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Abstract

The Euler equation and the Dehn-Sommerville equations are known

to be the only (rational) linear conditions for f -vectors (number of sim-

plices at various dimensions) of triangulations of spheres. We general-

ize this fact to arbitrary triangulations, linear triangulations of mani-

folds, and polytopal triangulations of Euclidean balls. We prove that

for closed manifolds, the Euler equation and the Dehn-Sommerville

equations remain to be the only linear conditions. We also prove that

for manifolds with nonempty boundary, the Euler equation is the only

linear condition. These results are proved not only over Q, but also

over Z and Z/kZ.
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1 Introduction

Let X be an n-dimensional polyhedron. Associated to a triangulation ∆ of

X is the f -vector

f(X; ∆) = (f0, f1, · · · , fn),

where fi is the number of i-dimensional simplices in ∆. The study of the

collection of f -vectors of certain class of triangulations of X is an important

combinatorial problem. Comparatively easier problem is the determination

of the affine span of these vectors, which is equivalent to finding a set of linear

conditions on the f -vectors of X so that any other such linear condition is a

linear combination of these linear conditions.

Combinatorists were mostly interested in the f -vectors of boundaries of

simplicial convex polytopes [BL, B, G1, G2, M, MS, S2]. A convex polytope is

the convex hull of finitely many points in a Euclidean space. The boundary of

a convex polytope has a natural cell complex structure, of which each cell is a

convex polytope in certain supporting affine subspace. A simplicial polytope

is a convex polytope of which the natural boundary cells are simplices. It is

known for a long time that the only linear condition satisfied by f -vectors

of boundaries of all convex polytopes is the Euler equation, and the only

conditions for f -vectors of boundaries of all simplicial polytopes are the Euler

equation and the Dehn-Sommerville equations. There are also nonlinear

(including inequality) conditions. The problem of necessary and sufficient

conditions for a given vector to be the f -vector of a simplicial polytope is

completely settled in [BL2, S1].

The boundaries of simplicial polytopes are in particular triangulations of
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spheres. However, there are triangulations of spheres that are not boundaries

of any simplicial polytopes [BW, GS]. Nevertheless, the linear conditions on

all triangulations of spheres are still the Euler characteristic equation and

the Dehn-Sommerville equations.

In this paper we attempt to generalize these classical results on spheres

in the following directions:

1. We consider triangulations of general PL-manifolds, with or without

boundary;

2. In addition to all triangulations, we also consider linear triangulations

(sometimes called Euclidean simplices) with respect to specific embed-

dings of PL-manifolds, and polytopal triangulations of Euclidean balls;

3. In addition to rational linear conditions (which are essentially what

the classical theory deals with), we consider integral and torsion linear

conditions.

A triangulation ∆ of a Euclidean ball Dn is polytopal if it triangulates a

polytope P , such that the restriction ∂∆ = ∆|∂P is the natural cell structure

of ∂P , and the embedding of each simplex of ∆ into P is linear. The fine

distinction does exist here because there are triangulations of spheres that

are not boundaries of any simplicial polytopes [BW, GS]. Similarly, for a PL-

embedding M ⊂ RN , a triangulation ∆ is called linear if the embedding is

linear on each simplex of ∆. Note that the definition depends on the choice

of embedding. The fine distinction from general triangulations also exists

here because there are always many nonlinear triangulations for any given
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PL-embedding.

It is known that the Euler characteristic equation applies to all polyhedra,

and the Dehn-Sommerville equations apply to closed manifolds. Our result in

this case is no surprise: The Euler and Dehn-Sommerville equations are the

only linear conditions on the f -vectors of triangulations of closed manifolds,

regardless whether all triangulations or only linear triangulations are consid-

ered, and regardless whether the linear conditions are rational, integral, or

torsion.

As for the manifolds with boundary, it is not hard to extend the Dehn-

Sommerville equations. However, the meaning of these equations is quite dif-

ferent from the old case. It expresses the f -vector of the boundary in terms

of the f -vector of the whole manifold. In fact, we may further conclude from

the Dehn-Sommerville equations that the f -vector of the whole manifold and

the f -vector of the interior of the manifold determine each other. As a result,

we conclude the following: The Euler equation is the only linear condition on

the f -vectors of triangulations of manifolds with nonempty boundary, regard-

less whether all triangulations, only linear triangulations, or only polytopal

triangulations (in case the manifold is a Euclidean ball) are considered, and

regardless whether the linear conditions are rational, integral, or torsion.

Another consequence of the Dehn-Sommerville equations for manifolds

with boundary is that the results for closed manifolds may be extended to

relative results about linear conditions on f -vectors of triangulations of a

manifold of which the restriction on the boundary is fixed.

To state our results, we fix some notations. Given a manifold Mn, possibly

with boundary ∂M , and a triangulation ∆ of M , we may consider three f -
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vectors:

f(M ; ∆) : for whole M

f(∂M ; ∂∆) : for boundary ∂M

f(M, ∂M ; ∆) = f(M ; ∆) − f(∂M ; ∂∆) : for interior M − ∂M

where we should have added a zero to f(∂M ; ∂∆) so that its dimension

matches that of f(M ; ∆). Our purpose is then to study linear conditions on

f(M ; condition) =


f(M ; ∆) :

∆ is a triangulation of M

satisfying certain condition




f(M, ∂M ; condition) =


f(M, ∂M ; ∆) :

∆ is a triangulation of M

satisfying certain condition




The condition may be “all”, “linear”, or “polytopal” in case M is the Eu-

clidean ball Dn. Moreover, if a triangulation T of ∂M extendable to the whole

M is fixed, we may add “rel T” to the condition, meaning that ∆|∂M = T .

