The Geometric Cone Relations of Polyhedra

Beifang Chen * and Min Yan ${ }^{\dagger}$
Department of Mathematics
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Let P be a d-dimensional polytope of the Euclidean space \mathbf{R}^{n}. For each $i=-1,0, \cdots, d-1$, let $f_{j}(P)$ denote the number of j-faces of P. The empty set \emptyset, usually denoted $\hat{0}$, is the unique face of P of dimension -1 . It is well known that the Dehn-Sommervile equations

$$
\begin{equation*}
f_{i}(P)=\sum_{j=i}^{d-1}(-1)^{d-1-j}\binom{j+1}{i+1} f_{j}(P), i=-1, \cdots, d-1 \tag{1}
\end{equation*}
$$

are the only linear relations on the f-vectors $\left(f_{-1}, f_{0}, f_{1}, \cdots, f_{d-1}\right)$ of convex polytopes [B]. These relations are naturally generalized by using cone functions in [Ch]. The numerical form of these cone relations by taking certain integration over the unit ball of $\langle P\rangle$ are the angle-sum relations

$$
\begin{equation*}
f_{i}(P)-\alpha_{i}(P)=\sum_{j=i}^{d-1}(-1)^{d-1-j}\binom{j+1}{i+1} \alpha_{j}(P), i=-1, \cdots, d-1 \tag{2}
\end{equation*}
$$

The purpose of this note is to generalize these relations to simplicial complexes and cubical complexes both in cone functions and angles.

Throughout we denote by \mathbf{V} a finite dimensional vector space over an ordered field \mathbf{F} with an inner product \langle,$\rangle . The topology of \mathbf{V}$ is that of generated by the order topology of the ordered field \mathbf{F}. The indicator function of a subset E of \mathbf{V} is the characteristic function 1_{E} on \mathbf{V}, i.e., $1_{E}(x)=1$ for $x \in E$ and $1_{E}(x)=0$ otherwise. By a polyhedra we mean a subset of \mathbf{V} which can be obtained by taking unions, intersections, and complements

[^0]finitely many times of open half-spaces $\{x \in \mathbf{V} \mid \varphi(x)<0\}$, where φ is a linear function on \mathbf{V}. The interior of a convex polyhedron in the affine subspace that it spans is called a relatively open convex polyhedron. We use \mathcal{P} to denote the class of all relatively open convex polyhedra.

Let P be a relatively open polytope of \mathbf{V}. A relatively open polytope F is said to be a face of P if the closure \bar{F} of F is a face of \bar{P} in the ordinary sense, and this is denoted by $F \leq P$ or $P \geq F$. We shall consider the interior cone $C(F, P)$ and exterior cone $C^{*}(F, P)$ of P near its face F, which are defined by

$$
\begin{gathered}
C(F, P)=\{v \in \mathbf{V} \mid \exists x \in F, y \in P, t>0 \text { s.t. } t v=y-x\} \\
C^{*}(F, P)=\{v \in V \mid\langle u, v\rangle \leq 0, \forall u \in C(F, P)\}
\end{gathered}
$$

Note that when $F=P, C(F, F)$ is a vector subspace of $\operatorname{dimension} \operatorname{dim} F$, and is denoted $\langle F\rangle$. The intrinsic interior cone $C^{\wedge}(F, P)$ in [B, M2] and exterior cone $C^{\vee}(F, P)$ of P near its face F are also considered and they are defined by

$$
\begin{aligned}
C^{\wedge}(F, P) & =\langle F\rangle^{\perp} \cap C(F, P) \\
C^{\vee}(F, P) & =C^{*}(F, P) \cap\langle P\rangle
\end{aligned}
$$

We denote the indicator functions of the cones $C(F, P), C^{*}(F, P), C^{\wedge}(F, P)$, and $\operatorname{ri}\left(C^{\vee}(F, P)\right)$ by $T(F, P), K(F, P), A(F, P)$, and $B(F, P)$, respectively. These functions on \mathbf{V} are the elements of the Minkowski algebra $S(\mathbf{V}, \mathcal{P})$ which is the vector space generated by the indicator functions of members of \mathcal{P}, and the multiplication is the convolution induced by the vector addition of \mathbf{V}. There is a linear functional χ, called the Euler characteristic, on $S(\mathbf{V}, \mathcal{P})$ such that $\chi\left(1_{P}\right)=(-1)^{\operatorname{dim} P}$ for each relatively open convex polyhedron. There are three useful operators, reflection ${ }^{-}$, closure $^{-}$, and dual * on $S(\mathbf{V}, \mathcal{P})$, defined by

