
Equivariant Periodicity for Abelian Group Actions

Shmuel Weinberger∗, Min Yan†

October 30, 2000

Contents

1 Introduction 3

2 Periodicity Spaces 10

3 Periodicity of S1-Surgery Obstruction Groups 10

4 Periodicity of Stable S1-Surgery Theory 14

5 Destablization 17

6 Naturality under the Restriction to Fixed Sets and Subgroups 25

2000 Mathematics Subject Classification: 57N80, 57S05

Key Words and Phrases: Periodicity, Stratified Spaces, Surgery Theory, Group Action

∗Research is supported by an NSF Grant.
†Research is supported by Research Grant Concil earmarked grant number HKUST 6071/98P.

1



Abstract

For a manifold M , the structure set S(M, rel ∂) is the collection of manifolds

homotopy equivalent toM relative to the boundary. Siebenmann [11] showed that in

topological category, the structure set is 4-periodic: S(M, rel ∂) ∼= S(M×D4, rel ∂)

up to a copy of Z. The periodicity has been extended in [27] to topological manifolds

with homotopically stratified group actions by odd order groups, with D4 replaced

by the unit ball of any 4-fold permutation representation. In this paper, we extend

such equivariant periodicity to the case that the group is compact abelian, and D4

is replaced by the unit ball of twice of any complex representation.

2



1 Introduction

One of the most fundamental phenomena in the homotopy classification theory of topo-

logical manifolds is Siebenmann’s periodicity theorem [11]: There is a 1-1 correspondence

between the manifolds homotopy equivalent (relative to the boundary) to a manifold M

and the same thing for M × D4. (This is actually not entirely correct in the context of

manifolds [17]. But the deviation is small, and the theorem as stated in [11] is true if

one replaces manifolds by ANR-homology manifolds [3]). The object of this paper is to

generalize this to manifolds with group actions.

An equivariant generalization is given in [25]: for arbitrary stratified spaces there is a

“Siebenmann type periodicity” for crossing with D4, and an equivariant theorem follows

by consideration of the quotient. However, the most interesting and natural equivariant

generalization involves consideration of DV , the unit disk of an orthogonal representation

V , in place of D4. As a matter of fact, Siebenmann periodicity is a cousin of Bott

periodicity, which has such an equivariant generalization. For odd order groups a class of

“periodicity representations” is given in [27]. Equivariant products are rather complicated

from a purely stratified point of view, and the operation does not have a natural meaning

for general stratified spaces, so that one hopes that deeper elements of the theory of group

actions should follow from such periodicity theorems.

Indeed, the equivariant periodicity theorem seems to play a more useful role than

the nonequivariant one. One reason for this is the following: The geometric topology of

G-manifolds seems to be best analyzed in a category that only involves isovariant maps.

These are maps which not only map fixed sets of subgroups to one another, but also sends

complements of such sets to each other. This is a difficult notion to work with (constant

maps are equivariant but not isovariant, for instance). Browder has shown that assuming

a large gap hypothesis, equivariant homotopy equivalences are homotopic to isovariant

ones (the gap hypothesis is, in any case, an important one in transformation groups).

Using a periodicity theorem, one can cross with a suitably large representation (meaning

with large enough gaps) to achieve the desired gap hypothesis, without losing information.

Then one can do geometry and homotopy theory in a more congenial environment.
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Successful applications of this idea (and, indeed, of the results of this paper) have

already been executed: In [25] where these results are used in disproving the equivariant

topological rigidity conjecture (for equivariantly aspherical manifolds), and in [5] they

are applied to the problem of the variation of the homotopy type of the fixed point set

of a group action within a given equivariant homotopy type (the replacement problem).

Further applications of the ideas presented here will appear in [26] and [6] where decom-

position theorems will be proven for equivariant surgery groups and structure sets, and

to functoriality of equivariant surgery theory.

In this paper, we are mainly concerned with the actions by abelian groups. For actions

of odd order groups see [8] [16] [27].

Denote by SG(M, rel ∂M) the space of G-isovariant homotopy structures of M relative

to the boundary ∂M (the 0-th homotopy is the homeomorphism classes of G-manifolds

isovariantly homotopy equivalent to M , which are already homeomorphic on the bound-

aries).

Theorem 1 Let V = C2 be twice of the natural representation of S1. Suppose that M is

a homotopically stratified S1-manifold with codimension ≥ 3 gap and nontrival S1-action.

Then there is a periodicity equivalence

SS1(M, rel ∂M) � SS1(M × DV, rel ∂(M × DV )).

By virtually the same proof, we also see that the periodicity is “inductive”.

Theorem 2 Let κ : G → S1 be a character of a compact Lie group G. Let V = C2 be

twice of the G-representation induced from κ. Suppose that M is a homotopically stratified

G-manifold with codimension ≥ 3 gap and nontrival G-action. Then there is a periodicity

equivalence

SG(M, rel ∂M) � SG(M × DV, rel ∂(M × DV )).

Since any complex representation of a compact abelian Lie group G is a direct sum of

characters, we have the following result by repeatedly applying the above Theorem.
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Theorem 3 Suppose that G is a compact abelian Lie group, W is a complex G-representation

and V = W ⊕ W . Suppose that M is a homotopically stratified G-manifold such that M

has codimension ≥ 3 gap, and M × V and M have the same isotropy everywhere. Then

there is periodicity equivalence

SG(M, rel ∂M) � SG(M × DV, rel ∂(M × DV )).

This isotropy condition was defined in [27]: Any point in M has an arbitrarily small

neighborhood U such that the sets of isotropy groups of U × V and of U are identical.

The condition essentially means that M × V and M have the same isovariant fixed point

structures (or the same posets, in the terminology of [9]). In case every subgroup of G

appears as an isotropy subgroup of V , the condition means that M has strongly saturated

orbit structure as defined in [8].

With certain applications in mind, we would also like the equivariant periodicity to

be natural.

Theorem 4 The periodicity is compatible with the restriction to fixed points of subgroups

and, provided the subgroup has finite index, the restriction to the action of subgroups.

We expect the finite index condition to be unnecessary. However, the proof in that

case seems to involve some delicate points.

We note that in general, one cannot much improve these results. Indeed the class of

“periodicity representations” is precisely the representations that are twice a complex rep-

resentation for the case of the torus group. However, an important conjectural extension

of our result is suggested by the following (see [28] for further evidence).

