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LEMMA 2. An academic administrative system is compact. 

Proof. The system is governed by a finite number of arbitrarily short-sighted deans and is 
compact by definition. 

Lemmas 1 and 2 verify the hypothesis of Poincare's recurrence theorem and therefore the 
conclusions hold for all academic administrations. An immediate consequence of this result is: 

THEOREM 1. Almost all administrators vacillate. 

Finally, since many conservative systems are reversible, an administrator will not only return 
infinitely often to the same position but must have been there infinitely often in the past. 

This paper was presented at a meeting of the chairmen of the Ohio State University system in Columbus, Ohio, 
October 1978. 
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SUM-PRESERVING REARRANGEMENTS OF INFINITE SERIES 

PAUL SCHAEFER 
Department of Mathematics, SUNY, College of Arts and Science at Geneseo, Geneseo, NY 14454 

1. Introduction. Every student of advanced calculus knows that an absolutely convergent 
series of real numbers may be rearranged in an arbitrary fashion to obtain a new series which 
converges to the same sum as that of the original series. The student also finds that conditionally 
convergent series behave somewhat differently in this regard. Indeed, Riemann proved that such 
series can be rearranged to converge to any arbitrary real number, or even to diverge. Moreover, 
it has been shown by J. H. Smith [8] that for any conditionally convergent real series and any 
real number, there is a rearrangement of a prescribed "cycle type" which converges to that 
number. 

Yet, there obviously are rearrangements which do preserve the convergence and sum of all 
infinite series, whether they converge absolutely or merely conditionally. For example, if the 
series, uI + U2 + u3 + * * *, converges, then the rearrangement, U2+U3+U1+U5+U6+U4+ * * , is 

easily seen to converge to the same sum. It would seem reasonable to try to characterize those 
rearrangements of series which preserve sums of convergent series. This paper surveys the 
several approaches to the problem to date and gives another characterization of such rearrange- 
ments. For the convenience of would-be series rearrangers, five somewhat simpler sufficient but 
not necessary conditions for "sum-preserving" rearrangements are also developed. The reader is 
invited to add to this list. 

Rearrangements of series can be described in terms of permutations of the positive integers. 
Let N denote the set of all positive integers. A permutation p of N, of course, is a one-to-one 
mapping of N onto itself. Let pj be the image of j under the permutation p. The series E: u,, is 

Paul Schaefer received his Ph.D. from the University of Pittsburgh under George Laush in 1963. He has held 
faculty positions at the Rochester Institute of Technology and SUNY at Albany, and participated in a faculty 
exchange at California State University at Los Angeles. Since 1967 he has been Professor of Mathematics at 
SUNY College at Geneseo. His research interests and publications are in the area of series and summability.- 
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then a rearrangement of the series I uj. Such rearrangement is said to be sum-preserving if the 
former series converges to s whenever the latter one does. In the next three sections, necessary 
and sufficient conditions for sum-preserving rearrangements are given. The reader might find it 
instructive to check each of them against the example given above. 

In studying questions of rearrangements of series, two essentially different techniques are 
used. One, which might be called combinatorial, relies heavily upon properties of N and 
permutations. The other uses results from summability theory about infinite matrix transforma- 
tions of sequences or series into sequences or series. Both apprpaches will be illustrated in this 
paper. Combinatorial methods, although considerably less elegant, are perhaps more suggestive 
(one can draw pictures!). 

