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Let P be a d-dimensional polytope of the Euclidean space Rn. For each
i = −1, 0, · · · , d−1, let fj(P ) denote the number of j-faces of P . The empty
set ∅, usually denoted 0̂, is the unique face of P of dimension −1. It is well
known that the Dehn-Sommervile equations

fi(P ) =
d−1∑
j=i

(−1)d−1−j
(

j + 1
i + 1

)
fj(P ), i = −1, · · · , d − 1 (1)

are the only linear relations on the f -vectors (f−1, f0, f1, · · · , fd−1) of convex
polytopes [B]. These relations are naturally generalized by using cone func-
tions in [Ch]. The numerical form of these cone relations by taking certain
integration over the unit ball of 〈P 〉 are the angle-sum relations

fi(P ) − αi(P ) =
d−1∑
j=i

(−1)d−1−j
(

j + 1
i + 1

)
αj(P ), i = −1, · · · , d − 1 (2)

The purpose of this note is to generalize these relations to simplicial
complexes and cubical complexes both in cone functions and angles.

Throughout we denote by V a finite dimensional vector space over an
ordered field F with an inner product 〈, 〉. The topology of V is that of gen-
erated by the order topology of the ordered field F. The indicator function
of a subset E of V is the characteristic function 1E on V, i.e., 1E(x) = 1
for x ∈ E and 1E(x) = 0 otherwise. By a polyhedra we mean a subset of
V which can be obtained by taking unions, intersections, and complements
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finitely many times of open half-spaces {x ∈ V|ϕ(x) < 0}, where ϕ is a
linear function on V. The interior of a convex polyhedron in the affine sub-
space that it spans is called a relatively open convex polyhedron. We use P
to denote the class of all relatively open convex polyhedra.

Let P be a relatively open polytope of V. A relatively open polytope
F is said to be a face of P if the closure F̄ of F is a face of P̄ in the
ordinary sense, and this is denoted by F ≤ P or P ≥ F . We shall consider
the interior cone C(F, P ) and exterior cone C∗(F, P ) of P near its face F ,
which are defined by

C(F, P ) = {v ∈ V | ∃x ∈ F, y ∈ P, t > 0 s.t. tv = y − x},

C∗(F, P ) = {v ∈ V | 〈u, v〉 ≤ 0,∀u ∈ C(F, P )}
Note that when F = P , C(F, F ) is a vector subspace of dimension dimF ,
and is denoted 〈F 〉. The intrinsic interior cone C∧(F, P ) in [B, M2] and
exterior cone C∨(F, P ) of P near its face F are also considered and they are
defined by

C∧(F, P ) = 〈F 〉⊥ ∩ C(F, P ),

C∨(F, P ) = C∗(F, P ) ∩ 〈P 〉.
We denote the indicator functions of the cones C(F, P ), C∗(F, P ), C∧(F, P ),
and ri(C∨(F, P )) by T (F, P ), K(F, P ), A(F, P ), and B(F, P ), respectively.
These functions on V are the elements of the Minkowski algebra S(V,P)
which is the vector space generated by the indicator functions of members
of P, and the multiplication is the convolution induced by the vector addi-
tion of V. There is a linear functional χ, called the Euler characteristic, on
S(V,P) such that χ(1P ) = (−1)dim P for each relatively open convex poly-
hedron. There are three useful operators, reflection −, closure ,̄ and dual ∗

on S(V,P), defined by

f−(x) = χ(f · 1{−x}),∀x ∈ V,

f̄(x) = lim
r→0

χ(f · 1B(x,r)),∀x ∈ V,

f∗(x) = χ(f · 1{v∈V|〈x,v〉≤0}),∀x ∈ V,

where B(x, r) is the closed ball of radius r centered at x.
Let X be a polyhedron of V. A regular decomposition of X is a collection

D of disjoint relatively open convex polyhedra such that X =
⋃

P∈D and the
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collection F(X,D) = {G|G ≤ P ∈ D} is also disjoint. The set F = F(X,D)
is called the face system of X with respect to the decomposition D. Note that
X is closed if and only if F(X,D) = D. In fact, F is a regular decomposition
of X̄, the closure of X. The cone C(F, X) of X near a face F ∈ F(X,D) is
the disjoint union of C(F,D) = {C(F, G)|F ≤ G ∈ D}. C(F, X) is a closed
cone if and only if F ∈ D. The face system of C(F,D) is isomorphic to the
face poset F̌ = {G ∈ F|F ≤ G} of X near F . Let f be an incidence function
with values in the commutative ring R, i.e., f(F, P ) = 0 if F is not a face
of P , we associate with f another incidence function f ′, defined by

f ′(F, P ) = (−1)dim P−dim F f(F, P ),∀F ≤ P.

For each face F ∈ F(X,D) and j = 0, 1, · · · ,dimX, we define

f(F, X) =
∑

F≤G∈D
f(F, G),

fj(X) =
∑

F∈F ,dim F=j

f(F, X).

For example, if f is the function T , then T (F, X) is the characteristic func-
tion of the tangent cone of X near F , and the Tj(X) is the sum of the
characteristic functions of tangent cones of X near its all j-dimensional
faces.

Proposition 1 Let X be a polyhedron with a regular decomposition D.
Then ∑

F≤G∈F
(−1)dim GT (G, X) = T̄ (−F,−X) = T̄−(F, X) (3)

Proof For each pair (G, P ) of relatively open faces such that F ≤ G ≤
P ∈ D, it claer that C(G, P ) = C(C(F, G), C(F, P )). Then C(G, X) =
C(C(F, G), C(F, X)). So the left side of (??) can be written as

∑
C(F,F )≤C(F,G)∈C(F,F)

(−1)dim C(F,G)T (C(F, G), C(F, X)).