Conjecture: Twice any complex representation of any compact Lie group is a periodicity

representation.

The keys to proving periodicity theorems on structure sets are a surgery theory that

has a suitable “local-global” form (see [25]) and an appropriate “periodicity theorem” for

L-groups. Indeed the result of [27] follows from a core result on L-groups that is the same

as the key result in [8]. Till this paper, no periodicity theorems were known for even order
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groups, even Z2, let alone for compact Lie groups. As explained in [8] (see proposition 3.7

on page 96), the difficulty encountered is that there does not seem to be an equivariant

variant of CP2 to cross with for the even order case. The trouble is that one needs a

manifold whose equivariant signature is the one dimensional trivial representation. In

addition, one needs the fixed point set of every subgroup to be connected and simply

connected. These do not seem to exist. A similar issue arises in the work of [13] on

decomposition theorems for equivariant surgery groups.

In fact, in [16] equivariant transversality was shown to follow from a topological ver-

sion of equivariant Bott periodicity (i.e., from the construction of a K-theoretic Thom

classes for topological bundles). However, equivariant transversality fails for Z2, which

might suggest that periodicity does as well (See [22] for an explanantion of how to prove

equivariant Bott periodicity using the signature operator instead of the Dirac operator.

That proof fails for Z2 exactly for the same computational reason that produces nonlin-

ear similiarities for even order cyclic groups of order > 4). We avoid this difficulty by

making use of the complex structure of the representations, so that our periodicities of

topological structure sets are not topologically invariant! We hope to return to this issue

in a future paper on Thom isomorphism for structure sets of equivariant “bundles”, where

such problems are much more serious. This defect is, in some ways, an advantage, in that

in the equivariant case there are a number of distinct periodicities which puts a useful

algebraic structure on structure sets (unequivariantly, there are only two, which differ by

a sign). Again, this will be dealt with elsewhere.

The way we get around the lack of “periodicity G-manifolds” (which are supposed

play a similar role equivariantly to that of CP2 in the classical periodicity) is to make

use of certain G-spaces that are not manifolds (or even pseudomanifolds). The idea is to

consider stratified spaces whose singularities are themselves boundaries of other stratified

spaces with some special “π-π structure”. This π-π structure ensures that the singularities

are not “too serious” in a certain algebraic sense, and the stratified spaces can be used

with success in manifold theory.

The advantage of using such spaces can be understood via consideration of the im-

portant work of [7]. To define a purely free manifold theoretic product from arbitrary
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G-manifolds, one would want to cobord to a free manifold. The Conner-Floyd approach

is to make the singular set into an appropriate boundary, and to insist that the “normal

bundle data” bound as well. This bundle theory actually is dominant in the size of equiv-

ariant bordism theory. Our contribution is to show that it can be ignored for surgery

theoretic purposes.

Philosophically, the reason one can do this goes back to Atiyah’s analysis [1] of the lack

of multiplicativity of the signature (which is the main contribution of manifold cobordism

theory from the point of view of surgery theory; see [21]). The idea is to find something

that bounds the boundary of a tubular neighborhood of the singular set and use this to

replace the normal sphere (considered by Conner and Floyd) around the “coboundary”

of the fixed sets. If a signature were multiplicative, and the singular set bounded even a

simply connected manifold, the signature of the boundary of the tubular neighborhood of

the singular set would vanish. This would be an important first step. However, this does

not hold for mapping cylinders of Atiyah’s bundles.

Still, Atiyah showed that the deviation from multiplicity has a characteristic class

formula, so that if the singular manifold bounded a manifold with the same fundamental

group as itself, this deviation term would vanish as well, and we would have the van-

ishing of the signature. Our exotic products provide a precise chain level construction

(performed thanks to some magic in stratified surgery theory) that applies to more com-

plex singularities and to more sophisticated invariants (some of finite order, for instance)

than merely the signature. In fact, the result also includes the multiplicativity of higher

signatures noticed by Lusztig [15] as well. We note that Lück and Ranicki [14] have also

analyzed Atiyah’s formula from a surgery theoretic point of view. Indeed, in the mani-

fold case, their result is much more precise than what we accomplish, but we need the

added generality of nonmanifold singular sets when we get to noncyclic groups. It is an

interesting project to try to combine their formulae with our construction.

The most important problem posed by this work is how to make the “exotic product”

idea yet more exotic, by allowing the singular set to bound in a more exotic (less geometric)

fashion. Currently, that seems like the most likely route to general nonabelian results.

Our paper is organized as follows. In section two we introduce a particular useful
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“periodicity space”. We will see how crossing with this space leads to the periodicity in

the following sections. Section three gives a result for surgery obstruction groups. Section

four gives the corresponding result for stable structure sets.

Section five destablizes our periodicity theorem. Unfortunately we have not found a

way to axiomatize the proof in section five in a useful way, nor have we a direct approach

to proving the periodicity theorem for (the unstable) structure sets in general. If the

reader were only interested in the PL locally linear category, destablization would not be

necessary, although the periodicity would be marred by (1) the usual Kirby-Siebenmann

difficulties and (2) the kind of boundary conditions imposed by Nicas on Siebenmann’s

periodicity. The reason is that many of the G-manifolds produced by the theory, without

a boundary condition, will only be locally simple homotopy linear, not actually locally

linear.

Finally, in the last section we discuss the naturalities present under restriction to

subgroup or to fixed point set.

The authors would like to thank Courant Institute, and the second author would like

to thank the University of Chicago as well, for hospitality when this work was done.

Notations and Conventions

In this paper, we work on manifold stratified spaces (or stratified spaces for short, at

least in this paper) X: X has a filtration {Xα} of closed subspaces indexed by a partially

ordered set such that Xα ⊂ Xβ for α < β and the strata Xα = Xα − X<α are topological

manifolds. We will always assume that up to stratified homotopy, the neighborhood of

lower strata in higher strata is the mapping cylinder of a fibration map, i.e., X is homotopi-

cally stratified spaces in the sense of Quinn [19]. This is the (weaker) homotopical version

of geometrically stratified spaces of Browder and Quinn [2]. Moreover, we always assume

the maps between such stratified spaces to be stratified and homotopically transverse,

meaning that the induced map on the fibrations are fibrewise homotopy equivalences.