2. Levi's Condition. In 1946, F. W. Levi [6] developed the first criterion for a rearrangement 
to be sum-preserving. Letp be the permutation inducing the rearrangement of a series. For each 
positive integer n, let sn be the nth partial sum of the series E uj, and let t" be the nth partial 
sum of the rearranged series I upj. Observe that the term uj appears in t, if and only if 
iE{Pi,., Pn}), or, equivalently, if and only if p-I(j)*<n. Levi calls a term uj of the original 
series a "jumping out term" for n if and only if 1 <j < n and p - I(j)> n. These terms appear in 
sn but not in tn. A term uj is a "jumping in term" for n exactly whenj>n andp'`(j) An, so that 
such terms appear in tn but not in Sn. Then, tn = Sn + Xn -Yn, where xn is the sum of all jumping in 
terms for n, and yn is the sum of all jumping out terms for n. A block of consecutive terms 
appearing in I uj is called a "bunch" for n if the block contains only jumping in terms for n or 
jumping out terms for n, and the block is maximal with respect to this property. Let B(n) be the 
number of bunches for n. With this terminology, Levi's criterion can be stated as follows. 

THEOREM 1. A rearrangement is sum-preserving if and only if for the permutation p inducing the 
rearrangement there is a positive integer M so that B(n) < Mfor each positive integer n. 

Levi's proof shows that when p is any permutation with B(n) < M for all n, if sn ->s, then 
Ixn -ynI -0, so tn ->s also. On the other hand, he shows that for any permutation p with {B(n)) 
not uniformly bounded, there is a convergent series whose rearrangement by p does not 
converge to the sum of the original series. 

The proof given by Levi uses combinatorial methods throughout. In 1966, U. C. Guha [4] 
gave a succinct proof of Levi's theorem using a result of Bosanquet about series-to-sequence 
(actually, series-to-function) transformations by infinite matrices. 

3. Agnew's Condition. Using techniques of summability theory, R. P. Agnew [2] in 1955 
found another necessary and sufficient condition for a rearrangement to be sum-preserving. (A 
similar condition was developed recently by P. A. B. Pleasants [7].) 

THEOREM 2. The rearrangement induced by the permutation p is sum-preserving if and only if 
there is a positive integer M so that for each positive integerj, the set {p1, . . , pj) is representable as 
the union of M or fewer blocks of consecutive integers. 

Theorem 1 and Theorem 2 are equivalent, as the following discussion shows. For any 
permutation p of N and any positive integer n, let On be the set of indices j which correspond to 
jumping-out terms uj for n, and let In be the set of j's corresponding to jumping-in terms uj for 
n. The number of bunches for n, B(n), is the number of blocks of consecutive integers whose 
union is On U In Since {p1p I, Pn) 1,n On)U In, the equivalence of Levi's and Agnew's 
conditions is readily apparent. 

Agnew's proof was based upon regular matrix transformations of sequences into sequences. 
Later in this paper, a combinatorial proof of Agnew's result is given. It will be seen that this 
latter proof carries over easily to series in Banach spaces. 

It should be pointed out that Pleasants considers rearrangements of series somewhat differ- 
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1981] SUM-PRESERVING REARRANGEMENTS OF INFINITE SERIES 35 

ently than is done here. In his paper, the permutation p moves the term Uj to where the term u, 
was in the original series. This has the effect of interchanging the roles of the permutation p and 
its inverse in some of his theorems relative to those given here. 

4. Another Condition. One can obtain another characterization of sum-preserving rearrange- 
ments in the following way. Let p be the permutation of N which induces the rearrangement. 
For each k E N, let mk be the smaller of p ̀  '(k) and p - '(k + 1), and let Mk be the larger of these 
two numbers. Set Ik = {jlj EN and mk ?j <Mk}. Note that since p is one-to-one, Ik, #Ik2 

whenever k1 #k2. The criterion can be given in the following way. 

THEOREM 3. The rearrangement induced by the permutation p is sum-preserving if and only if 
there is a positive integer K so that every collection of K intervals, {Ik,,Ik2,,. . . ,I,Kj, has an empty 
intersection. 

This result was suggested after consideration of sum-preserving series-to-series matrix trans- 
formations. It will be shown later in this paper by combinatorial methods to be equivalent to 
Theorem 2. A summability proof will also be given so as to illustrate this kind of approach to the 
problem. 

5. Some Elementary Remarks About Permutations. In order to investigate rearrangements 
more closely, let us make a few observations about permutations of the positive integers. 