Thus f(Dn; rel ∂∆n, polytopal) means the collection of f -vectors of poly-

topal triangulations that restrict to the boundary of the standard simplex

∆n.

When considering all manifolds, we have the collection Mn of all n-

dimensional PL-manifolds with boundary, and the collection Mn
c of all n-

dimensional PL-manifolds without boundary. Correspondingly, we have the

collections of f -vectors

f(Mn; condition) =
⋃

M∈Mn f(M ; condition)

f(Mn, ∂M; condition) =
⋃

M∈Mn f(M, ∂M ; condition)

f(Mn
c ; condition) =

⋃
M∈Mn

c
f(M ; condition)

6



where “condition” may mean “all” or “linear”.

The linear conditions on various collections of f -vectors may be expressed

in terms of affine spans and linear spans. Thus we will consider the integral

affine span Z-aspan and integral linear span Z-span. We will also consider

the rational spans Q-aspan and Q-span.

We begin with the algebraic results on the Dehn-Sommerville equations.

Theorem 1 There is a universal integral n× (n+1) matrix D(n), such that

for any triangulation ∆ of a manifold (Mn, ∂M),

D(n)f(M ; ∆) = −D(n)f(M, ∂M ; ∆) = f(∂M ; ∂∆). (1)

Moreover, if D′(n) is the (n + 1) × (n + 1) matrix obtained by adding zeros

as the (n + 1) row to D(n), then


f(M, ∂M ; ∆) = (I − D′(n))f(M ; ∆)

f(M ; ∆) = (I − D′(n))f(M, ∂M ; ∆)
(2)

In case ∂M = ∅, f(∂M ; ∂∆) = 0, and (1) becomes the classical Dehn-

Sommerville equation. The equation (2) explicitly expresses the f -vectors of

the whole manifold M and the interior of M in terms of each other. Therefore

in discussing f -vectors of manifolds with boundary, it suffices to only consider

f(M).

Now we have the two linear equations for triangulations of (M, ∂M):


D(n)f(M ; ∆) = f(∂M ; ∂∆)

χ(f(M ; ∆)) = χ(M)
(3)

where χ(f) =
∑

(−1)ifi is the Euler characteristic. In case ∂M = ∅, or more

generally, ∆|∂M is assumed to be a fixed one, the Dehn-Sommerville equations
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become constraints on f(M ; ∆). The following is the integral version of this

claim.

Theorem 2 Let (Mn, ∂M) be a PL-manifold and let M ⊂ RN be a PL-

embedding. Given a triangulation T on ∂M that is extendable to a triangu-

lation of the whole M satisfying the corresponding condition, then

Z-aspanf(M ; rel T , all) = Z-aspanf(M ; rel T , linear)

= {v ∈ Zn+1 : D(n)v = f(∂M ; T ), χ(v) = χ(M)},

Z-aspanf(M, ∂M ; rel T , all) = Z-aspanf(M, ∂M ; rel T , linear)

= {v ∈ Zn+1 : D(n)v = −f(∂M ; T ), χ(v) = χ(M)}.

The characterization also applies to Z-aspanf(Dn; rel T , polytopal) and

Z-aspanf(Dn, Sn−1; rel T , polytopal).

If ∂M = ∅ and the triangulation on the boundary is allowed to change,

then the Dehn-Sommerville equations are no longer constraints, so that the

Euler equation becomes the only linear condition. The following is the inte-

gral version of this claim.

Theorem 3 Let (Mn, ∂M) be a PL-manifold with ∂M = ∅, and let M ⊂ RN

be a PL-embedding. Then

Z-aspanf(M ; all) = Z-aspanf(M ; linear)

= {v ∈ Zn+1 : χ(v) = χ(M)},
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Z-aspanf(M, ∂M ; all) = Z-aspanf(M, ∂M ; linear)

= {v ∈ Zn+1 : χ(v) = (−1)nχ(M)}.

The characterization also applies to Z-aspanf(Dn; polytopal) and

Z-aspanf(Dn, Sn−1; polytopal).

The Euler equation and the Dehn-Sommerville equations are primarily

linear conditions over Z. They can be reduced to linear conditions over

Z/kZ. Our claim on the torsion linear conditions means the following.

Theorem 4 For a manifold M without boundary, or with boundary and a

prescribed triangulation T on ∂M extendable to a triangulation of M sat-

isfying the corresponding condition, any Z/kZ-linear condition satisfied by

f(M ; rel T , all) or f(M ; rel T , linear) is a Z/kZ-linear combination of the

Euler equation and the Dehn-Sommerville equations. For a manifold M

with nonempty boundary, any Z/kZ-linear condition satisfied by f(M ; all),

f(M ; linear), or f(Dn; polytopal) is a Z/kZ multiple of the Euler equation.

As an obvious consequence of Theorems 2 and 3, we also obtain the

following characterization of f -vectors of all manifolds.

Corollary 5

Z-aspanf(Mn) = Z-aspanf(Mn, ∂M) = Zn+1,

Z-aspanf(Mn
c ) = kerD(n).