A stratified space X with a stratum-preserving G-action is a G-stratified space. The

quotient X/G has an induced stratification doubly indexed by the isotropy subgroups of X

and the indices of X. This generalizes the induced stratification (indexed by the isotropy
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subgroups only) on the quotient of a nonstratified X, which may also be considered as

having a single stratum. In this paper, we will always assume that the quotient stratified

space X/G is homotopically stratified. Under the assumption, we also say that the group

action is homotopically stratified.

To simplify notation, we will pretend ∂M = ∅ throughout this paper. In addition,

we will write M × (A, rel B) for (M × A, rel ∂M × A ∪ M × B). In particular, by M ×
(DV, rel SV ) we mean (M × DV, rel ∂(M × DV )).

An equivariant map f : X → Y is called an equivariant π0-equivalence if fH : XH →
Y H is a one-to-one correspondence of connected components for each subgroup H. f is

called an equivariant π1-equivalence if, in addition to being a one-to-one correspondence

of connected components, fH induces an isomorphism on the fundamental groups of each

component.

The notions of equivariant π0- and π1-equivalences have isovariant analogues. In-

stead of considering the restriction of f on connected components of XH , we will only

consider the restrictions of f on the isovariant components: connected components of

XH = XH − X>H . If an equivariant map X → Y induces a one-to-one correspon-

dence on the collections of isovariant components, then the map is called an isovariant

π0-equivalence. If, in addition, the map also induces an isomorphism on the isovariant

components, then it is called an isovariant π1-equivalence.

A G-manifold M has codimension ≥ 3 gap if for any equivariant components XH
α ⊂

XK
β , we have either XH

α = XK
β or dim XH

α + 3 ≤ dim XK
β . If f is an isovariant map

between G-manifolds with codimension ≥ 3 gaps, then f is an equivariant π0-equivalence

(π1-equivalence) if and only if it is an isovariant π0-equivalence (π1-equivalence).

We will need generalization of the notion of π0- and π1-equivalences to stratified G-

spaces. By this we mean the (equivariant or isovariant) π0- and π1-equivalences for the

restriction of the stratified G-map on each strata.
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2 Periodicity Spaces

Products of G-stratified spaces are G-stratified spaces. In this paper, we will find it

necessary to take the product of a G-manifold M with certain periodicity space P , which

is a geometrically G-stratified space instead of a G-manifold. The manifold M is trivially

G-stratified, having only one stratum. Thus the G-stratification on M ×P is given by the

G-stratification of P , and the quotient (M × P )/G has an induced stratification. Since P

is geometrically G-stratified, (M × P )/G will be geometrically (homotopically) stratified

if M/G is geometrically (homotopically) stratified.

To construct P , we start with the complex representation V = C2 where S1 acts by

complex scalar multiplication. We add a trivial representation C to V and obtain the

induced S1-action on the complex projective space CP2 = CP(V ⊕C). Under the obvious

identification (the boundary SV of DV maps onto CP(V ) = S2 via Hopf projection)

CP2 = CP(V ⊕ C) = DV ∪ S2,

the S1-action is semifree with fixed points

(CP2)S
1

= 0
∐

S2.

We note that CP(V ⊕ C) is not a periodicity manifold in the sense of [8] or [27] because

the fixed point set is not connected.

Since the expected periodicity representation comes from the neighborhood DV of

the origin 0, we need to eliminate the contribution from the other component S2. This is

achieved by expanding CP2 by gluing the obvious nullcobordism D3 of S2:

P = CP2 ∪S2 D3.

This is a manifold geometrically stratified space. By letting S1 act trivially on D3, P

becomes an S1-stratified space.

3 Periodicity of S1-Surgery Obstruction Groups

The periodicity will come from the following operations

M
×P
=⇒ M × P

incl⇐= M × (DV, rel SV ). (1)
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The operations will be applied to the stable surgery obstructions L−∞S1 and the Tate

cohomology Ĥ(Z2; Whtop,≤0) of the topological Whitehead torsion. Both are functors over

S1-equivariant homotopically stratified spaces. The operations (1) can also be applied to

unstable surgery obstructions LS1 , and the subsequent periodicity results remain true.

However, this fact is not directly needed in this paper.

An element of L−∞S1 (M) is represented by a stable S1-surgery problem with a reference

S1-map to M . The operation ×P means crossing the problem by the space P , and crossing

the reference map by idP . An element in L−∞S1 (M×(DV, rel SV )) is represented by a stable

S1-surgery problem with a reference S1-map to M × DV . The inclusion operation does

not change the surgery problem itself, and only takes a new viewpoint on the reference

map. Specifically, we view the reference map as mapping into M × (DV − SV ) part of

M × P (this is a stratified map), so that over M × (D3 ⊃ S2) there is only the empty

problem. The simple geometric description of the operations (2) readily implies that

commutativity of all the diagrams in the subsequent proofs.

We first consider the case of free actions.

Lemma 5 Suppose S1 acts freely on M . Then (1) induces equivalences of surgery ob-

structions

L−∞S1 (M) � L−∞S1 (M × P ) � L−∞S1 (M × (DV, rel SV )).

Proof: Consider the diagram

L−∞S1 (M × CP2)
incl←− L−∞S1 (M × (DV, rel SV ))

×CP2 ↑
φ

↖ ↓ incl

L−∞S1 (M)
×P−→ L−∞S1 (M × P )

(2)

where the map φ first restricts to the closed stratum CP2 ⊂ P and then forgets the

stratification structure CP2 ⊃ S2. The two triangles are commutative by the geometric

meaning of the operations.

In [14], Lück and Ranicki showed that ×CP2 depends only on the S1-equivariant

signature of CP2. Since S1 acts homotopically trivially on CP2, the equivariant signature

is in fact the nonequivariant one, which is 1: Z ⊗ Z → Z. As a result, the map ×CP2 is

an equivalence.
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The horizontal inclusion induces an isomorphism π1(M ×DV ) ∼= π1(M ×CP2). Since

S1 acts freely on the products, we have π1((M×DV )/S1) ∼= π1((M×CP2)/S1). Therefore

the horizontal inclusion induces an equivalence on the surgery obstructions.

The vertical inclusion fits into a fibration

L−∞S1 (M × (DV, rel SV ))
incl→ L−∞S1 (M × P )

rest→ L−∞S1 (M × (D3 ⊃ S2)), (3)

where by writing D3 ⊃ S2 we mean the stratification structure in D3. By π − π theorem,

L−∞S1 (M × (D3 ⊃ S2)) is trivial. Therefore the inclusion is an equivalence.