Let p be a permutation of N and let Pk be the image of the positive integer k under the 
permutation p. Clearly, Pk-oo as k->oo. Since p is a permutation, it is easy to see that, if n is 
any positive integer, there is a K so that n E {P 1, . . ., Pk) for all k > K. Furthermore, for any n we 
have { I,., n) C {pl , ..,pk) for all sufficiently large k. 

Any finite subset of N can be represented as the union of a disjoint collection of blocks of 
consecutive integers. We shall use the notation J= [ c, d ] for such intervals; so [ c, d ] = {x I x EN 
and c 6 x < d}, admitting the possibility that c=d as well. If p is any permutation of N, then, 
corresponding to each jEN, there is a disjoint collection, {J(j, 1),..., J(j, nj)} of intervals such 
that the set {pI,...,fj) is given by J(j,1)UJ(j,2)U ... UJ(j, nj). Agnew's criterion in The- 
orem 2 is that for the permutation p of N the set of integers {nj} is bounded. 

Let us arrange the notation so that the interval J(j, m) is to the left of J(j, n) whenever 
m < n. In all of the following discussion, it will be assumed that j is large enough to have 
1 E {p,..I.,pj}. The interval J(j, 1) will always be of the form [1, b(j)] for some integer b(j), 
where 1 b(j) 6j. The right-hand endpoint of J(j, nj) will be denoted by B(j), the largest 
element of the set {pI. pj). Thus, B(j)>j. 

6. Sufficient Conditions for the Preservation of Sums. Before getting to the proofs of 
Theorems 2 and 3, let us give five simple conditions for a rearrangement to preserve sums. 

The permutation given in the example mentioned in the Introduction has the property that it 
does not move any integer very far from its original location in N. In fact, I pj -jj < 2 for all j. 
This suggests the following criterion. 

CONDITION 1. There is a positive integer B so that I pj-j I < B for all j. 

In fact, as the discussion below shows, a weaker one-sided condition is sufficient for a 
permutation to produce a sum-preserving rearrangement of a convergent series. 

CONDITION 2. There is a positive integer B so that pj < j+ B for all j. 

Condition 2 implies that, for each j, the numbers PI ... pj are located somewhere in the 
interval [1, j+ B]. We estimate the maximum number of disjoint intervals into which {PI...pj} 
could be decomposed. If j + B = 2 q, an even integer, then the worst possible locations of the pi's 
(the ones yielding the most intervals) would be to have q of them at 1,3,5,..., (j+B- 1), or at 
2,4,...,(j+B). One of the (j-q) remainingpi's might be located at either end of [1, j+B], but 
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all of the other remaining ones must fall somewhere in the gaps in the first q locations. Thus, the 
maximum number of intervals in the representation of {p1, .I. , pj} when j + B = 2 q, cannot 
exceed q-( j-q-1) = B + 1. Similar considerations for j+ B = 2 q-l also yield a bound B + 1. 
This shows that, in the notation of the preceding section, nj < B + 1 for allj, so the hypothesis of 
Theorem 2 is satisfied. 

EXAMPLE 1. The permutation p which takes positive integral powers of 2 into their halves and 
which maps the remaining positive integers onto themselves consecutively satisfies Condition 2 
but not Condition 1. We have pi=2 2 if j=2M, pj=2M+ I if j=2n - l and pj=j+ I otherwise. 
Since I pj-j= 2'-' whenj = 2 , Condition 1 fails to hold. But it is easy to see that pj <?j+2 for 
allj. 

Both Levi and Pleasants have observed that the set of all permutations which induce 
sum-preserving rearrangements of series is not a group. See Pleasants [7] for an example of a 
sum-preserving rearrangement induced by a permutation whose inverse does not have this 
property. (Keep in mind that Pleasants's notation differs from that of the other authors 
mentioned here.) However, Condition 1 is sufficient to assure that both the permutation p and 
its inverse, p-', induce sum-preserving rearrangements, for then, both permutations would 
satisfy Condition 2. 