$$
\begin{gathered}
f^{-}(x)=\chi\left(f \cdot 1_{\{-x\}}\right), \forall x \in \mathbf{V}, \\
\bar{f}(x)=\lim _{r \rightarrow 0} \chi\left(f \cdot 1_{B(x, r)}\right), \forall x \in \mathbf{V}, \\
f^{*}(x)=\chi\left(f \cdot 1_{\{v \in \mathbf{V} \mid\langle x, v\rangle \leq 0\}}\right), \forall x \in \mathbf{V},
\end{gathered}
$$

where $B(x, r)$ is the closed ball of radius r centered at x.
Let X be a polyhedron of \mathbf{V}. A regular decomposition of X is a collection \mathcal{D} of disjoint relatively open convex polyhedra such that $X=\bigcup_{P \in \mathcal{D}}$ and the
collection $\mathcal{F}(X, \mathcal{D})=\{G \mid G \leq P \in \mathcal{D}\}$ is also disjoint. The set $\mathcal{F}=\mathcal{F}(X, \mathcal{D})$ is called the face system of X with respect to the decomposition \mathcal{D}. Note that X is closed if and only if $\mathcal{F}(X, \mathcal{D})=\mathcal{D}$. In fact, \mathcal{F} is a regular decomposition of \bar{X}, the closure of X. The cone $C(F, X)$ of X near a face $F \in \mathcal{F}(X, \mathcal{D})$ is the disjoint union of $C(F, \mathcal{D})=\{C(F, G) \mid F \leq G \in \mathcal{D}\} . C(F, X)$ is a closed cone if and only if $F \in \mathcal{D}$. The face system of $C(F, \mathcal{D})$ is isomorphic to the face poset $\check{F}=\{G \in \mathcal{F} \mid F \leq G\}$ of X near F. Let f be an incidence function with values in the commutative ring R, i.e., $f(F, P)=0$ if F is not a face of P, we associate with f another incidence function f^{\prime}, defined by

$$
f^{\prime}(F, P)=(-1)^{\operatorname{dim} P-\operatorname{dim} F} f(F, P), \forall F \leq P
$$

For each face $F \in \mathcal{F}(X, \mathcal{D})$ and $j=0,1, \cdots, \operatorname{dim} X$, we define

$$
\begin{gathered}
f(F, X)=\sum_{F \leq G \in \mathcal{D}} f(F, G), \\
f_{j}(X)=\sum_{F \in \mathcal{F}, \operatorname{dim} F=j} f(F, X) .
\end{gathered}
$$

For example, if f is the function T, then $T(F, X)$ is the characteristic function of the tangent cone of X near F, and the $T_{j}(X)$ is the sum of the characteristic functions of tangent cones of X near its all j-dimensional faces.

Proposition 1 Let X be a polyhedron with a regular decomposition \mathcal{D}. Then

$$
\begin{equation*}
\sum_{F \leq G \in \mathcal{F}}(-1)^{\operatorname{dim} G} T(G, X)=\bar{T}(-F,-X)=\bar{T}^{-}(F, X) \tag{3}
\end{equation*}
$$

Proof For each pair (G, P) of relatively open faces such that $F \leq G \leq$ $P \in \mathcal{D}$, it claer that $C(G, P)=C(C(F, G), C(F, P))$. Then $C(G, X)=$ $C(C(F, G), C(F, X))$. So the left side of (??) can be written as

$$
\sum_{C(F, F) \leq C(F, G) \in C(F, \mathcal{F})}(-1)^{\operatorname{dim} C(F, G)} T(C(F, G), C(F, X))
$$

With the generalized Gram-Sommerville theorem [Ch1] and the definition of the cone near ∞, the left side of (??) is then equal to

$$
\chi(C(F, X)) 1_{\{o\}}-\sum_{C(F, F) \leq C(F, P) \in C(F, \mathcal{D})} T_{C(F, P)}(\infty)
$$

Note that $C(F, \mathcal{F})$ is in one-to-one correspondent with \check{F} and $\operatorname{dim} C(F, G)=$ $\operatorname{dim} G$ for every $G \in \check{F}$. We have

$$
\chi(\check{F}) 1_{\{o\}}-\sum_{F \leq P \in \mathcal{D}}\left[(-1)^{\operatorname{dim} P}-(-1)^{\operatorname{dim} P} 1_{C(\infty, C(F, P))}\right]
$$

Since $C(F, P)$ are convex cones, then $C(\infty, C(F, P))=-\operatorname{cl}[C(F, P)]$. So the left side of (??) becomes

$$
\sum_{F \leq P \in \mathcal{D}}(-1)^{\operatorname{dim} P} 1_{-\mathrm{cl}[C(F, P)]}=\sum_{F \leq P \in \mathcal{D}} \bar{T}(-F,-P)=\bar{T}(-F,-\check{F})
$$

Q.E.D.