Combining the above equivalences we proved the equivalence between surgery obstruc-

tions.

✷

Now we move on to the general case. A small gap condition is needed.

Lemma 6 Suppose the nonfree part of S1-action on M has codimension ≥ 3. Then (1)

induces equivalences

L−∞S1 (M) � L−∞S1 (M × P ) � L−∞S1 (M × (DV, rel SV )).

Proof: Since S1 acts semifreely on P , for any {1} �= H ⊂ S1 we have

(M × P )H = MH × P S1

= MH × (0
∐

D3).

Denote by Ms = ∪g∈S1M g the part of M on which S1 acts nonfreely. Then Ms is a

manifold S1-stratified space.

As in the proof of the previous lemma, the fibration (3) and π − π theorem implies

the inclusion is an equivalence.

To prove that ×P is an equivalence, we compare two fibrations:

L−∞S1 (M − Ms)
incl→ L−∞S1 (M)

rest→ L−∞S1 (Ms)

↓ ↓ ×P ↓ ×PS1

L−∞S1 (M × P − Ms × P S1
)

incl→ L−∞S1 (M × P )
rest→ L−∞S1 (Ms × P S1

)

(4)

By π − π theorem, we have

L−∞S1 (Ms × P S1
)

= L−∞S1 (Ms × 0) × L−∞S1 (Ms × (D3 ⊃ S2))

� L−∞S1 (Ms × 0).
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MsxP

MsxD3

CP 2

D3

Ms Ms

M M

S 2

 0
Msx0

Thus the map on the right of (4) is an equivalence. Therefore in order to show the middle

of (4) is an equivalence, it suffices to show that the left is an equivalence. We note that

left side is the composition

L−∞S1 (M − Ms)
×P→ L−∞S1 ((M − Ms) × P )

incl→ L−∞S1 (M × P − Ms × P S1

).

The map ×P is an equivalence by the lemma 5. The inclusion can be considered as a

gluing

M × P − Ms × P S1

= [(M − Ms) × P ] ∪(M−Ms)×(P−PS1
) [M × (P − P S1

)].

We claim that the gluing neither introduces new S1-strata, nor changes the connec-

tivity and the fundamental groups of isovariant components inside each G-stratum. This

would imply that the inclusion is an isovariant π1-equivalence, so that it induces an equiv-

alence on the surgery obstructions.

First, both (M − Ms) × (P − P S1
) and M × (P − P S1

) are parts of an S1-stratum

M×(DV −SV ) of M×P . Hence the gluing is merely an extension of the existing S1-strata,

so that no new S1-strata are introduced. Second, S1 acts freely on the extended part

M×(P −P S1
). Therefore the extension happens only in the free part of M×(DV −SV ), so

that no new fixed points are introduced. Finally the assumption that Ms has codimension
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≥ 3 implies that the inclusion (M −Ms)×(P −P S1
) → M ×(P −P S1

) is an isovariant π1-

equivalence. By Van-Kampen’s theorem, this implies that the inclusion (M − Ms)× P →
M ×P −Ms×P S1

is an S1-stratified isovariant π1-equivalence. In particular, the inclusion

induces an equivalence on stable surgery obstruction. This completes the proof of the

lemma.

✷

4 Periodicity of Stable S1-Surgery Theory

In this section we prove the stable version of theorem (1). We also include a naturality

property of the stable periodicity. The property will be needed in deriving unstable

periodicity later on.

The operations (1) may be applied to S−∞S1 . Omitting the Ri-factor, an element of

S−∞S1 (M) is represented by a stable isovariant homotopy equivalence N → M . “×P” takes

the element to N × P → M × P . An element of S−∞S1 (M × (DV, rel SV )) is represented

by a homotopy equivalence (W, ∂W ) → M × (DV, SV ) such that the restriction ∂W →
M × SV is a homeomorphism. The inclusion operation simply glues M × (D3 ⊃ S2) to

the homotopy equivalence by making use of the homeomorphism on the boundary.

Unlike surgery obstructions, the operations (1) do not induce equivalences on S−∞S1 .

However, our stable periodicity will be compatible with these operations. We summerise

the stable version of theorem 1 and the compatibility in the following theorem.

Theorem 7 Let V = C2 be twice of the natural representation of S1. Suppose that M

is a homotopically stratified S1-manifold such that the nonfree part has codimension ≥ 3.

Then there is periodicity equivalence and commutative diagram

S−∞S1 (M)
per� S−∞S1 (M × (DV, rel SV ))

×P ↘ ↙ incl

S−∞S1 (M × P )

Proof: S−∞G may be computed by the following fibration (see Stable Classification Theorem

on page 134 of [25]):

S−∞G (M) → H(M/G; L−∞G (locM)) → L−∞G (M). (5)
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Lemma 6 says that (1) induces natural equivalences of functors:

L−∞S1 (?)
×P� L−∞S1 (? × P )

incl� L−∞S1 (? × (DV, rel SV )).

Applying homology, we obtain homotopy equivalent assembly maps:

H(M/S1; L−∞S1 (locM)) → L−∞S1 (M)

�↓ ×P �↓ ×P
H(M/S1; L−∞S1 ((locM) × P )) → L−∞S1 (M × P )

�↑ incl �↑ incl

H(M/S1; L−∞S1 ((locM) × (DV, rel SV ))) → L−∞S1 (M × (DV, rel SV ))

(6)

By the stable surgery fibration (5), the homotopy fibre of the top map is S−∞S1 (M). If

we can identify the bottom map with the assembly map of L−∞S1 over M × DV , then

the homotopy fibre of the bottom map is S−∞S1 (M × (DV, rel SV )) and stable periodicity

follows.