Further discussion of the algebraic structure of the set of convergence-preserving rearrange- 
ments of series can be found in [9]. In addition to Condition 1 above, the author mentions two 
other conditions which are sufficient for both the permutations p and its inverse p-' to be 
convergence-preserving: (A) lim(pj)/j= 1, and (B) 0< inf(pj)/j and sup(pj)/j < + 00. Clearly, 
Condition 1 implies (A), which in turn implies (B). See also [10]. 

It might be suspected that some restriction on the spread of the elements in {pl, I,pj} would 
be useful. Such a restriction, in the notation of Section 5 above, might be the following one. 

CONDITION 3. There is a positive integer B so that B (j) -b (j) < B for allj. 

This condition, in fact, implies Condition 2, since p1 ? B(j) and b(j) 6j, but the example 
given above shows that it is not equivalent to it. For Example 1, when j = 2 n 

-1 we have 
B(j)-b( j)=(2n+ l)-(2n-1 _ 1)=2 n-I +2. 

Condition 3, while being weaker than Condition 2, suggests another approach to the problem 
at hand. It is possible to give a direct proof that Condition 3 implies that the permutation p 
yields a sum-preserving rearrangement by observing that for anyj, 

j b(j) 

UPk = 2 Uk + U Pk' 
k=1 k=1 

where the second summation on the right is over those Pk'S which satisfy b( j)+ +1 <Pk < B( j). 
Since b(j)->oo asj-*oo, and since Uk-IO if z Uk converges to s, corresponding to any e>0 one 
can simultaneously make the first sum on the right differ from s by less than E/2 in absolute 
value, and make each term in the second sum less than E/2B in absolute value for all 
Pk > b (j) + 1 when j is sufficiently large, and complete the proof in the usual way. The key to the 
success of this approach is not the size or growth rate of the B(j)'s or pj's, but rather the 
cardinality of the set of indices appearing in the second summation, E:*. This cardinality is, of 
course, j - b (j). 

CONDITION 4. There is a positive integer C so that j-b b(j) < C for all j. 

Let us also show directly that Condition 4 implies that Agnew's criterion is satisfied. If the 
intervals J(j, k) in the decomposition of {P(,p,pj) are written asJ(j, k)=[Ck, dk], k=2,..., nj, 
their cardinality is (dk-Ck+ 1). Since {p1, pj,p} is the union of (n;- 1) of these disjoint 
intervals and the interval [1, b( j)], it follows that 
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nj nj 

i=b(j)+ 2 (dk-Ck+ l)=b(j)+(nj-l)+ 2 (dk-Ck)>Zb(i)+(nj-l). 
k=2 k=2 

If Condition 4 holds, we have nj < C+ + for all j. 

EXAMPLE 2. The permutation which is the inverse of the one given in Example 1 satisfies 
Condition 4 but not Condition 2. Thus, p I = 2, pj = 2 when j=2, pj1=2- if j=2 +1, and 
p1 =j-1 otherwise. Since p = 2" + 2" when j=2", Condition 2 is not met, but it can be seen 
easily that j-b(j) < 2 for all j > 3. 

Not surprisingly, Condition 4 is not necessary for the preservation of sums. 

EXAMPLE 3. Let the permutation p be given by the following scheme: 

N:1 2 3 4 5 6 7 8 9 10 11... 

p(N):1 4 3 2 10 9 8 7 6 5 22... 

Condition 4 does not hold, since j - b(j) is unbounded. (Take j = 3,9,21 ... , 3 * 2q-3,9... to see 
this.) However, it is obvious that {P1, ... py) is the union of at most two disjoint intervals for 
each j. 