With the generalized Gram-Sommerville theorem [Ch1] and the definition
of the cone near ∞, the left side of (??) is then equal to
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χ(C(F, X))1{o} −
∑

C(F,F )≤C(F,P )∈C(F,D)

TC(F,P )(∞).

Note that C(F,F) is in one-to-one correspondent with F̌ and dimC(F, G) =
dimG for every G ∈ F̌ . We have

χ(F̌ )1{o} −
∑

F≤P∈D

[
(−1)dim P − (−1)dim P 1C(∞,C(F,P ))

]
.

Since C(F, P ) are convex cones, then C(∞, C(F, P )) = −cl[C(F, P )]. So
the left side of (??) becomes

∑
F≤P∈D

(−1)dim P 1−cl[C(F,P )] =
∑

F≤P∈D
T̄ (−F,−P ) = T̄ (−F,−F̌ ).

Q.E.D.

Now we take the sum on both sides of (??) over all i-dimensional faces
of X, the left side can be written as

∑
G∈F ,dim G≥i

(−1)dim G
∑

F≤G,dim F=i

T (G, X)

=
dim X∑
j=i

∑
G∈F ,dim G=j

(−1)j
(

j + 1
i + 1

)
T (G, X)

=
dim X∑
j=i

(−1)j
(

j + 1
i + 1

)
Tj(X).

Then we have obtain the geometric cone relations for an arbitrary polyhe-
dron of the following theorem.

Theorem 2 Let X be a polyhedron with a regular decomposition D, then
for each i = 0, 1, · · · ,dimX,

T̄−
i (X) =

dim X∑
j=i

(−1)j
(

j + 1
i + 1

)
Tj(X). (4)
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Q.E.D.

Let the closure operator act on (??). We then have

Proposition 3∑
F≤G∈F

(−1)dim GT̄ (G, X) = T (−F,−X) = T−(F, X). (5)

Q.E.D.

If we take the sum again on both sides of (??) over all i-dimensional
faces of X, we obtain the geometric relations with closed tangent cones.

Theorem 4 If X is a polyhedron with a regular decomposition D, then for
each i = 0, 1, · · · ,dimX,

T−
i (X) =

dim X∑
j=i

(−1)j
(

j + 1
i + 1

)
T̄j(X). (6)

Q.E.D.

With the generalized Gauss-Bonnet formula [Ch] there are dual versions
of (??) and (??). These formulas can be obtained by applying the dual
operator ∗ to both sides of the (??). Note that (1C)∗ = (−1)dim C1C∗ for
any relatively open convex polyhedral cone C. Then

T ∗(F, P ) = (−1)dim P K̄(F, P )(−1)dim C∗(F,P )

= (−1)dim V +dim P−dim F K̄(F, P )
= (−1)dim V K̄ ′(F, P ).

T̄ ∗(F, P ) = (−1)dim P
∑

F≤G≤P

T ∗(F, G)

= (−1)dim V −dim P
∑

F≤G≤P

K̄ ′(F, G).

= (−1)dim P−dim F K(−F,−P )
= K ′−(F, P ).

Thus we have the following prposition for exterior cones functions.
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Proposition 5 For any polyhedron with a regular decomposition D,
∑

F≤G∈F
(−1)dim GK̄ ′(G, X) = (−1)dim V K ′(F, X). (7)

When we apply the closure operator on both sides of (??) we have

Proposition 6 For any polyhedron X with a redular decomposition D,
∑

F≤G∈F
(−1)dim GK ′(G, X) = (−1)dim V K̄ ′(F, X). (8)

We thus have the exterior cone function relations.

Theorem 7 If X is a polyhedron with a simplicial decomposition, then for
each i = 0, 1, · · · ,dimX,

dim X∑
j=i

(−1)j
(

j + 1
i + 1

)
K ′

j(X) = (−1)dim V K̄ ′
i(X). (9)

dim X∑
j=i

(−1)j
(

j + 1
i + 1

)
K̄ ′

j(X) = (−1)dim V K ′
i(X). (10)

We consider numerical angles of these tangent cones of X.
Let C be a k-dimensional relatively open convex cone of V. The angle

α(C) of C is defined as the normalized k-dimensional Lebesgue measure of
C in the unit ball of 〈C〉, i.e.,

α(C) = volk(C ∩ B(o, 1))/volk(B(o, 1)).

For each relatively open polyheron pair F ≤ P , we denote the angles of the
cones C(F, P ) and C∗(F, P ) by α(F, P ) and β(F, P ) respectively. Note that
the angles C∧(F, P ) and C∨(F, P ) are the same as α(F, P ) and β(F, P ).

For a single relatively open convex polyhedron P ∈ D such that F ≤ P ,
as a special case of the equation (), we have

∑
F≤G≤P

(−1)dim GT̄ (G, P ) = T−(F, P ).

Integrate both sides of the equation above, we then have
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∑
F≤G≤P

α′(G, P ) = α(F, P ).

For each F ∈ F(X,D), if the tangent cone functions of X near F are defined
as

α(F, X) =
∑

F≤P∈D
α(F, P ),

α′(F, X) =
∑

F≤P∈D
α′(F, P ),

we thn have the proposition.

Proposition 8 ∑
F≤G∈F

α′(G, X) = α(F, X). (11)

Let the face F in (??) be extended over all i-dimensional faces of X, we
then have

Theorem 9 Let X be a polyhedron with a simplicial decomposition D, then
for i = 0, 1, · · · ,dimX,

αi(X) =
dim X∑
j=i

(
j + 1
i + 1

)
α′

j(X).
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