By applying the “Fubini equivalence” (proven exactly the same way as the Leray

spectral sequence of a map in a generalized homology theory) associated to the stratified

system of fibrations DV/Gx → (M × DV )/S1 → M/S1 (Gx =isotropy group of x ∈ M ;

this stratified system is entirely analogous to the stratification of the quotient of a smooth

G-vector bundle, see [24] for example), we may compare the assembly map of the functor

L−∞S1 (? × (DV, rel SV )) over M/S1 and the assembly map of the functor L−∞S1 (?) over

(M × DV )/S1:

H(M × DV/S1; L−∞S1 (loc(M × DV )))

�↓ Fubini ↘
H(M/S1; H(DV/Gx; L

−∞
S1 (loc(M × DV )))) L−∞S1 (M × (DV, rel SV ))

↓ α ↗
H(M/S1; L−∞S1 ((locM) × (DV, rel SV )))

(7)

We note that loc(M × DV ) means the local S1-structure of the product space M × DV ,

while (locM) × DV means the product of the local G-structure of M with the whole G-

space DV . Moreover, the map α is the “partial assembly map” obtained in the following

way: The assembly map of the functor L−∞S1 ((locM)×?) over DV

α0 : H(DV/Gx; L
−∞
S1 (loc(M × DV ))) → L−∞S1 ((locM) × DV )
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may be considered as a natural transformation between functors of the variable locM .

Then α is obtained by applying the homology functor to α0. The naturality of the

assembly map with respect to the Fubini equivalence (see Section 8 of [19], and [27])

shows that the diagram (7) is commutative.

The proof of stable periodicity is thus reduced to showing that α is a homotopy

equivalence. This is a consequence of α0 being a homotopy equivalence. Note that DV/Gx

is the cone of the stratified space SV/Gx, with the cone point as an additional stratum.

The assembly map over such space is always a homotopy equivalence (see lemma 3.21 on

page 1038 of [27]). This proves that α0 is a homotopy equivalence.

To show the diagram in the lemma is commutative, we consider the following diagram

H(M/S1; L−∞S1 (locM)) → L−∞S1 (M)

↓ ×P �↓ ×P
H((M × P )/S1; L−∞S1 (loc(M × P )) → L−∞S1 (M × P )

↑ incl �↑ incl

H((M × DV )/S1; L−∞S1 (loc(M × DV )) → L−∞S1 (M × (DV, rel SV ))

(8)

The inclusion map on the left side is the usual map in homology theory, The map ×P on

the left side has the following geometrical interpretation: As pointed out on page 134 and

explained in section 8.3 of [25], the homology H(M/S1; L−∞S1 (locM)) may be interpreted

as the normal invariants (=isovariant surgery problems) over M . By taking the product

of a normal invariant with the stratified space P , we have a normal invariant over the

stratified space M ×P , which belongs to the homology H((M ×P )/S1; L−∞S1 (loc(M ×P )).

A purely algebraic interpretation would involve a canonical controlled stratified visible

Sullivan class for P , as an element in the homology H∗(P/G; V LS1(locP )). But this is

not needed here.

The fibres of the assembly maps in (8) are the stable structures S−∞S1 (M), S−∞S1 (M×P ),

S−∞S1 (M × (DV, rel SV )), and the induced maps on the stable structures are ×P and

inclusion.

The left side of (8) has a natural map to the left side of (6). The map over M is the

identity. The map over M × DV is the Fubini equivalence followed by partial assembly

(left side of (6)). The map over M ×P is the similar Fubini equivalence followed by partial
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assembly (except the partial assembly is over P/Gx, instead of over the cone DV/Gx. So

the partial assembly is not a homotopy equivalence). The natural map from (8) to (6)

induces natural maps on the homotopy fibres of the assemblies. The induced diagram is

the commutative diagram in the theorem.

✷

We end this section by remarking that theorem 7 also applies to other abelian groups.

In fact, the proofs in the last three sections are still valid if we replace S1 by G. Perhaps the

only thing worth mentioning is that CP2 still represents an invertible element of the Euler

ring of G after localizing at 2. Theorem 3 (the stable version) is obtained by writing W

as a direct sum of several characters (one dimensional complex representations) and then

repeatedly applying the theorem 2 (the stable version). The same isotropy everywhere

condition implies that at each stage, the conditions of the theorem 2 are satisfied.

5 Destablization

The proof of destablization overall follows from the same strategies employed in the anal-

ysis of the stable structure set. However, the details seems to be irreducibly more com-

plicated.

The stable and unstable structures are related by generalized Rothenberg fibration

(see Destablization Theorem on page 135 of [25])

SG(M) → S−∞G (M) → Ĥ(Z2; Whtop,≤0
G (M)). (9)

The same operations (1) used on S−∞S1 can be compatibly defined on Whtop,≤0
G , which

by theorem 7, are compatible with the periodicity equivalence on S−∞S1 . Therefore the

periodicity equivalence is compatible with the operations (1) on Ĥ(Z2; Whtop,≤0
S1 ). As a

result, if the operations (1) induce equivalences on Ĥ(Z2; Whtop,≤0
S1 ), then by (9) we obtain

the periodicity equivalence on the unstable structure SS1 .

One can almost repeat the proof for the periodicity on the surgery obstructions, as

was done in [28]. However, some technical difficulties (taking Tate cohomology does not

commute with truncating involutive spectrum) add more complications to the argument.

In this paper, we use a more direct approach.
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Our proof will be presented in terms of the isovariant topological Whitehead group

WhTopG = π0Whtop,≤0
G (this corresponds to, and for stratified case, generalizes WhTop,IsoG

of [23]). Because π−kWhtop,≤0
G = WhtopG,Rk−bounded(R

k × X), the bounded version of the

proof will also show that (1) induce equivalences on all Ĥ(Z2; π−kWhtop,≤0
G ), k ≥ 0. By

decomposing the Rothenberg fibration (9) into many fibrations

S−kG (M) → S−k−1
G (M) → Ĥ(Z2; π−kWhtop,≤0

G (M)),

and by making use of the isomorphism S−∞G (M) ∼= limk→∞ S−kG (M), we inductively deduce

the periodicity on SG from the periodicity on S−∞G .

For a G-manifold M with codimension ≥ 3 gap, we may describe the group WhTopG (M)

as the homeomorphism classes of (equivariant or isovariant, which are the same in the

presence of codimension ≥ 3 gap) G-h-cobordisms over M . The upside down operation

describes the involution on WhTopG (M). This description (including that of the involution)

holds as well for manifold G-homotopically stratified spaces. In particular, this enables us

to define the maps such as WhTopS1 (M × (DV, rel SV ))
incl→ WhTopS1 (M × (CP2, rel S2))

incl→
WhTopS1 (M ×P )

×P← WhTopS1 (M) in the most natural way. These maps are clearly compatible

with the operations (1) on S∞S1 .

