The Geometric Cone Relations of Polyhedra

Beifang Chen * and Min Yan †

Department of Mathematics Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong

Let P be a d-dimensional polytope of the Euclidean space \mathbb{R}^n . For each $i = -1, 0, \dots, d-1$, let $f_j(P)$ denote the number of j-faces of P. The empty set \emptyset , usually denoted $\hat{0}$, is the unique face of P of dimension -1. It is well known that the Dehn-Sommervile equations

$$f_i(P) = \sum_{j=i}^{d-1} (-1)^{d-1-j} {j+1 \choose i+1} f_j(P), i = -1, \cdots, d-1$$
(1)

are the only linear relations on the f-vectors $(f_{-1}, f_0, f_1, \dots, f_{d-1})$ of convex polytopes [B]. These relations are naturally generalized by using cone functions in [Ch]. The numerical form of these cone relations by taking certain integration over the unit ball of $\langle P \rangle$ are the angle-sum relations

$$f_i(P) - \alpha_i(P) = \sum_{j=i}^{d-1} (-1)^{d-1-j} {j+1 \choose i+1} \alpha_j(P), i = -1, \cdots, d-1 \qquad (2)$$

The purpose of this note is to generalize these relations to simplicial complexes and cubical complexes both in cone functions and angles.

Throughout we denote by \mathbf{V} a finite dimensional vector space over an ordered field \mathbf{F} with an inner product \langle, \rangle . The topology of \mathbf{V} is that of generated by the order topology of the ordered field \mathbf{F} . The *indicator* function of a subset E of \mathbf{V} is the characteristic function 1_E on \mathbf{V} , i.e., $1_E(x) = 1$ for $x \in E$ and $1_E(x) = 0$ otherwise. By a *polyhedra* we mean a subset of \mathbf{V} which can be obtained by taking unions, intersections, and complements

^{*}Research is supported by HKUST 595/94P.

[†]Research is supported by HKUST 632/94P.

finitely many times of open half-spaces $\{x \in \mathbf{V} | \varphi(x) < 0\}$, where φ is a linear function on \mathbf{V} . The interior of a convex polyhedron in the affine subspace that it spans is called a *relatively open* convex polyhedron. We use \mathcal{P} to denote the class of all relatively open convex polyhedra.

Let P be a relatively open polytope of \mathbf{V} . A relatively open polytope F is said to be a *face* of P if the closure \overline{F} of F is a face of \overline{P} in the ordinary sense, and this is denoted by $F \leq P$ or $P \geq F$. We shall consider the *interior* cone C(F, P) and *exterior* cone $C^*(F, P)$ of P near its face F, which are defined by

$$C(F,P) = \{ v \in \mathbf{V} \mid \exists x \in F, y \in P, t > 0 \text{ s.t. } tv = y - x \},$$
$$C^*(F,P) = \{ v \in V \mid \langle u, v \rangle \le 0, \forall u \in C(F,P) \}$$

Note that when F = P, C(F, F) is a vector subspace of dimension dim F, and is denoted $\langle F \rangle$. The *intrinsic* interior cone $C^{\wedge}(F, P)$ in [B, M2] and exterior cone $C^{\vee}(F, P)$ of P near its face F are also considered and they are defined by

$$C^{\wedge}(F,P) = \langle F \rangle^{\perp} \cap C(F,P),$$
$$C^{\vee}(F,P) = C^{*}(F,P) \cap \langle P \rangle.$$

We denote the indicator functions of the cones C(F, P), $C^*(F, P)$, $C^{\wedge}(F, P)$, and $\operatorname{ri}(C^{\vee}(F, P))$ by T(F, P), K(F, P), A(F, P), and B(F, P), respectively. These functions on \mathbf{V} are the elements of the Minkowski algebra $S(\mathbf{V}, \mathcal{P})$ which is the vector space generated by the indicator functions of members of \mathcal{P} , and the multiplication is the convolution induced by the vector addition of \mathbf{V} . There is a linear functional χ , called the *Euler characteristic*, on $S(\mathbf{V}, \mathcal{P})$ such that $\chi(1_P) = (-1)^{\dim P}$ for each relatively open convex polyhedron. There are three useful operators, reflection -, closure, and dual * on $S(\mathbf{V}, \mathcal{P})$, defined by

$$f^{-}(x) = \chi(f \cdot 1_{\{-x\}}), \forall x \in \mathbf{V},$$
$$\bar{f}(x) = \lim_{r \to 0} \chi(f \cdot 1_{B(x,r)}), \forall x \in \mathbf{V},$$
$$f^{*}(x) = \chi(f \cdot 1_{\{v \in \mathbf{V} \mid \langle x, v \rangle \leq 0\}}), \forall x \in \mathbf{V},$$

where B(x, r) is the closed ball of radius r centered at x.

