)|θ(x1)|)2|θ(x1)|4

≤ A−3 + A−4(2B)A2 + |k|A−4 +
1

4
(B + (1 + 2|α|)A−1)2A−4

< cBA−2.

This further implies

|ξ(x1)| = |θ(x1)|−4

∣∣∣∣θ′(x1)− 1− 1

2
x1θ(x1)

2 −
(

1

2
+ α

)
θ(x1)

3

∣∣∣∣ < cBA2.

Then we need to carry out the estimations for the solution of the system (12) with
the initial data satisfying

|θ(x1)| = A−1, |ξ(x1)| < cBA2.
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Take
ε = 3A−1, ρ1 = c1A

−1, ρ2 = c2A,

where c1 and c2 are absolute constants to be determined. For |x − x1| ≤ ε, |θ −
θ(x1)| ≤ ρ1, |ξ − ξ(x1)| ≤ ρ2, we have |x| < 2B, |θ| ≤ (c1 + 1)A−1, |ξ| < cBA2, and

|f1| < 1 + c
(
B((c1 + 1)A−1)2 + ((c1 + 1)A−1)3 + (BA2)((c1 + 1)A−1)4

)
< 2 = L1,

|f2| < c
(
B + (1 +B(BA2))(c1 + 1)A−1 + (BA2)((c1 + 1)A−1)2

+(BA2)2((c1 + 1)A−1)3
)

< c
(
1 + (c1 + 1) + (c1 + 1)3

)
B2A = L2,

|∂xf1| < cA−2 = M1,

|∂θf1| < cBA−1 = N11,

|∂θf2| < cB2A2 = N21,

|∂ξf1| < cA−4 = N12,

|∂ξf2| < cBA−1 = N22,

where the numbers c in the first two inequalities do not depend on c1 and c2. Then
with a1 = 1 and a2 = A−2, the conditions of our lemma will be satisfied if the
inequalities labeled ? in the following are satisfied

εL1 = 6A−1 ?
< c1A

−1 = ρ1,

εL2 < 3c
(
1 + (c1 + 1) + (c1 + 1)3

)
B2 ?

< c2A = ρ2,

ε(a1N11 + a2N21) < cA−1
(
BA−1 + A−2(B2A2)

) ?
< 1 = a1,

ε(a1N12 + a2N22) < cA−1
(
A−4 + A−2(BA−1)

) ?
< A−2 = a2.

By choosing c1 = 7, c2 = 1, and a sufficiently large A, these are satisfied. The
lemma tells us that (θ, ξ) is analytic in the disk |x− x1| ≤ 3A−1. Moreover, from

M1 + L1N11 + L2N12 < c
(
A−2 +BA−1 + (B2A)A−4

)
< cBA−1,

we have
|θ − θ(x1)− θ′(x1)(x− x1)| < cBA−1|x− x1|2.
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Since θ′(x1) is very close to 1 and |θ(x1)| = A−1, if |x− x1| = 3A−1, then

|θ| > |θ′(x1)|3A−1 − A−1 − cBA−1(3A−1)2 > A−1.

In other words, |u| < A along the circle |x− x1| = 3A−1.

4 The Fourth Painlevé Equation

In this section, we prove that all solutions of the fourth Painlevé equation

u′′ =
1

2u
u′2 +

3

2
u3 + 4xu2 + 2(x2 − α)u+

β

u
are defined on the whole complex plane and are meromorphic. In contrast to the
first two Painlevé equations, we need to consider two types of singularities, according
to whether u approaches ∞ or 0.

Fix u, x0, B, and λ as before and assume u(x0) �= 0. We will choose a large
number A determined entirely by x0, u(x0), u

′(x0), B, α, and β. Now we start from
x0 and move along λ to a point x1, such that (1) is satisfied. Note that because of
the possible singularity where u approaches 0, the existence of x1 has to be justified.
For the moment, we will ignore the issue and carry out the argument at the point
x1 where u is large.