We will need the following property of WhTopG : Suppose X is a homotopically stratified

space and Y ⊂ X is a closed union of strata of X. Then there is a natural exact sequence

0 → WhTopG (X, rel Y )
incl→ WhTopG (X)

rest→ WhTopG (Y ) → 0. (10)

Moreover, in case X is a manifold stratified space, the inclusion and restriction maps

preserve the involutions.

Suppose M is a homotopically stratified G-manifold with codimension ≥ 3 gap. Then

it was shown in [23] that WhTopG (M) may be identified with a subgroup WhTop,EquiG,ρ (M) of

the equivariant topological Whitehead group WhTop,EquiG (M) (in [23], these are denoted

as WhTop,ρG (M) ⊂ WhTopG (M)). In fact, for any locally compact G-ANR X, Steinberger

defined WhTop,EquiG (X) as the equivalence classes of G-ANR strong deformation retracts

(Y, X), where the equivalence relation can either be given by G-CE maps or by stable

G-homeomorphisms after crossing with the equivariant Hilbert cube. As a consequence
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of this description, WhTop,EquiG (X) is an equivariant homotopy functor (f : X → X ′

takes (Y, X) to (Y ∪X X ′, X ′)). Moreover, crossing with any G-ANR Z gives rise to

a homomorphism ×Z : WhTop,EquiG (X) → WhTop,EquiG (X × Z), which can be further

projected down to WhTop,EquiG (X) by the G-equivariant map X × Z → X.

The subgroup WhTop,EquiG,ρ (X) consists of elements of WhTop,EquiG (X) represented by G-

ANR strong deformation retracts (Y, X) such that the inclusion X → Y is an isovariant

π0-equivalence. In particular, if a certain operation does not change this property, then

the operation induces a homomorphism on WhTop,EquiG,ρ . Specifically, this observation will

be applied to the operations of products with CP2 and DV , and the operations induced

by the maps M × CP2 → M , M × DV → M , and M = M × 0 → M × DV . If M has

codimension ≥ 3 gap, then these operations induce maps on WhTop,EquiG and restrict to

maps on WhTop,EquiG,ρ .

The next lemma reduces the proof that (1) induces equivalences on Ĥ(Z2; WhTopS1 ) to

an algebraic problem.

Lemma 8 Suppose M is a homotopically stratified S1-manifold with codimension ≥ 3

gap. Let A = WhTopS1 (M) and ∗ be the usual involution on A. Then after localizing at 2,

we have

1. WhTopS1 (M × P ) ∼= A ⊕ A ⊕ A, with involution given by

(α, β, γ)∗ = (−α∗ + β∗, β∗, γ′ + λ(β)),

where ′ is another (possibly different from ∗) involution on A, and λ : A → A is a

homomorphism satisfying λ2 = 0;

2. WhTopS1 (M × (DV, rel SV )) ∼= A, with the inclusion WhTopS1 (M × (DV, rel SV )) →
WhTopS1 (M × P ) given by a → (0, 0, a);

3. ×P : WhTopS1 (M) → WhTopS1 (M × P ) is given by a → (a, 2a, a).

Proof: First we claim that the inclusion induces an isomorphism

WhTopS1 (M × (DV, rel SV )) ∼= WhTopS1 (M × (CP2, rel S2)). (11)
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This is because the difference between the two topological Whitehead torsions is the

possible “leaking” along M × S2; that is, we have exact sequence

H0((M × S2)/S1; WhPL(holink)) → WhTopS1 (M × (DV, rel SV )) →

→ WhTopS1 (M × (CP2, rel S2)) → H−1((M × S2)/S1; WhPL(holink)).

We note that the link of (M × S2)/S1 in (M × CP2)/S1 is S1/Gx, which is either a

circle or a point. The fundamental group of the link is then Z or trivial. In either case,

the piecewise linear K-theory WhPL(holink) is trivial at dimension ≤ 1. Therefore the

homologies in the exact sequence vanish, and the inclusion is an equivalence.

By (10), we have the following natural involutive short exact sequence

0 → WhTopS1 (M × (CP2, rel S2))
incl→ WhTopS1 (M × P )

rest→ WhTopS1 (M × (D3 ⊃ S2)) → 0

The inclusion WhTopS1 (M × (DV, rel SV )) → WhTopS1 (M × P ) clearly factors through

WhTopS1 (M × (CP2, rel S2)). By making use of the isomorphism (11), we see that the

top row in the following diagram is exact.

0 → WhTopS1 (M × (DV, rel SV ))
incl→ WhTopS1 (M × P )

rest→ WhTopS1 (M × (D3 ⊃ S2)) → 0

‖
incl

↘ ↓ rest

×P
↖ ↑ ×(D3⊃S2)

WhTop,EquiS1,ρ (M × (DV, rel SV )) WhTopS1 (M × CP2)
×CP2

← WhTopS1 (M)

proj ↓
incl

↘ ‖ ‖
WhTop,EquiS1,ρ (M)

proj← WhTop,EquiS1,ρ (M × CP2)
×CP2

← WhTop,EquiS1,ρ (M)

(12)

In the diagram, the equalities WhTopS1 = WhTop,EquiS1,ρ are applied to M , M × (DV, rel SV ),

and M ×CP2, which are all S1-manifolds with codimension ≥ 3 gaps. The commutativity

of the diagram follows from the geometric meaning of the maps.

The projection M × DV → M and the inclusion M = M × 0 → M × DV are equiv-

ariant homotopy inverse to each other. Therefore they induce an isomorphism between

WhTop,EquiS1 (M × (DV, rel SV )) and WhTop,EquiS1 (M). Since M has codimension ≥ 3 gap,

the two maps restrict to an isomorphism between WhTop,EquiS1,ρ . Consequently, the vertical

projection in (12) is an isomorphism, and the composition

WhTopS1 (M × P )
rest→ WhTopS1 (M × CP2) = WhTop,EquiS1,ρ (M × CP2)

proj→ WhTop,EquiS1,ρ (M)
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proj∼= WhTop,EquiS1,ρ (M × (DV, rel SV )) = WhTopS1 (M × (DV, rel SV ))

is a splitting to the inclusion

WhTopS1 (M × (DV, rel SV )) → WhTopS1 (M × P ).

Thus the splitting induces a decomposition

WhTopS1 (M × P ) ∼= WhTopS1 (M × (D3 ⊃ S2)) ⊕ WhTopS1 (M × (DV, rel SV )), (13)

such that the projection to the first summand is involutive. Note that we are asserting

nothing about the commutation of the second projection with the involution.