Moreover, similar statements may be made on torsion linear conditions

on f -vectors over all manifolds.
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The corollary in particular means that there is no nontrivial linear con-

dition satisfied by the f -vectors of all manifolds. However, we always have

D(n − 1)D(n)f(M ; ∆) = D(n − 1)f(∂M ; ∂∆) = 0

because ∂∂M = ∅. From algebraic topology, we also have

χ(D(n)f(M ; ∆)) = χ(f(∂M ; ∂∆)) =




0 for even n

2χ(f(M ; ∆)) for odd n

By plugging the first equation of (2) into the second, we again obtain a linear

equation

(I − D′(n))2f(M ; ∆) = f(M ; ∆).

These are all universal linear equations, regardless of the choice of M . There-

fore we obtain the following algebraic formulas.

Corollary 6

D(n − 1)D(n) = 0, (4)

χ(D(n)v) =




0 for even n

2χ(v) for odd n
, (5)

(I − D′(n))2 = I. (6)

The identity (4) gives rise to the following Dehn-Sommerville chain com-

plex:

DS∗ : · · · −→ Zn+1 D(n)−→ Zn −→ · · · −→ Z2 D(1)−→ Z,

where DSn = Zn+1. We may compare it with the geometrical “chain com-

plex”

M∗ : · · · −→ Mn+1 ∂−→ Mn −→ · · · −→ M1 ∂−→ M0.
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The Dehn-Sommerville equation (3) means that the map

f -vector : M∗ → DS∗

is a “chain homomorphism”. In particular, any closed triangulated n-dimensional

manifold produces a homology class in HnDS.

Theorem 7

HnDS ∼=




Z2 for even n

0 for odd n

The isomorphism is given by the Euler characteristic in the following sense:

1. For [f ] ∈ HoddDS, χ(f) = 0;

2. For [f ] ∈ HevenDS, χ(f) = 0 modulo 2 if and only if [f ] = 0.

The paper is organized as follows. We first derive the Dehn-Sommerville

equations for the manifolds with boundary and prove Theorem 1. Then we

establish the existence of some special polytopal triangulations which are

needed to prove our theorems on linear conditions. After that we prove

the rational version (i.e., the classical type results) of Theorems 2 and 3.

Logically this is sufficient for us to conclude the rational version of Corollary

5, which in turn implies Corollary 6. With the aid of Corollary 6, we discuss

the Dehn-Sommerville homology. The result is then used to prove Theorems

2 and 3 about integral linear conditions on f -vectors. Finally the Dehn-

Sommerville homology is used again to prove Theorem 4 about torsion linear

conditions.
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2 Dehn-Sommerville Equations

Let Mn be a manifold with boundary ∂M and let ∆ be a (combinatorial)

triangulation. For 0 ≤ i ≤ n − 1, the link lk(σ, ∆) of a simplex σi ∈ ∆ is

Sn−i−1 when σ is in the interior of M , and is Dn−i−1 when σ is in the boundary

of M . Since fi(M, ∂M ; ∆) (= fi(M ; ∆) − fi(∂M ; ∂∆)) and fi(∂M ; ∂∆) are

respectively the numbers of i-simplices in the interior and in the boundary

of M , we have the equality:

∑
dimσ=i

χ(lk(σ, ∆)) = χ(Sn−i−1)(fi(M ; ∆) − fi(∂M ; ∂∆))

+ χ(Dn−i−1)fi(∂M ; ∂∆). (7)

As in the case of closed manifolds, the left side may be computed in terms

of fj(M ; ∆), j > i. The following detail essentially follows from [K]:

∑
dimσ=i

χ(lk(σ, ∆)) =
∑

dimσ=i

∑
τ∩σ=∅

τ and σ form a simplex

(−1)dimτ

=
∑

dimσ=i

∑
ρ⊃σ
ρ�=σ

(−1)dimρ−i−1

=
∑

dimρ>i

∑
σ⊂ρ

dimσ=i

(−1)dimρ−i−1

=
∑

dimρ>i

(−1)dimρ−i−1
(

dimρ + 1

i + 1

)

=
∑
j>i

(−1)j−i−1
(

j + 1

i + 1

)
fj(M ; ∆).

Then we obtain the following Dehn-Sommerville equations for manifolds with

boundary.
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Lemma 8 The f -vector of the boundary of a manifold is determined by the

f -vector of the whole manifold as the following

fi(∂M ; ∂∆) = (1 − (−1)n−i)fi(M ; ∆) +
n∑

j=i+1

(−1)n−j−1
(

j + 1

i + 1

)
fj(M ; ∆).

(8)

Denote by D(n) the n× (n+1) matrix of the coefficients of the right side

of (8). The rank of D(n) is known to be [n+1
2

] (see [K], for example). It is also

known that for even n, the Euler characteristic is independent of the rows of

D(n), and for odd n, the Euler characteristic is a linear combination of the

rows of D(n). In fact, for odd n, the identity (5) of Corollary 6 explicitly

expresses the Euler characteristic as one-half of the alternating sum of the

rows of D(n).

D(n) is explicitly given as follows:

for even n:

D(n) =




0 (2
1
) −(3

1
) (4

1
) −(5

1
) · · · (n

1
) −(n+1

1
)

0 2 −(3
2
) (4

2
) −(5

2
) · · · (n

2
) −(n+1

2
)

0 0 0 (4
3
) −(5

3
) · · · (n

3
) −(n+1

3
)

0 0 0 2 −(5
4
) · · · (n

4
) −(n+1

4
)

...
...

...
...

...
...

...