Let us formulate another sufficient condition, this time basing it on Theorem 3. A simple 
combinatorial argument shows that every sufficiently large positive integer j belongs to exactly 
(m + 1)(m + 2)/2 different intervals of positive integers whose lengths do not exceed a fixed 
positive integer m. Thus, for j>m, j is in the (m + 1) intervals [jj], [j,j + ],..., [[j,j + m], and in 
the m intervals [j-1 ,j], [j-l,j + 1], ..., [j-l,j-1 + m], and in the (mr-1) intervals [j-2,j], 
... ,[j - 2,j-2 + m],.. ., and finally in the single interval [j - m,j]. 

Now, suppose that for the permutation p, all of the intervals Ik defined by p as in Theorem 3 
are such that their lengths are bounded by m, say. For any positive integer j, with j>m, the 
collection of all Ik's to which it belongs must be a subset of the set of intervals considered in the 
preceding paragraph. Hence, any collection of K= 1 + (m + 1)(m + 2)/2 such intervals must have 
an empty intersection. These considerations lead to the next condition. 

CONDITION 5. There is a positive integer m so that the lengths of all intervals Ik are bounded 
by m. 

This, however, is merely a sufficient condition for preservation of sums. For the permutation 
of Example 3, one can see that the lengths of Ik when k = 4, 10,22, 46,... increase without bound. 
In fact, the length of Ik when k =3 2q-2 is 9.2q-1-2 for q > 1. 

7. The Equivalence of Theorem 2 and Theorem 3. Let us now investigate the relationship 
between the conditions of Theorem 2 and Theorem 3, in order to show that they are equivalent. 

A permutation which is different from the identity mapping obviously cannot preserve the 
order of N. There are, however, some useful relationships between the ordering of elements of N 
and the images of elements of N under a permutation p. For example, if q and r are positive 
integers, then the assertion that q < r is equivalent to saying that pq E p... 'pr), and this is 
equivalent to the statement pr E { pq,pq+I i.... Similar assertions hold for strict inequality. 

Let p be a permutation of N. Recall that for Theorem 3, Ik =[mk, Mk - 1], where mk is the 
smaller of p - l(k) and p - '(k + 1), and Mk is the larger of these two numbers. Note that a positive 
integerj belongs to Ik if and only if either (1) k E{pI,...,pj) and (k+ l)E{p1+I,pj+2,...), or (2) 
(k + 1) E {p1, ... ,pj) and k E j+ 19Pj+29 ... 

For any permutationp of N and any positive integerj, we investigate the number of intervals 
Ik to which j belongs. If the set {pI, . ... ,p1) is written as the union of the disjoint collection of 
intervals [1,b(j)], J(j,2),...,J(j,nj), then we see that jE,Ik in exactly two cases: (a) when 
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kE (p1,... ,p1} and k is a right-hand endpoint of one of these intervals, or (b) (k+l)cE 

(Pi,...,pj) and (k+ 1) is a left-hand endpoint of some J(j, i). Since the decomposition of the set 
(P,*... ,pj) into intervals has (nj -1) gaps, there are exactly 2(nj -1) + 1= 2nj -1 possible values 
for k. These considerations show that Theorem 3 is equivalent to Theorem 2. 

Theorem 3 requires that any integer j belong to at most (K-1) different intervals Ik, so 
2n1- I K- 1 for allj, and Agnew's criterion in Theorem 2 holds. Obviously, the condition of 
Theorem 2 implies that of Theorem 3 in view of the preceding discussion. 

8. Proof of the Sufficiency of Agnew's Condition. We now prove that a permutation which 
satisfies the hypothesis of Theorem 2 produces a sum-preserving rearrangement of any conver- 
gent series of complex numbers. An examination of the proof shows that it is valid for 
convergent series in any Banach space (merely use norms instead of absolute values). It should 
be pointed out that both Levi and Pleasants remark that, because of the combinatorial nature of 
their proofs, their results hold in more general contexts. Recently, 0. Adrian [1] has obtained 
some sufficient conditions for a permutation to preserve the sum of certain convergent series in 
Banach spaces, but these results are of a somewhat different character than those discussed here. 