By making use of the collar of M × S2 in M × D3, we have a decomposition

WhTopS1 (M × (D3 ⊃ S2)) = WhTopS1 (M × (D3, rel S2)) ⊕ WhTopS1 (M × S2). (14)

The situation (especially the involution) is then similar to the Whitehead torsion of a

manifold with boundary. As above, since M × D3 and M × S2 have codimension ≥ 3

gaps, their topological Whitehead torsion groups may be identified with WhTop,EquiS1,ρ . Since

the projections M × S2 → M and M × D3 → M are isovariant π1-equivalences, the

projections induce isomorphisms of both summands with WhTop,EquiS1,ρ (M). By identifying

WhTop,EquiS1,ρ (M) with WhTopS1 (M), (14) then becomes

WhTopS1 (M × (D3 ⊃ S2)) ∼= WhTopS1 (M) ⊕ WhTopS1 (M). (15)

The isomorphism (the left of (12))

WhTopS1 (M×(DV, rel SV )) = WhTop,EquiS1,ρ (M×(DV, rel SV ))
proj∼= WhTop,EquiS1,ρ (M) = WhTopS1 (M),

may be combined with (13) and (15) to give rise to a decomposition

WhTopS1 (M × P ) ∼= WhTopS1 (M) ⊕ WhTopS1 (M) ⊕ WhTopS1 (M).

However, this is not what we want, because the map ×P : WhTopS1 (M) → WhTopS1 (M × P )

will not become a → (a, 2a, a) under such a decomposition.
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What we really want is to show that the composition proj ◦ (×CP2) at the bottom of

(12) is an isomorphism after localizing at 2. As a result, we have an isomorphism

WhTopS1 (M × (DV, rel SV ))(2) = WhTop,EquiS1,ρ (M × (DV, rel SV ))(2)

proj∼= WhTop,EquiS1,ρ (M)(2)

proj◦(×CP2)∼= WhTop,EquiS1,ρ (M)(2) = WhTopS1 (M)(2)

(16)

by first following the left and then following the bottom of (12). Then we will combine

(13), (15), and (16) to form a decomposition

WhTopS1 (M × P )(2)
∼= WhTopS1 (M)(2) ⊕ WhTopS1 (M)(2) ⊕ WhTopS1 (M)(2) = A ⊕ A ⊕ A. (17)

The composition proj ◦ (×CP2) may be extended to a natural map of the following

exact sequence (see [23]) relating topological and piecewise linear K-theoretical obstruc-

tions:

WhPL,EquiS1,ρ (M)c → WhPL,EquiS1,ρ (M) → WhTop,EquiS1,ρ (M) → K̃PL,Equi
0,S1,ρ (M)c → K̃PL,Equi

0,S1,ρ (M)

(18)

where the subscript c means controlled K-theory. It was explained in sections 7 and 14

of [12] that, as a categorical nonsense, the effect of proj ◦ (×CP2) on the equivariant

piecewise linear Whitehead torsion and finiteness obstructions comes from the module

structure on the relevant obstruction groups over the Euler ring of S1. Since the argument

of [12] is a categorical one, the conclusion also applies to controlled equivariant piecewise

linear Whitehead torsion and finiteness obstructions. Now the Euler numbers of CP2/S1

and (CP2)S
1

are 1 and 3, which implies that CP2 represents an invertible element of

the Euler ring after localizing at 2. Consequently, the composition proj ◦ (×CP2) is an

equivalence on the PL-terms in (18) after localizing at 2. By five lemma, this implies that

the composition at the bottom of (12) is an isomorphism after localizing at 2.

To describe the involution in (17), we observe that the projection to the first two

factors, being the restriction from M × P to M × (D3 ⊃ S2)), is involutive. As in the

case of manifold with boundary, the involution on the two factors is given by (α, β)∗ =

((−1)3α∗ + (−1)2β∗, β∗) = (−α∗ + β∗, β∗).

Although we feel that the isomorphism (16) is likely to be involutive, the proof is

not immediately obvious. Since we will not need this fact anyway, we denote by ′ the
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involution on A induced from the natural involution on WhTopS1 (M × DV, rel SV )(2) via

(16). The fact that the inclusion WhTopS1 (M ×DV, rel SV ) → WhTopS1 (M ×P ) is involutive

then implies that (0, 0, γ)∗ = (0, 0, γ′).

Thus to complete the description of the involution in (17), it remain to consider the

third coordinate of (α, β, 0)∗. Geometrically, this is the transfer of β along the projection

M × SV → M × S2:

WhTopS1 (M × S2)
trf→ WhTopS1 (M × SV )

incl→ WhTopS1 (M × DV, rel SV ). (19)

When the two ends of (19) are identified with A by projection and (16), this transfer is

our homomorphism λ.

To see λ2 = 0, we translate (19) to an equivalent map on WhTop,EquiS1,ρ , which becomes

the left side of the following diagram:

WhTop,EquiS1,ρ (M)(2)

proj ↑ ∼=
WhTop,EquiS1,ρ (M × S2)(2)

trf ↓
WhTop,EquiS1,ρ (M × SV )(2)

incl1← WhTop,EquiS1,ρ ((M − Ms) × SV )(2)

proj ↓ ↓ proj

WhTop,EquiS1,ρ (M)(2)
incl2← WhTop,EquiS1,ρ (M − Ms)(2)

proj◦(×CP2) ↑ ∼= ∼= ↑ proj◦(×CP2)

WhTop,EquiS1,ρ (M)(2)
incl3← WhTop,EquiS1,ρ (M − Ms)(2)

(20)

Since S1 acts freely on SV , M × SV and (M − Ms) × SV are free S1-spaces. There-

fore WhTop,EquiS1,ρ is the classical Whitehead group of the quotient space for these spaces.

Since the classical Whitehead group depends only on the fundamental group, and the

inclusion (M − Ms) × SV → M × SV is am isomorphism on π1, we conclude that incl1

is an isomorphism. It then follows from the commutativity of (20) that the image of λ

lies inside WhTop,EquiS1,ρ (M, rel Ms)(2). On the other hand, if we start from an element of

WhTop,EquiS1,ρ (M)(2) that comes from WhTop,EquiS1,ρ (M, rel Ms)(2), then the element is nontriv-

ial only over the free part of M . However, the fibre of (M × SV )/S1 → (M × S2)/S1 is

23



S1 over the free part ((M − Ms) × S2)/S1. This implies that the transfer is trivial, so

that λ vanishes on WhTop,EquiS1,ρ (M, rel Ms)(2). Consequently, λ2 = 0.