0 0 0 0 0 · · · ( n
n−1

) −(n+1
n−1

)

0 0 0 0 0 · · · 2 −(n+1
n

)
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for odd n:

D(n) =




2 −(2
1
) (3

1
) −(4

1
) (5

1
) · · · (n

1
) −(n+1

1
)

0 0 (3
2
) −(4

2
) (5

2
) · · · (n

2
) −(n+1

2
)

0 0 2 −(4
3
) (5

3
) · · · (n

3
) −(n+1

3
)

0 0 0 0 (5
4
) · · · (n

4
) −(n+1

4
)

...
...

...
...

...
...

...

0 0 0 0 0 · · · ( n
n−1

) −(n+1
n−1

)

0 0 0 0 0 · · · 2 −(n+1
n

)




Proof of Theorem 1: In terms of the matrices given above, the Dehn-Sommerville

equations (8) may be interpreted as

f(∂M ; ∂∆) = D(n)f(M ; ∆).

To prove D(n)f(M ; ∆) = −D(n)f(M, ∂M ; ∆), we consider the double

M ∪∂M M with the triangulation ∆ ∪∂∆ ∆. Since M ∪∂M M is a closed

manifold, ∆ ∪∂∆ ∆ satisfies the classical Dehn-Sommerville equations:

D(n)f(M ∪∂M M ; ∆ ∪∂∆ ∆) = 0. (9)

However, we clearly have

f(M ∪∂M M ; ∆ ∪∂∆ ∆) = 2f(M ; ∆) − f(∂M ; ∂∆)

= f(M ; ∆) + f(M, ∂M ; ∆).
(10)

Putting (10) into (9), we conclude that

D(n)f(M ; ∆) + D(n)f(M, ∂M ; ∆) = 0.

This completes the proof of (1).
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The equalities in (2) follow easily from (1):

f(M, ∂M ; ∆) = f(M ; ∆) − (f(∂M ; ∂∆), 0)

= f(M ; ∆) − (D(n)f(M ; ∆), 0)

= (I − D′(n))f(M ; ∆);

f(M ; ∆) = f(M, ∂M ; ∆) + (f(∂M ; ∂∆), 0)

= f(M, ∂M ; ∆) − (D(n)f(M, ∂M ; ∆), 0)

= (I − D′(n))f(M, ∂M ; ∆).

3 Affine Independent Cyclic Polytopes

In this part we find triangulations δ0, δ1, · · · , δ[n+1
2

] of (Dn, Sn−1) with the

following properties:

1. ∂δi = ∂∆n is the standard triangulation of Sn−1, the boundary of the

simplex ∆n;

2. δi is polytopal;

3. The differences

f(Dn; δi) − f(Dn; δ0), 1 ≤ i ≤ [n+1
2

] (11)

are linearly independent and integrally span a direct summand of Zn+1.

In other words, we have vectors from f(Dn; rel ∂∆n, polytopal) that inte-

grally span an affine space of dimension [n+1
2

] with the parallel linear lattice

to be a direct summand.

The proof of the rational versions of Theorems 2 and 3 for all triangula-

tions is based on the first property and the affine independence of f(Dn; δi),
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0 ≤ i ≤ [n+1
2

], which is a consequence of the third property. The second

property is needed for the proof on linear and polytopal triangulations. The

direct summand requirement in the third property is needed to further prove

our Theorems 2, 3, and 4 on integral and torsion linear conditions.

Suppose that δ is a triangulation of Sn. If we delete the interior of an

n-dimensional simplex from δ, then we obtain a triangulation of Dn that

restricts to ∂∆n on Sn−1. The problem is to find a good δ so that this

triangulation is polytopal.

We recall the definition of cyclic polytopes from [B]. For p > n ≥ 2, let

t1 < t2 < · · · < tp, and

x(t) = (t, t2, · · · , tn) ∈ Rn

C(p, n) = convex hull{x(t1), x(t2), · · · , x(tp)}.

It is proved in [B] that C(p, n) is a simplicial polytope of dimension n, and

up to affine equivalence, is independent of the choice of the numbers ti.

Moreover, the f -vectors are of the form

f(C(p, n)) =

((
p

1

)
,
(

p

2

)
, · · · ,

(
p

[n
2
]

)
, f[n

2
](C(p, n)), · · · , 1

)
, (12)

where fn(C(p, n)) = 1 denotes the fact that C(p, n) has only one top dimen-

sional cell.

The boundary of C(p, n + 1) (p ≥ n + 2) is a triangulation of Sn.

Gale’s evenness condition (see page 87 of [B]) says that a collection X ⊂
{x(t1), x(t2), · · · , x(tp)} of n+1 points is the vertex set of a simplex of the tri-

angulation if and only if any proper maximal segment Y = {x(ti), x(ti+1), · · · , x(tj)} ⊂
X consists of even number of points. Here the properness means that the
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first and the last vertices x(t1) and x(tp) are not in Y . The maximality means

that x(ti−1) and x(tj+1) are not in X.

The collection {x(t1), x(t2), · · · , x(tn+1)} is not proper and therefore form

an n-dimensional simplex A of the triangulation ∂C(p, n + 1) of Sn. By

deleting the interior of A from ∂C(p, n+1), we obtain a triangulation D(p, n)

of Dn ∼= Sn − intA. The restriction of D(p, n) on the boundary is the same

as the boundary of A. Hence D(p, n)|Sn−1 = ∂∆n.

Lemma 9 D(p, n) is a polytopal triangulation.