Now we take the sum on both sides of (??) over all i-dimensional faces of X, the left side can be written as

$$
\begin{aligned}
& \sum_{G \in \mathcal{F}, \operatorname{dim}}(-1)^{\operatorname{dim} G} \sum_{F \leq G, \operatorname{dim} F=i} T(G, X) \\
& \quad=\sum_{j=i}^{\operatorname{dim} X} \sum_{G \in \mathcal{F}, \operatorname{dim} G=j}(-1)^{j}\binom{j+1}{i+1} T(G, X) \\
& \quad=\sum_{j=i}^{\operatorname{dim} X}(-1)^{j}\binom{j+1}{i+1} T_{j}(X)
\end{aligned}
$$

Then we have obtain the geometric cone relations for an arbitrary polyhedron of the following theorem.

Theorem 2 Let X be a polyhedron with a regular decomposition \mathcal{D}, then for each $i=0,1, \cdots, \operatorname{dim} X$,

$$
\begin{equation*}
\bar{T}_{i}^{-}(X)=\sum_{j=i}^{\operatorname{dim} X}(-1)^{j}\binom{j+1}{i+1} T_{j}(X) \tag{4}
\end{equation*}
$$

Q.E.D.

Let the closure operator act on (??). We then have

Proposition 3

$$
\begin{equation*}
\sum_{F \leq G \in \mathcal{F}}(-1)^{\operatorname{dim} G} \bar{T}(G, X)=T(-F,-X)=T^{-}(F, X) \tag{5}
\end{equation*}
$$

Q.E.D.

If we take the sum again on both sides of (??) over all i-dimensional faces of X, we obtain the geometric relations with closed tangent cones.

Theorem 4 If X is a polyhedron with a regular decomposition \mathcal{D}, then for each $i=0,1, \cdots, \operatorname{dim} X$,

$$
\begin{equation*}
T_{i}^{-}(X)=\sum_{j=i}^{\operatorname{dim} X}(-1)^{j}\binom{j+1}{i+1} \bar{T}_{j}(X) \tag{6}
\end{equation*}
$$

Q.E.D.

With the generalized Gauss-Bonnet formula [Ch] there are dual versions of (??) and (??). These formulas can be obtained by applying the dual operator $*$ to both sides of the (??). Note that $\left(1_{C}\right)^{*}=(-1)^{\operatorname{dim} C} 1_{C^{*}}$ for any relatively open convex polyhedral cone C. Then

$$
\begin{aligned}
T^{*}(F, P) & =(-1)^{\operatorname{dim} P} \bar{K}(F, P)(-1)^{\operatorname{dim} C^{*}(F, P)} \\
& =(-1)^{\operatorname{dim} V+\operatorname{dim} P-\operatorname{dim} F} \bar{K}(F, P) \\
& =(-1)^{\operatorname{dim} V} \bar{K}^{\prime}(F, P) \\
\bar{T}^{*}(F, P) & =(-1)^{\operatorname{dim} P} \sum_{F \leq G \leq P} T^{*}(F, G) \\
& =(-1)^{\operatorname{dim} V-\operatorname{dim} P} \sum_{F \leq G \leq P} \bar{K}^{\prime}(F, G) . \\
& =(-1)^{\operatorname{dim} P-\operatorname{dim} F} K(-F,-P) \\
& =K^{\prime-}(F, P) .
\end{aligned}
$$

Thus we have the following prposition for exterior cones functions.