We integrate the fourth Painlevé equation to get

u′2 = u4 + 4xu3 + 4(x2 − α)u2 − 2β − 4u
∫ x

x0

(u2 + 2xu)dx+ ku, (13)

where

k =
u′(x0)

2

u(x0)
− u(x0)

3 − 4x0u(x0)
2 − 4(x2

0 − α)u(x0) +
2β

u(x0)
.

Then we substitute the indicial normalization u = θ−1 into (13) and get

θ′2 = 1 + 4xθ + 4(x2 − α)θ2 − 2βθ4 − 4θ3
∫ x

x0

(u2 + 2xu)dx+ kθ3. (14)

This implies

|θ′(x1)
2 − 1| ≤ 4|x1θ(x1)|+ 4|(x2

1 − α)θ(x1)
2|+ 2|βθ(x1)

4|
+

∣∣∣∣4θ(x1)
3

∫ x1

x0

(u2 + 2xu)dx
∣∣∣∣ + |kθ(x1)

3|

≤ 4BA−1 + 4(B2 + |α|)A−2 + 2|β|A−4

+4A−3(2B)(A2 + 2BA) + |k|A−3

< cBA−1.
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Therefore θ′(x1) is very close to either 1 or −1. If θ′(x1) is close to 1, then we
introduce a new variable ξ by

u′ = −θ−2 − 2xθ−1 − 2 + 2α+ ξθ.

Together with u = θ−1, the fourth Painlevé equation is converted into the following
system 


θ′ = 1 + 2xθ + 2(1− α)θ2 − ξθ3,

ξ′ = 2− 4α+ 2α2 + β − 2xξ + 4(α− 1)ξθ +
3

2
ξ2θ2.

(15)

The system (15) also appeared in Case 2 on page 369 of [6]. If θ′(x1) is close to
−1, then we may introduce ξ in a similar way (change signs as indicated in [6], for
example). The subsequent arguments are also similar.

Now we estimate ξ(x1). From (14), we have
∣∣∣∣θ′(x1)

2 −
(
1 + 2x1θ(x1) + 2(1− α)θ(x1)

2
)2

∣∣∣∣
≤

∣∣∣θ′(x1)
2 − 1− 4x1θ(x1)− 4(1− α)θ(x1)

2
∣∣∣ + |2(x1 + (1− α)θ(x1))θ(x1)|2

≤ 4|x2
1 − 1||θ(x1)

2|+ 2|β||θ(x1)
4|+ 4|θ(x1)

3|
∣∣∣∣
∫ x1

x0

(u2 + 2xu)dx
∣∣∣∣

+|k||θ(x1)
3|+ 4(|x1|+ |1− α||θ(x1)|)2|θ(x1)|2

≤ 4(B2 + 1)A−2 + 2|β|A−4 + 4A−3(2B)(A2 +BA) + |k|A−3

+4(B + |1− α|A−1)2A−2

< cBA−1.

This further implies

|ξ(x1)| = |θ(x1)|−3
∣∣∣θ′(x1)− 1− 2x1θ(x1)− 2(1− α)θ(x1)

2
∣∣∣ < cBA2.

We are ready to apply our lemma to estimate the solution of the system (15)
with the initial data satisfying

|θ(x1)| = A−1, |ξ(x1)| < cBA2.

For |x − x1| ≤ ε = 3A−1, |θ − θ(x1)| ≤ ρ1 = 7A−1, |ξ − ξ(x1)| ≤ ρ2 = c2B
2A, we

have |x| < 2B, |θ| ≤ 8A−1, |ξ| < cBA2, and

|f1| < 1 + c
(
BA−1 + (1 + |α|)A−2 +BA−1

)
< 2 = L1,
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|f2| < 2 + 4|α|+ 2|α|2 + |β|+ c
(
B2A2 + (1 + |α|)BA+B2A2

)

< cB2A2 = L2,

|∂xf1| < cA−1 = M1,

|∂θf1| < cB = N11,

|∂θf2| < cB2A3 = N21,

|∂ξf1| < cA−3 = N12,

|∂ξf2| < cB = N22.