Suppose then that p is a permutation of N which satisfies Agnew's condition and that X uk is 
an arbitrary convergent series with sum s. Let e >0 be given. By the Cauchy Convergence 
Condition, there is a positive integer m so that for all n > m and q > 1, 

n+q 

I Uk <e/2M, 
k=n+1 

M being the maximum number of intervals into which each (P1,...,pj) can be decomposed 
according to Theorem 2. (We refer to the notation of Section 5 above.) If j is large enough so 
that b(j) > m, then 

I b(j) 

Up E Uk = 12Uk + *+ tnUk, 
k=1 k=1 

where Xi denotes summation on all k in the interval J(j, i), i= 2,..., nj. Each of the sums on the 
right is less than e/2M in absolute value, so it follows that the absolute value of the left-hand 
side is less than e/2. Furthermore, it follows from the Cauchy Convergence Condition that for 
all n > m, 

| Uk-Sl e/2M<e/2. 
k= 1 

If j is large enough so that b(j) exceeds m, we have 

| UPk-s <E/2+e/2=e, 
k1 

so 7U Upk also converges to s. 

9. Proof of the Necessity of Agnew's Condition. In order to show that the hypothesis of 
Theorem 2 is a necessary condition for a rearranged series to converge to the same sum as the 
original series, we follow some of the ideas in [7]. Before getting to the details, we give some 
preliminary observations which are valid for any permutation p of N. 

Recall from Section 5 that for each j one can write (Pj,...,p} -[1l, b(j)]UJ(i,2) 
U ... UJ(j, nj). There are (nj- 1) gaps in this decomposition. Since B(j) is the maximum of 
{p1,...,p1} and B(j)>j, 

} j ~~~B( j) j B( j) 

Uk- UPk Uk U + U Uk Uk+ z"Uk, 
k-l k=1 k=1 k-I k-1 k-Il 
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where the indices of summation in I' run over the integers in the gaps of the decomposition of 
p I. . ., pj, and I" Uk is either zero if B(j)=j or is equal to 

B(j) 

-E Uk 

k=j+p 

otherwise. If I uk converges, the Cauchy Convergence Condition assures that M" uk can be made 
arbitrarily small in absolute value for all sufficiently largej. 

Now, suppose thatp is a permutation of N which does not satisfy the hypothesis of Theorem 
2. We construct a series which converges to zero, but whose rearrangement by the permutationp 
does not. Specifically, it is shown for a certain convergent series that the absolute value of the 
summation, l'Uk, is + 1 for infinitely many values of ]. This proof can be modified to hold in a 
Banach space by selecting a nonzero element x of the space and replacing the terms 
+ 1, -1, + 1/2, - 1/2,... in the construction by x, - x x, - x. With this replacement, the 
summation l'uk will have norm equal to the positive number I xll for infinitely manyj. 

Since the condition of Theorem 2 is assumed not to hold for the permutation p, for each 
positive integer i there are infinitely many positive integers j so that nj > i + 2. Let j] be such that 
n>,>3. Assuming that j],...,.], have been defined, let j,+I be such that nji+>(i+l)+2 and 
B(j]) b(j]+i ). This latter condition is possible because b(j)-*oo as j->oo. The sequence {ji} of 
positive integers thus defined is strictly increasing. We construct a convergent series :uk as 
follows. 

Let ul= 1 and let uk= -1 when k= b(jl)+ 1. Set uk=O for all other k satisfying 1 <k <B(Ul). 
We continue by induction. 