Proof: A is the n-simplex spanned by the first n + 1 vertices. Let B be the

collection of the last p−n−1 vertices. By taking tn+2, tn+3, · · · , tp very close

to each other, we may assume that the size of B is very small compared with

the size of A.

17



shifting

rotation

sliding

B

AA

A

A

B

BB

We may shift C(p, n+1) so that the center of A goes to the origin of Rn+1.

Then we may rotate C(p, n+1) so that A completely lies in Rn×0. After that

we may slide (keeping Rn×0 fixed) so that the projection π : Rn+1 → Rn×0

carries B to the interior of A. This is always possible for small enough B.

A = simplex with vertices x(t1), · · · , x(tn+1)

B = vertices x(tn+2), · · · , x(tp)
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A

B

R
n-1

R

π

x

πx

The transformations we have done are all affine equivalences. Therefore

C(p, n + 1) is still a simplicial polytope after the transformations.

Since π maps B to the interior of A, it maps the whole polytope C(p, n+1)

onto A. We claim that the restriction on D(p, n) is a one-to-one correspon-

dence. In fact, for any x in the interior of D(p, n), x and πx belong to

different facets of C(p, n + 1). By the convexity of C(p, n + 1), x and πx are

the only boundary points on the line segment [x, πx] = π−1(πx)∩C(p, n+1).

Consequently, x is the only point in D(p, n) that is mapped to πx by π. This

proves injectivity. The surjectivity follows from the fact that both D(p, n)

and A are triangulations of Dn, and the map π is identity on the boundary.

π is a linear map, therefore it realizes D(p, n) as a polytopal triangulation

of A. This completes the proof of the Lemma.

The f -vector of D(p, n) can be easily obtained from the f -vector of

C(p, n + 1) (see (12)):

f(D(p, n))

=
((

p
1

)
,
(

p
2

)
, · · · ,

(
p

[n+1
2

]

)
, f[n+1

2
](C(p, n + 1)), · · · , fn(C(p, n + 1)) − 1

)
.

(13)
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As pointed out before, we need the following Lemma for our result on the

torsion conditions.

Lemma 10 For any p ≥ n + 2, the vectors

f(D(p + i, n)) − f(D(p, n)), 1 ≤ i ≤ [n+1
2

] (14)

integrally generate a direct summand of Zn+1.

Proof: The lattice of Zn+1 integrally generated by (14) is equivalent to the

lattice integrally generated by

f(D(p + i, n)) − f(D(p + i − 1, n))

=
((

p+i−1
0

)
,
(

p+i−1
1

)
, · · · ,

(
p+i−1

l−1

)
, · · · ,

)
, 1 ≤ i ≤ l = [n+1

2
]

(15)

where we make use of the equality
(

p+i
j

)
−

(
p+i−1

j

)
=

(
p+i−1
j−1

)
. Thus the

matrix formed by (15) is of the form (Ap
l , ∗) with

Ap
l =




(
p
0

) (
p
1

) (
p
2

)
· · ·

(
p

l−1

)
(

p+1
0

) (
p+1
1

) (
p+1
2

)
· · ·

(
p+1
l−1

)
...

...
...

...(
p+l−1

0

) (
p+l−1

1

) (
p+l−1

2

)
· · ·

(
p+l−1

l−1

)




By subtracting (i − 1) row from i row, we obtain

detAp
l = det




(
p
0

) (
p
1

) (
p
2

)
· · ·

(
p

l−1

)
0

(
p
0

) (
p
1

)
· · ·

(
p

l−2

)
...

...
...

...

0
(

p+l−2
0

) (
p+l−2

1

)
· · ·

(
p+l−2

l−2

)




= detAp
l−1.
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By induction we see that detAp
l =detAp

1 = 1. Consequently, Ap
l is integrally

invertible.

As a result, we see that the vectors (15) and ej = (0, 0, · · · , 1(j), · · · , 0),

l + 1 ≤ j ≤ n + 1 form an integral basis of Zn+1. This completes the proof

of Lemma 10.

4 Rational Linear Conditions

With polytopal triangulations δi constructed in the last section, we are able

to prove the rational version of Theorem 2. The idea is to show that var-

ious subdivisions of a top simplex of some triangulation provides enough

variations on the triangulations so that the affine span of the corresponding

f -vectors has dimension no smaller than the dimension of the affine space

characterized by the Dehn-Sommerville equations and the Euler characteris-

tic equation.

Theorem 11 Let (Mn, ∂M) be a PL-manifold and let M ⊂ RN be a PL-

embedding. Given a triangulation T on ∂M that is extendable to a triangu-

lation of the whole M satisfying the corresponding condition. Then

Q-aspanf(M ; rel T , all) = Q-aspanf(M ; rel T , linear)

= {v ∈ Qn+1 : D(n)v = f(∂M ; T ), χ(v) = χ(M)},

Q-aspanf(M, ∂M ; rel T , all) = Q-aspanf(M, ∂M ; rel T , linear)

= {v ∈ Qn+1 : D(n)v = −f(∂M ; T ), χ(v) = χ(M)}.
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σ δi

∆ ∆δi

The characterization also applies to Q-aspanf(Dn; rel T , polytopal) and

Q-aspanf(Dn, Sn−1; rel T , polytopal).

Proof: We fix a triangulation ∆ of M , such that ∆|∂M = T . We also fix a top

simplex σn of ∆. In case we are considering linear or polytopal triangulations,

we assume ∆ is linear or polytopal.