Let X be a polyhedron of V. A regular decomposition of X is a collection \mathcal{D} of disjoint relatively open convex polyhedra such that $X = \bigcup_{P \in \mathcal{D}}$ and the

collection $\mathcal{F}(X, \mathcal{D}) = \{G | G \leq P \in \mathcal{D}\}$ is also disjoint. The set $\mathcal{F} = \mathcal{F}(X, \mathcal{D})$ is called the *face system* of X with respect to the decomposition \mathcal{D} . Note that X is closed if and only if $\mathcal{F}(X, \mathcal{D}) = \mathcal{D}$. In fact, \mathcal{F} is a regular decomposition of \bar{X} , the closure of X. The cone C(F, X) of X near a face $F \in \mathcal{F}(X, \mathcal{D})$ is the disjoint union of $C(F, \mathcal{D}) = \{C(F, G) | F \leq G \in \mathcal{D}\}$. C(F, X) is a closed cone if and only if $F \in \mathcal{D}$. The face system of $C(F, \mathcal{D})$ is isomorphic to the face poset $\check{F} = \{G \in \mathcal{F} | F \leq G\}$ of X near F. Let f be an incidence function with values in the commutative ring R, i.e., f(F, P) = 0 if F is not a face of P, we associate with f another incidence function f', defined by

$$f'(F,P) = (-1)^{\dim P - \dim F} f(F,P), \forall F \le P.$$

For each face $F \in \mathcal{F}(X, \mathcal{D})$ and $j = 0, 1, \dots, \dim X$, we define

$$f(F,X) = \sum_{F \le G \in \mathcal{D}} f(F,G),$$

$$f_j(X) = \sum_{F \in \mathcal{F}, \dim F = j} f(F, X).$$

For example, if f is the function T, then T(F, X) is the characteristic function of the tangent cone of X near F, and the $T_j(X)$ is the sum of the characteristic functions of tangent cones of X near its all j-dimensional faces.

Proposition 1 Let X be a polyhedron with a regular decomposition \mathcal{D} . Then

$$\sum_{F \le G \in \mathcal{F}} (-1)^{\dim G} T(G, X) = \bar{T}(-F, -X) = \bar{T}^{-}(F, X)$$
(3)

Proof For each pair (G, P) of relatively open faces such that $F \leq G \leq P \in \mathcal{D}$, it claer that C(G, P) = C(C(F, G), C(F, P)). Then C(G, X) = C(C(F, G), C(F, X)). So the left side of $(\ref{eq: Constraint})$ can be written as

$$\sum_{C(F,F) \le C(F,G) \in C(F,\mathcal{F})} (-1)^{\dim C(F,G)} T(C(F,G), C(F,X)).$$

With the generalized Gram-Sommerville theorem [Ch1] and the definition of the cone near ∞ , the left side of (??) is then equal to

$$\chi(C(F,X))1_{\{o\}} - \sum_{C(F,F) \leq C(F,P) \in C(F,\mathcal{D})} T_{C(F,P)}(\infty).$$

Note that $C(F, \mathcal{F})$ is in one-to-one correspondent with \check{F} and dim $C(F, G) = \dim G$ for every $G \in \check{F}$. We have

$$\chi(\check{F})1_{\{o\}} - \sum_{F \le P \in \mathcal{D}} \left[(-1)^{\dim P} - (-1)^{\dim P} 1_{C(\infty, C(F, P))} \right].$$

Since C(F, P) are convex cones, then $C(\infty, C(F, P)) = -cl[C(F, P)]$. So the left side of (??) becomes

$$\sum_{F \le P \in \mathcal{D}} (-1)^{\dim P} \mathbb{1}_{-\operatorname{cl}[C(F,P)]} = \sum_{F \le P \in \mathcal{D}} \bar{T}(-F,-P) = \bar{T}(-F,-\check{F}).$$
Q.E.D.

Now we take the sum on both sides of (??) over all *i*-dimensional faces of X, the left side can be written as

$$\sum_{G \in \mathcal{F}, \dim G \ge i} (-1)^{\dim G} \sum_{F \le G, \dim F = i} T(G, X)$$
$$= \sum_{j=i}^{\dim X} \sum_{G \in \mathcal{F}, \dim G = j} (-1)^j \binom{j+1}{i+1} T(G, X)$$
$$= \sum_{j=i}^{\dim X} (-1)^j \binom{j+1}{i+1} T_j(X).$$

Then we have obtain the geometric cone relations for an arbitrary polyhedron of the following theorem.

Theorem 2 Let X be a polyhedron with a regular decomposition \mathcal{D} , then for each $i = 0, 1, \dots, \dim X$,

$$\bar{T}_i^-(X) = \sum_{j=i}^{\dim X} (-1)^j \binom{j+1}{i+1} T_j(X).$$
(4)

Q.E.D.

Let the closure operator act on (??). We then have

Proposition 3

$$\sum_{F \le G \in \mathcal{F}} (-1)^{\dim G} \bar{T}(G, X) = T(-F, -X) = T^{-}(F, X).$$
(5)

Q.E.D.

If we take the sum again on both sides of (??) over all *i*-dimensional faces of X, we obtain the geometric relations with closed tangent cones.

Theorem 4 If X is a polyhedron with a regular decomposition \mathcal{D} , then for each $i = 0, 1, \dots, \dim X$,

$$T_i^{-}(X) = \sum_{j=i}^{\dim X} (-1)^j {j+1 \choose i+1} \bar{T}_j(X).$$
(6)

Q.E.D.