Proposition 5 For any polyhedron with a regular decomposition \mathcal{D},

$$
\begin{equation*}
\sum_{F \leq G \in \mathcal{F}}(-1)^{\operatorname{dim} G} \bar{K}^{\prime}(G, X)=(-1)^{\operatorname{dim} V} K^{\prime}(F, X) . \tag{7}
\end{equation*}
$$

When we apply the closure operator on both sides of (??) we have
Proposition 6 For any polyhedron X with a redular decomposition \mathcal{D},

$$
\begin{equation*}
\sum_{F \leq G \in \mathcal{F}}(-1)^{\operatorname{dim} G} K^{\prime}(G, X)=(-1)^{\operatorname{dim} V} \bar{K}^{\prime}(F, X) . \tag{8}
\end{equation*}
$$

We thus have the exterior cone function relations.
Theorem 7 If X is a polyhedron with a simplicial decomposition, then for each $i=0,1, \cdots, \operatorname{dim} X$,

$$
\begin{align*}
& \sum_{j=i}^{\operatorname{dim} X}(-1)^{j}\binom{j+1}{i+1} K_{j}^{\prime}(X)=(-1)^{\operatorname{dim} V} \bar{K}_{i}^{\prime}(X) . \tag{9}\\
& \sum_{j=i}^{\operatorname{dim} X}(-1)^{j}\binom{j+1}{i+1} \bar{K}_{j}^{\prime}(X)=(-1)^{\operatorname{dim} V} K_{i}^{\prime}(X) . \tag{10}
\end{align*}
$$

We consider numerical angles of these tangent cones of X.
Let C be a k-dimensional relatively open convex cone of \mathbf{V}. The angle $\alpha(C)$ of C is defined as the normalized k-dimensional Lebesgue measure of C in the unit ball of $\langle C\rangle$, i.e.,

$$
\alpha(C)=\operatorname{vol}_{k}(C \cap B(o, 1)) / \operatorname{vol}_{k}(B(o, 1)) .
$$

For each relatively open polyheron pair $F \leq P$, we denote the angles of the cones $C(F, P)$ and $C^{*}(F, P)$ by $\alpha(F, P)$ and $\beta(F, P)$ respectively. Note that the angles $C^{\wedge}(F, P)$ and $C^{\vee}(F, P)$ are the same as $\alpha(F, P)$ and $\beta(F, P)$.

For a single relatively open convex polyhedron $P \in \mathcal{D}$ such that $F \leq P$, as a special case of the equation (), we have

$$
\sum_{F \leq G \leq P}(-1)^{\operatorname{dim} G} \bar{T}(G, P)=T^{-}(F, P)
$$

Integrate both sides of the equation above, we then have

$$
\sum_{F \leq G \leq P} \alpha^{\prime}(G, P)=\alpha(F, P)
$$

For each $F \in \mathcal{F}(X, \mathcal{D})$, if the tangent cone functions of X near F are defined as

$$
\begin{aligned}
\alpha(F, X) & =\sum_{F \leq P \in \mathcal{D}} \alpha(F, P), \\
\alpha^{\prime}(F, X) & =\sum_{F \leq P \in \mathcal{D}} \alpha^{\prime}(F, P),
\end{aligned}
$$

we thn have the proposition.

Proposition 8

$$
\begin{equation*}
\sum_{F \leq G \in \mathcal{F}} \alpha^{\prime}(G, X)=\alpha(F, X) \tag{11}
\end{equation*}
$$

Let the face F in (??) be extended over all i-dimensional faces of X, we then have

Theorem 9 Let X be a polyhedron with a simplicial decomposition \mathcal{D}, then for $i=0,1, \cdots, \operatorname{dim} X$,

$$
\alpha_{i}(X)=\sum_{j=i}^{\operatorname{dim} X}\binom{j+1}{i+1} \alpha_{j}^{\prime}(X)
$$

References

[1] B. F. Chen, The Gram-Sommerville and Gauss-Bonnet theorems and combinatorial geometric measures for noncompact polyhedra, Adv. in Math. 91(1992), 269-291.
[2] B. F. Chen, The incidence algebra of polyhedra and Minkowski algebra, Adv. in Math., to appear.
[3] B. F. Chen, The Minkowski algebra of convex sets, preprint of MIT, May 1992.
[4] B. Grünbaum, "Convex polytopes," John Wiley \& Sons, Ltd., New York, 1967.
[5] P. McMullen, Angle-sum relations for polyhedral sets, Mathematika 33 (1986), 173-188.
[6] M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. 2 (1967), 198-218.
[7] S. Schanuel, Negative sets have Euler characteristic and dimension, Lecture Notes in mathematics, no. 1488, Springer-Verlag, New York, 1991.

[^0]: *Research is supported by HKUST 595/94P.
 ${ }^{\dagger}$ Research is supported by HKUST 632/94P.