We take the special polytopal triangulations δi constructed in the last

section and replace σ by δi to obtain triangulations

∆δ0 , ∆δ1 , · · · , ∆δ
[ n+1

2 ]
. (16)

Since δi are polytopal, the linearity or the polytopal property is preserved

after the replacement.

The f -vectors are changed as follows

f(M ; ∆δi
) = f(M ; ∆) − f(Sn−1; ∂∆n) + f(Dn; δi). (17)

Since f(Dn; δi), 0 ≤ i ≤ [n+1
2

], are assumed to be affine independent, the

f -vectors f(M ; ∆δi
) are also affine independent. Therefore the dimension of

Q-aspanf(M ; rel T , condition) is at least [n+1
2

]. On the other hand, the affine

subspace characterized by the Euler equation and the Dehn-Sommerville

equations is known to be also [n+1
2

]. Consequently the two affine spaces

coincide.
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Next we turn to the rational version of Theorem 3.

Theorem 12 Let (Mn, ∂M) be a PL-manifold with ∂M = ∅, and let M ⊂
RN be a PL-embedding. Then

Q-aspanf(M ; all) = Q-aspanf(M ; linear)

= {v ∈ Qn+1 : χ(v) = χ(M)}.

Q-aspanf(M, ∂M ; all) = Q-aspanf(M, ∂M ; linear)

= {v ∈ Qn+1 : χ(v) = (−1)nχ(M)}.

The characterization also applies to Q-aspanf(Dn; polytopal) and

Q-aspanf(Dn, Sn−1; polytopal).

Proof: We again fix a triangulation ∆ of M and a top simplex σn−1 of

∂∆. In case we are considering linear triangulations, we also assume ∆ is

linear. As in the proof of Theorem 11, we may replace σ by special polytopal

triangulations to obtain triangulations

∂∆0, ∂∆1, · · · , ∂∆[n
2
] (18)

with affine independent f -vectors.
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τ
∆ ∆ i

δiσ

Note that σ is a face of a unique n-dimensional simplex τ of ∆. Since ∂∆i

are obtained from ∂∆ by subdividing the interior of σ, the cone construction

(in the interior of τ) easily extends the subdivision into a linear subdivision

∆i of ∆ with the prescribed boundary ∂∆i. Thus we obtain triangulations

∆i, 0 ≤ i ≤ [n
2
], of M with affine independent boundary f -vectors.

If the linearity is required, then the construction above still produces

linear triangulations. In case of polytopal triangulations of Dn, however, the

triangultions ∆i above are not polytopal, because subdividing the faces of

polytopes produces geometrically unnatural triangulations. We may instead

take ∆i to be the cone triangulation of C(p + i, n). Then the f -vectors of

their boundaries are indeed affine independent. This is the property needed

for subsequent proof.

Next we modify the interior of a top simplex of ∆0 in the same way to

obtain triangulations

∆δ0 , ∆δ1 , · · · , ∆δ
[ n+1

2 ]
, (19)

with affine independent f -vectors. Moreover, since the modification is done

in the interior of M , their boundaries are the same: ∂∆δj
= ∂∆0. We also

note that, as in the proof of Theorem 11, the linearity or the polytopal

property is preserved after the replacement.
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The Theorem is proved by showing that the triangulations

∆1, ∆2, · · · , ∆[n
2
]; ∆δ0 , ∆δ1 , · · · , ∆δ

[ n+1
2 ]

(20)

have affine independent f -vectors. Set

[n
2
]∑

i=1

ai[f(M ; ∆i) − f(M ; ∆δ0)] +

[n+1
2

]∑
j=1

bj[f(M ; ∆δj
) − f(M ; ∆δ0)] = 0. (21)

Apply the Dehn-Sommerville matrix D(n) to the equation (21). By Theorem

1, we obtain

[n
2
]∑

i=1

ai[f(∂M ; ∂∆i)−f(∂M ; ∂∆δ0)]+

[n+1
2

]∑
j=1

bj[f(∂M ; ∂∆δj
)−f(∂M ; ∂∆δ0)] = 0.

(22)

Since ∂∆δj
= ∂∆0, (22) becomes

[n
2
]∑

i=1

ai[f(∂M ; ∂∆i) − f(∂M ; ∂∆δ0)] = 0.

From our construction, the f -vectors of (18) are affine independent. There-

fore we conclude that all ai = 0, and the equation (21) becomes

[n+1
2

]∑
j=1

bj[f(M ; ∆δj
) − f(M ; ∆δ0)] = 0.

Since the f -vectors of (19) are also affine independent, we conclude that all

bj = 0.

We have found [n
2
] + [n+1

2
] = n + 1 affine independent f -vectors of M .

Hence the dimension of Q-aspanf(M ; condition) is at least n. On the other

hand, the affine space is included in the affine hyperplane specified by the

Euler equation χ(f) = χ(M). The hyperplane has dimension n. Thus we

conclude that the two affine spaces are the same.
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5 Dehn-Sommerville Homology

As pointed out in the introduction, (4) of Corollary 6 gives rise to the Dehn-

Sommerville chain complex. It is easy to see that H0DS = Z2 and H1DS = 0.

The first part of Theorem 7 may be obtained by showing that the homology

is 2-periodic.

Note that

D(n + 2) =


 D(n) ∗

0 E(n)


 ,

where

E(n) =


 n + 2 −1

2
(n + 2)(n + 3)

2 −(n + 3)


 .