It remains to show that ×P sends a to (a, 2a, a) under the natural identifications.

Since G acts trivially on (D3 ⊃ S2), the commutative diagram (12) shows that the first

two coordinates of ×P is simply given by multiplying Euler numbers. This gives rise to

(a, 2a). Since the third coordinate of WhTopS1 (M × P ) is given by the isomorphism (16),

the third coordinate of ×P is by the very construction sending a to a.

This completes the proof of the lemma.

✷

Since localization at 2 does not change Tate cohomologies, the lemma 8 reduces the

destablization of the periodicity to the following algebraic computation.

Lemma 9 Suppose A is an abelian group, and ∗, ′ are two involutions on A. Suppose

λ : A → A is a homomorphism, such that

1. λ2 = 0;

2. (α, β, γ)∗ = (−α∗ + β∗, β∗, γ′ + λ(β)) is an involution on A ⊕ A ⊕ A;

3. φ(a) = (a, 2a, a), (A, ∗) → A ⊕ A ⊕ A is an involutive homomorphism.

Then the induced map φ∗ : Ĥ(Z2; A) → Ĥ(Z2; A ⊕ A ⊕ A) is an isomorphism. Moreover,

the inclusion ψ(a) = (0, 0, a), (A,′ ) → A ⊕ A ⊕ A also induces an isomorphism on the

Tate cohomology.

Although the lemma is not trivial, the proof is rather straightforward and is therefore

omitted here.

Finally, let us note that the remark made at the end of last section also applies to

the discussions in this section. Therefore the periodicity theorem 1 also applies to other

abelian groups. As a result, theorem 2 is proved.
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6 Naturality under the Restriction to Fixed Sets and

Subgroups

In this last section we prove the theorem 4.

The naturality in the theorem 4 means the commutativity of the following diagram

SWH(MH)
rest1←− SG(M)

rest2−→ SH(M)

|  (V H ,WH) |  (V,G) |  (V,H)

SWH(MH × DV H)
rest1←− SG(M × DV )

rest2−→ SH(M × DV )

(21)

where V = C2 is the representation from κ : G → S1, and the vertical maps are periodicity

equivalences corresponding to different groups and representations. The commutativity

of (21) will follow from the relation between the two restrictions (to fixed points and to

actions by subgroups) in (21) and the whole proof of the theorems 1 and 2.

The restriction of the stable structure to fixed points of subgroups comes as the fibre

of two compatible assembly maps

H(M/G; L−∞G (locM)) → L−∞G (M)

↓ rest1 ↓ rest1

H(M/G; L−∞WH((locM)H)) → L−∞WH(MH)

‖ ‖
H(MH/WH; L−∞WH(loc(MH))) → L−∞WH(MH)

(22)

The commutativity of the diagram comes from the obvious naturality of restriction for

the functor L−∞.

The effect of the restriction to the actions of subgroups on the assembly map is more

complicated. First we have the usual natural transformation

H(M/G; L−∞G (locGM)) → L−∞G (M)

↓ rest2 ↓ rest2

H(M/G; L−∞H (locGM)) → L−∞H (M)

(23)

Note that we use locGM to denote the local G-equivariant structure. If we restrict the

action to the subgroup H, then we have locGM = Gx ×H locHM . Now we apply the
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Fubini equivalence (constructed by induction on orbit type) to the stratified system of

fibrations Gx/H → M/H → M/G and obtain

H(M/G; L−∞H (locGM))

‖
H(M/G; L−∞H (Gx ×H locHM))

�↑ α
assemblies

=⇒ L−∞H (M)

H(M/G; H(Gx/H; L−∞H (locHM)))

‖Fubini

H(M/H; L−∞H (locHM))

(24)

where =⇒ means the natural assembly maps from the four homologies on the left to

the stable surgery obstruction. Moreover, α is the “partial assembly map” obtained by

applying the homology to the assembly map (considered as a natural transformation):

α0 : H(Gx/H; L−∞H (locHM)) → L−∞H (Gx ×H locHM).

Since both sides are products of Gx/H copies of L−∞H (locHM), α0 is an equivalence. The

naturality of the assembly map with respect to the Fubini equivalence (see Section 8 of

[19], and [27]) shows that the diagram (24) is commutative.

The fibre of the top of (23) is S−∞G (M). The fibre of the bottom of (24) is S−∞H (M).

Combining the diagrams (23) and (24) together we get a diagram whose induced map on

the fibre is the restriction map S−∞G → S−∞H .

In both restriction cases, the discussion above shows that the naturality problem for

the stable structure (i.e., the commutativity of (21) with S−∞ in place of S) is reduced to

the naturality problem for the stable surgery obstruction. Upon closer inspection, we see

that besides the natural properties of the homology theory described in [20] and [27], each

of the commutative squares involved is one of the two types: First, the “×Z” operation

(Z is a G-stratified space) is natural with respect to the restrictions:

L−∞WH(MH) ← L−∞G (M) → L−∞H (M)

↓ ×ZH ↓ ×Z ↓ ×Z
L−∞WH(MH × ZH) ← L−∞G (M × Z) → L−∞H (M × Z).

(25)
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Second, the inclusion operation is natural with respect to the restrictions (M is a G-

transverse subspace of N):

L−∞WH(MH) ← L−∞G (M) → L−∞H (M)

↓ incl ↓ incl ↓ incl

L−∞WH(NH) ← L−∞G (N) → L−∞H (N).

(26)

Such naturalities are obvious from the geometrical meaning of the operations. This com-

pletes the proof of the stable version of the theorem 4.

The naturality of the destablization process is more direct. This follows from the

commutativity of the naturality of the operations (1) with respect to the restrictions on

Whtop,≤0 (i.e., the commutativity of the diagrams (25) and (26) with Whtop,≤0 in place of

L−∞).

In conclusion, we see the periodicity in the theorem 2 is natural with respect to the

restriction to fixed points of subgroups and the restriction to the action of subgroups.

Since the periodicity in theorem 3 is obtained by repeatedly applying theorem 2, its

naturality with respect to the two restrictions is also true.
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