Then we choose c2 = 4c, where c is the constant in the bound L2. With a1 = 1, a2 =
A−3, and sufficiently large A, the second condition of the lemma is verified.

εL1 = 6A−1 < 7A−1 = ρ1,

εL2 = (3A−1)(cB2A2) < 4cB2A = ρ2,

ε(a1N11 + a2N21) < cA−1(B + A−3B2A3) < 1 = a1,

ε(a1N12 + a2N22) < cA−1(A−3 + A−3B) < A−3 = a2.

The lemma then tells us that (θ, ξ) is analytic in the disk |x− x1| ≤ 3A−1. Then

M1 + L1N11 + L2N12 < c(A−1 +B +B2A−1) < cB

further tells us
|θ − θ(x1)− θ′(x1)(x− x1)| < cB|x− x1|2.

Thus
|θ| ≥ |θ′(x1)|3A−1 − A−1 − cB(3A−1)2 > A−1,

and |u| = |θ|−1 < A along the circle |x− x1| = 3A−1.
It remains to justify the existence of x1. The issue here is that before reaching

x1, u may become small and the equation may become singular. We will prove that
if x2 is a point on λ, such that

1. u exists and is analytic along the straight line λx0,x2 from x0 to x2;

2. |u(x)| ≤ A on λx0,x2 ;

3. |x2| ≤ B, 0 < |u(x2)| ≤ A−4,
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then u is an analytic function on the disk |x − x2| ≤ A−4. Since A−4 is a definite
lower bound for the radius of analyticity, after applying the conclusion at points
where |u| ≤ A−4 for finitely many times, we are able to reach x1.

By |u(x2)| ≤ A−4 and (13), we have

|u′(x2)
2 + 2β| ≤ c

(
(A−4)4 +B(A−4)3

+(B2 + 1)(A−4)2 + A−4(2B)(A2 + 2BA) + |k|A−4
)

< cBA−2.

For large A, therefore, u′(x2) is very close to either i
√

2β or −i
√

2β. Now we need
to split our discussion into two cases.

Case 1 β �= 0.

Assuming u′(x2) is close to i
√

2β (the case that u′(x2) is close to −i
√

2β is similar
and the discussion will be omitted), we introduce the change of variable

u = θ, u′ = i
√

2β + ξθ

near x2. This converts the fourth Painlevé equation into the following system



θ′ = i
√

2β + ξθ,

ξ′ = −2α+ 2x2 − ξ2

2
+ 4xθ +

3

2
θ2.

(16)

We remark that the system also appeared as (10), (11) on page 369 of [6]. Replacing
u by θ in (13), we get

∣∣∣∣∣
θ′(x2)

2 + 2β

θ(x2)

∣∣∣∣∣ ≤ |θ(x2)
3|+ 4|x2θ(x2)

2|+ 4|(x2
2 − α)θ(x2)|

+4
∣∣∣∣
∫ x2

x0

(u2 + 2xu)dx
∣∣∣∣ + |k|

≤ (A−4)3 + 4B(A−4)2 + 4(B2 + |α|)A−4

+4(2B)(A2 + 2BA) + |k|
< cBA2.

Since θ′(x2) = u′(x2) is very close to i
√

2β and β �= 0, we then have

|ξ(x2)| =
∣∣∣∣∣
θ′(x2)− i

√
2β

θ(x2)

∣∣∣∣∣ < cBA2.
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Combined with |θ(x2)| = |u(x2)| ≤ A−4 and the system (16), it is easy to estimate
the radius of convergence for u = θ around x1 in terms of an explicit function of A.