In particular, we have the chain map:

Σ2DS∗ : · · · → Z3 D(2)→ Z2 D(1)→ Z
D(0)→ 0 → 0

↓ ı∗ ↓ ı4 ↓ ı3 ↓ ı2 ↓ ı1 ↓ ı0

DS∗ : · · · → Z5 D(4)→ Z4 D(3)→ Z3 D(2)→ Z2 D(1)→ Z

(23)

consisting of inclusion maps (i.e., adding two zeros at the end).

Lemma 13 ı∗ induces equivalences

HnDS ∼= Hn+2DS, n ≥ 0.

Proof: ı∗ fits into a short exact sequence of chain complexes:

0 → Σ2DS∗
ı∗→ DS∗

π∗→ T∗ → 0,

where T∗ is the chain complex formed by the last two coordinates:

T∗ : · · · −→ Z2 E(n)−→ · · · −→ Z2 E(2)−→ Z2 D(1)−→ Z,
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and π∗ is the projection to the last two coordinates. Therefore proving ı∗

induces homological equivalence is equivalent to proving that HnT∗ = 0 for

n ≥ 2.

A pair of integers (a, b) ∈kerE(n) means exactly 2a − (n + 3)b = 0.

Showing that (a, b) ∈imE(n+1) means exactly a = (n+3)c− 1
2
(n+3)(n+4)d,

b = 2c − (n + 4)d for some integers c, d. In case n = 2l − 1 is odd, we have

a = (l + 1)b, and we may choose c = (l + 2)b and d = b. In case n = 2l is

even, we have 2a = (2l + 3)b, which implies that a = (2l + 3)e and b = 2e for

some integer e. Then we may choose c = e and d = 0.

This proves that kerE(n)=imE(n + 1) and as result completes the proof

of the Lemma above.

It remains to verify the relation between the Euler characteristic and the

homology.

For odd n, an element of HnDS is represented by f such that D(n)f = 0.

Thus by (5) we have 2χ(f) = χ(D(n)f) = 0. Consequently, χ(f) = 0.

For even n, an element [f ] ∈ HnDS is 0 if f = D(n + 1)v for some v.

By (5), χ(f) = χ(D(n + 1)v) = 2χ(v). Consequently, the Z2-Euler char-

acteristic of f vanishes. This shows that the Z2-Euler characteristic is well

defined on HnDS. Moreover, the nonzero element in HnDS is represented

by 1n+1 = (1, 0, 0, · · · , 0) (note that 1n+1 = ı(1n−1) = ı
n
2 11), whose Z2-Euler

characteristic is nonzero. This shows that the Z2-Euler characteristic indeed

provides the isomorphism HnDS ∼= Z2.
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6 Integral Linear Conditions

In this part we prove Theorems 2 and 3 on integral linear conditions. For

this purpose, we observe the following facts in the proof of Theorems 11 and

12.

If ∂M = ∅, or more generally if a triangulation T of ∂M has been fixed,

then we obtain in the proof of Theorem 11 triangulations (16) such that

∆δi
|∂M = T and their f -vectors are affine independent. As a matter of fact,

it follows from (17) and Lemma 10 that we may further assume

f(M ; ∆δi
) − f(M ; ∆δ0), 1 ≤ i ≤ [n+1

2
] (24)

integrally span a direct summand of Zn+1.

If ∂M = ∅ and the triangulations are not fixed on the boundary, then

we obtain in the proof of Theorem 12 triangulations (20) such that the first

[n
2
] triangulations have affine independent boundary f -vectors, and the last

[n+1
2

]+1 have the same boundary and have affine independent f -vectors. For

the same reason as in the empty boundary case, we may further assume

D(n)f(M ; ∆i) − D(n)f(M ; ∆δ0)

= f(∂M ; ∂∆i) − f(∂M ; ∂∆δ0),
1 ≤ i ≤ [n

2
] (25)

integrally span a direct summand of Zn, and

f(M ; ∆δj
) − f(M ; ∆δ0), 1 ≤ j ≤ [n+1

2
] (26)

integrally span a direct summand of Zn+1.

To go from Theorems 11 and 12 (which are of rational nature) to The-

orems 2 and 3 (which are of integral nature), we make use of the following

algebraic result.
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Lemma 14 Suppose

0 → A
α→ B

β→ C (27)

is a sequence of finitely generated abelian groups. Suppose

1. B is torsionless;

2. βα = 0;

3. α is injective with direct summand image;

4. rankA = rank(kerβ).

Then the sequence (27) is exact.

Proof: The second condition means that we only need to show kerβ ⊂ imα.

The last condition means that (27) is rationally exact, i.e., if x ∈ kerβ,

then for some integer m = 0 we have mx ∈ imα. By the third condition,

we may write B = imα ⊕ D. For x ∈ kerβ, write x = (α(y), z). Then

mx = (α(my), mz) ∈ imα ⊂ imα ⊕ D means that mz = 0. Since m = 0 and

B is torsionless, we see that z = 0. Consequently, x ∈ imα. We thus proved

imα = kerβ and the exactness of (27).

Proof of Theorems 2 and 3: Denote

A = Z-aspanf(M ; condition) − f(M ; ∆0)

= Z-span[f(M ; condition) − f(M ; ∆0)],
(28)

where ∆0 is any specific choice of triangulations. Then Theorem 2 and 3 are

equivalent to

A =




ker(D(n), χ) if ∂M = ∅
kerχ if ∂M = ∅

(29)
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We already know that the A is contained in the right. To prove equality, we

construct similar integral linear span A′ from the differences of f -vectors of

(18) or (20). Then A′ ⊂ A. If we can show that A′ is equal to the right of

(29), then we may conclude that A = A′ and is also equal to the right of

(29).