With the generalized Gauss-Bonnet formula [Ch] there are dual versions of (??) and (??). These formulas can be obtained by applying the dual operator * to both sides of the (??). Note that $(1_C)^* = (-1)^{\dim C} 1_{C^*}$ for any relatively open convex polyhedral cone C. Then

$$T^{*}(F, P) = (-1)^{\dim P} \bar{K}(F, P)(-1)^{\dim C^{*}(F, P)}$$

= $(-1)^{\dim V + \dim P - \dim F} \bar{K}(F, P)$
= $(-1)^{\dim V} \bar{K}'(F, P).$

$$\bar{T}^{*}(F,P) = (-1)^{\dim P} \sum_{F \le G \le P} T^{*}(F,G)$$

$$= (-1)^{\dim V - \dim P} \sum_{F \le G \le P} \bar{K}'(F,G)$$

$$= (-1)^{\dim P - \dim F} K(-F,-P)$$

$$= K'^{-}(F,P).$$

Thus we have the following prosition for exterior cones functions.

Proposition 5 For any polyhedron with a regular decomposition \mathcal{D} ,

$$\sum_{F \le G \in \mathcal{F}} (-1)^{\dim G} \bar{K}'(G, X) = (-1)^{\dim V} K'(F, X).$$
(7)

When we apply the closure operator on both sides of (??) we have

Proposition 6 For any polyhedron X with a redular decomposition \mathcal{D} ,

$$\sum_{F \le G \in \mathcal{F}} (-1)^{\dim G} K'(G, X) = (-1)^{\dim V} \bar{K}'(F, X).$$
(8)

We thus have the exterior cone function relations.

Theorem 7 If X is a polyhedron with a simplicial decomposition, then for each $i = 0, 1, \dots, \dim X$,

$$\sum_{j=i}^{\dim X} (-1)^j \binom{j+1}{i+1} K'_j(X) = (-1)^{\dim V} \bar{K}'_i(X).$$
(9)

$$\sum_{j=i}^{\dim X} (-1)^j \binom{j+1}{i+1} \bar{K}'_j(X) = (-1)^{\dim V} K'_i(X).$$
(10)

We consider numerical angles of these tangent cones of X.

Let C be a k-dimensional relatively open convex cone of V. The angle $\alpha(C)$ of C is defined as the normalized k-dimensional Lebesgue measure of C in the unit ball of $\langle C \rangle$, i.e.,

$$\alpha(C) = \operatorname{vol}_k(C \cap B(o, 1)) / \operatorname{vol}_k(B(o, 1)).$$

For each relatively open polyheron pair $F \leq P$, we denote the angles of the cones C(F, P) and $C^*(F, P)$ by $\alpha(F, P)$ and $\beta(F, P)$ respectively. Note that the angles $C^{\wedge}(F, P)$ and $C^{\vee}(F, P)$ are the same as $\alpha(F, P)$ and $\beta(F, P)$.

For a single relatively open convex polyhedron $P \in \mathcal{D}$ such that $F \leq P$, as a special case of the equation (), we have

$$\sum_{F \le G \le P} (-1)^{\dim G} \overline{T}(G, P) = T^-(F, P).$$

Integrate both sides of the equation above, we then have

$$\sum_{F \le G \le P} \alpha'(G, P) = \alpha(F, P).$$

For each $F \in \mathcal{F}(X, \mathcal{D})$, if the tangent cone functions of X near F are defined as

$$\alpha(F,X) = \sum_{F \le P \in \mathcal{D}} \alpha(F,P),$$

$$\alpha'(F,X) = \sum_{F \le P \in \mathcal{D}} \alpha'(F,P),$$

we thn have the proposition.

Proposition 8

$$\sum_{F \le G \in \mathcal{F}} \alpha'(G, X) = \alpha(F, X).$$
(11)

Let the face F in (??) be extended over all *i*-dimensional faces of X, we then have

Theorem 9 Let X be a polyhedron with a simplicial decomposition \mathcal{D} , then for $i = 0, 1, \dots, \dim X$,

$$\alpha_i(X) = \sum_{j=i}^{\dim X} {j+1 \choose i+1} \alpha'_j(X).$$

References

- B. F. Chen, The Gram-Sommerville and Gauss-Bonnet theorems and combinatorial geometric measures for noncompact polyhedra, Adv. in Math. 91(1992), 269-291.
- [2] B. F. Chen, The incidence algebra of polyhedra and Minkowski algebra, *Adv. in Math.*, to appear.
- [3] B. F. Chen, The Minkowski algebra of convex sets, preprint of MIT, May 1992.

- [4] B. Grünbaum, "Convex polytopes," John Wiley & Sons, Ltd., New York, 1967.
- [5] P. McMullen, Angle-sum relations for polyhedral sets, *Mathematika* 33 (1986), 173-188.
- [6] M. A. Perles and G. C. Shephard, Angle sums of convex polytopes, Math. Scand. 2 (1967), 198-218.
- [7] S. Schanuel, Negative sets have Euler characteristic and dimension, Lecture Notes in mathematics, no. 1488, Springer-Verlag, New York, 1991.