Specifically, for |x− x2| ≤ ε = A−4, |θ− θ(x2)| ≤ ρ1 = 3
√
|β|A−4, |ξ− ξ(x2)| ≤ ρ2 =

cBA2, we have |x| < 2B, |θ| ≤ (1 + 3
√
|β|)A−4, |ξ| < cBA2, and

|f1| <
√

2|β|+ cBA−2(1 + 3
√
|β|)A−4 < 2

√
|β| = L1,

|f2| < 2|α|+ 2(2B)2 + c
(
(BA2)2 +B(1 + 3

√
|β|)A−4 + (A−4)2

)

< cB2A4 = L2,

|∂xf1| = 0 = M1,

|∂θf1| < cBA2 = N11,

|∂θf2| < cB = N21,

|∂ξf1| < cA−4 = N12,

|∂ξf2| < cBA2 = N22.

Then the conditions of our lemma are satisfied with a1 = a2 = 1.

εL1 = 2
√
|β|A−4 < 3

√
|β|A−4 = ρ1,

εL2 = cB2 < ρ2,

ε(a1N11 + a2N21) < cA−4(BA2 +B) < 1 = a1,

ε(a1N12 + a2N22) < cA−4(A−4 +BA2) < 1 = a2.

Thus (θ, ξ) (as well as u = θ) is analytic in the disk |x− x2| ≤ A−4. Moreover,

M1 + L1N11 + L2N12 < c(
√
|β|BA2 +B2) < cBA2

further tells us

|θ − θ(x2)− θ′(x2)(x− x2)| < cBA2|x− x2|2.

Thus

|u| = |θ| ≤ |θ′(x2)|A−4 + A−4 + cBA2(A−4)2 < (2
√
|β|+ 1)A−4 < A

in the disk |x− x2| ≤ A−4.

Case 2 β = 0.
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In this case, the indicial normalization u = θ2 near x2 (the assumption u(x2) �= 0
allows us to fix one branch of θ) converts the fourth Painlevé equation into

θ′′ = (x2 − α)θ + 2xθ3 +
3

4
θ5. (17)

The equation also appeared in subcase 1(ii) on page 369 of [6]. We introduce ξ = θ′

so that the second order equation becomes a system of two first order equations.
An estimation similar to the β �= 0 case gives us

|ξ(x2)|2 =

∣∣∣∣∣
u′(x2)

2θ(x2)

∣∣∣∣∣
2

=

∣∣∣∣∣
u′(x2)

2

4u(x2)

∣∣∣∣∣ < cBA2.

It is then easy to estimate the radius of convergence for the solution of




θ′ = ξ,

ξ′ = (x2 − α)θ + 2xθ3 +
3

4
θ5,

with the initial data satisfying |θ(x2)| ≤ A−2 and |ξ(x2)| < cBA. Specifically, for
|x− x2| ≤ ε = A−4, |θ− θ(x2)| ≤ ρ1 = A−2, |ξ − ξ(x2)| ≤ ρ2 = 1, we have |x| < 2B,
|θ| ≤ 2A−2, |ξ| < cBA, and

|f1| < cBA = L1,

|f2| < c
(
(B2 + |α|)A−2 +BA−6 + A−10

)
< 1 = L2,

|∂xf1| = 0 = M1,

|∂θf1| = 0 = N11,

|∂θf2| < c(B2 + |α|) = N21,

|∂ξf1| = 1 = N12,

|∂ξf2| = 0 = N22.

Then the conditions of our lemma are satisfied with a1 = a2 = 1.

εL1 = cBA−3 < A−2 = ρ1,

εL2 = A−4 < 1 = ρ2,

ε(a1N11 + a2N21) < cA−4(B2 + |α|) < 1 = a1,

ε(a1N12 + a2N22) < cA−4 < 1 = a2.
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Thus (θ, ξ) (as well as u = θ2) is analytic in the disk |x− x2| ≤ A−4. Moreover,

M1 + L1N11 + L2N12 = 1

further tells us

|θ − θ(x2)− θ′(x2)(x− x2)| ≤
1

2
|x− x2|2.

Thus (recall that θ′ = ξ and |ξ(x2)|2 < cBA2)

|θ| ≤ |θ′(x2)|A−4 + A−2 +
1

2
(A−4)2 < 2A−2,

and |u| = |θ|2 < 4A−4 < A in the disk |x− x2| ≤ A−4.
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