If uk has been defined for all k such that 1 <k < B(]j,), set Uk =- /i when k is one less 
than the left-hand endpoint of each of the intervals J(j,, q), 2 < q < i + 2; set uk = 1/i when k is 
one of the left-hand endpoints of the same set of intervals; and let uk equal zero for all other k, 
B(j],- 1) + 1 < k < B(j,). The resulting series, I uk, clearly converges to zero, and the B(ji)th partial 
sums are equal to zero for each i. On the other hand, ' Uk =-1 forj =jlj2,*..., SO it is false that 

up', converges to zero. 
Although it seems possible, in view of the above proof, that there might be a permutation 

which preserves the property of convergence of all series but not necessarily convergence to the 
same sum, it will be shown below that this is not the case. (See also [7].) 

10. Summability Considerations. Theorem 2 arose in the context of a matrix transformation 
of one sequence into another and the consequent requirement that the matrix transforms 
convergent sequences into convergent sequences. See, for example, [5, p. 43] for these considera- 
tions. There is a parallel, almost equivalent theory of matrix transformations of the terms of one 
series into the terms of another series. In fact, for series with bounded partial sums, the two 
approaches are equivalent [3, p. 86]. The basic result about "series-to-series" transformations 
was given by Vermes in [11]. 

VERMES'S THEOREM. The infinite matrix (bjk) transforms every convergent series, uk, into a 
convergent series, I vj, where vJ 2kkbkuk if and only if 

(1) there is an M > 0 so that 2 . .IIj l.(bjk-bjkI)I <M for ever n, and 
(2) for each k, jjX I bjk converges to Bk. 

Moreover, F vj converges to BIs + I'. l(Bk - Bk+ i)(sk - s), where Sk is the kth partial sum of uj 
and s is the sum of the series I uj. 

Suppose that p is a permutation of N. A rearrangement of the convergent series z uk by the 
permutation p can be considered as a series-to-series transformation in the following way. Set 
bjk= I if k=pi and bjk=O if k#pj. If v1=kbjkkuk, then E vj = u., the rearrangement produced 
by p. Since p is one-to-one, each column of (bjk) contains exactly one nonzero tern, so X1jk= 1 
for every k, and condition (2) of the theorem is automatically satisfied with Bk= 1. 
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The first condition of the theorem can be examined in the following way. Observe that since p 
is an onto mapping, if k is any arbitrary positive integer, then k =p, and (k +1) =p, for some 
positive integers s and t. If n is any integer, then 21IbJk= 1 if n >s and is 0 if 1 <n <s. 
Similarly, we have , lb; k+ I = 1 if n > t and is 0 if 1 < n <t. Set f(n, k) = j.1 (bjk- bj,k+ 1). Then 
f(n, k) = + 1 if s < n < t, f(n, k) = - if t < n <s, and f(n, k)=0 for all other values of n. Hence, in 
the notation of Theorem 3, jf(n,k)j = 1 if and only if n EIk. For each n, the series, I kIf(n,k)I, 
has only finitely many nonzero terms, and its sum is equal to the number of different intervals Ik 
to which n belongs. The first condition of Vermes's Theorem will be satisfied exactly when there 
is an upper bound to the number of intervals Ik to which every positive integer n can belong. 
This requirement is, of course, the hypothesis of Theorem 3. 

We observe that the rearranged series, I vj, must converge to the same sum as that of I uk, 
since Bk = 1 for every k. 

Acknowledgment. The author wishes to thank P. A. B. Pleasants for bringing References [41 and [61 to his 
attention. 
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MATHEMATICAL NOTES 
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Material for this department should be sent to Professor Deborah Tepper Haimo, Department of Mathematical 
Sciences, University of Missouri, St. Louis, MO 63121. 

ON THE LAW OF LARGE NUMBERS, INFINITE GAMES, AND CATEGORY 

C. G. MENDEZ 

Department of Mathematical Sciences, Metropolitan State College, Denver, CO 80204 

In 1941, J. C. Oxtoby and S. M. Ulam [3, p. 8771 showed (via a footnote) that the law of large 
numbers is false in the sense of category, i.e., the set of real numbers of the unit interval such 
that in their infinite dyadic development the number of ones in the first n places divided by n 
tends to one-half is of the first category (although of measure one). 
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