In case ∂M = ∅ (or more generally, the triangulations restrict to a pre-

scribed one on boundary), we take

A′ = Z-span{f(M ; ∆δi
) − f(M ; ∆δ0), 1 ≤ i ≤ [n+1

2
]}

to be the integral span of (24). So A′ may be assumed to be a direct summand

of Zn+1. Now we apply Lemma 14 to

0 → A′ incl−→ Zn+1 (D(n),χ)−→ Zn+1.

The first condition of Lemma 14 is trivially satisfied The second condition

follows from A′ ⊂ A. The direct summand property of (24) says that the

third condition of Lemma 14 is satisfied. Theorem 11 implies that the fourth

condition of Lemma 14 are satisfied. Thus we may conclude that A′ =

ker(D(n), χ). This completes the proof in case the boundary is empty.

In case ∂M = ∅ and the restriction of the triangulations on the boundary

is not fixed, we take

A′ = Z-span




f(M ; ∆i) − f(M ; ∆δ0), 1 ≤ i ≤ [n
2
]

f(M ; ∆δj
) − f(M ; ∆δ0), 1 ≤ j ≤ [n+1

2
]




to be the integral span of (20). We also consider the span

A′
n−1 = Z-span{f(∂M ; ∂∆i) − f(∂M ; ∂∆δ0), 1 ≤ i ≤ [n

2
]}

= D(n)Z-span{f(M ; ∆i) − f(M ; ∆δ0), 1 ≤ i ≤ [n
2
]}
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of “boundary differences” (25), and the span

A′
n = Z-span{f(M ; ∆δj

) − f(M ; ∆δ0), 1 ≤ j ≤ [n+1
2

]}

of “interior differences” (26). We may assume A′
n−1 and A′

n are direct sum-

mands in respective spaces.

Then we consider the commutative diagram

0

↓
0 → A′

n
incl−→ Zn+1 (D(n),χ)−→ Zn+1

↓ ‖ ↓ pn+1

0 → A′ incl−→ Zn+1 χ−→ Z

↓ D(n) ↓ D(n) ↓ ın

0 → A′
n−1

incl−→ Zn (D(n−1),χ)−→ Zn

↓
0

(30)

where pn+1 is the projection to the last coordinate, and

ın(a) =




(0, 0, · · · , 0, 0) n is even

(0, 0, · · · , 0, 2a) n is odd
.

The commutativity of the diagram (especially the lower right square) follows

from (4) and (5).

Since ∆δj
are assumed to have the same boundary triangulation, we have

D(n)[f(M ; ∆δj
) − f(M ; ∆δ0)] = f(∂M ; ∂∆δj

) − f(∂M ; ∂∆δ0) = 0.

Therefore D(n)A′
n = 0. Moreover, D(n) sends f(M ; ∆i)−f(M ; ∆δ0) ∈ A′ to

the basis of A′
n−1. Thus we see that the column on the left of (30) is exact.
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We have proved in the empty boundary case that the bottom row of (30)

is exact. By the same argument we may prove that the top row of (30) is

also exact. Also recall that A′ ⊂ A ⊂ kerχ at the middle row.

Now we are ready to prove that kerχ ⊂ A′, i.e., the middle row is exact.

Suppose that χ(x) = 0. Then the commutativity of the lower right square of

(30) implies that (D(n − 1), χ)D(n)x = ınχ(x) = 0. By the exactness of the

bottom row and the left column, we have D(n)x = D(n)a for some a ∈ A′.

Then from χ(A′) = 0 we get χ(x− a) = χ(x)− χ(a) = 0− 0 = 0. Combined

with (D(n), χ)(x − a) = 0, the exactness of the top row then implies that

x − a ∈ A′
n ⊂ A′. Therefore we conclude that x ∈ A′. This completes the

proof in case the boundary is not empty.

We remark that A′
n and A′

n−1 are in fact independent of specific manifolds.

Given any manifold M without boundary, we have

Z-aspanf(M ; condition) = A′
n + f(M ; ∆0),

and more generally

Z-aspanf(M ; rel T , condition) = A′
n + f(M ; ∆0),

where ∂∆0 = T . The exactness of left column of (30) then means the se-

quence

0 → Z-aspanf(M ; rel T )
incl−→ Z-aspanf(M)

D(n)−→ Z-aspanf(∂M) → 0

is affine exact.
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7 Torsion Linear Conditions

The algebraic tool for dealing with the problem of torsion linear conditions

is the following Lemma.

Lemma 15 Suppose

0 → A
α→ B

β→ C

is an exact sequence of abelian groups, such that the image of β is a direct

summand of C. Then for any linear function λ : B → Z/kZ such that

λα = 0, there is a linear function µ : C → Z/kZ with λ = µβ.

Proof: By exactness, the equality λα = 0 means precisely that λ factors

through the image of β. If the image of β is further assumed to be a direct

summand, then the factorization may extend to a map on C. This map is

our µ.

Proof of Theorem 4: A torsion condition is a linear function λ : Zn+1 → Z/kZ

that restricts to a constant modulo k on Z-aspanf(M ; condition). This is

equivalent to that λ restricts to 0 modulo k on A of (28). It has been

explained in the proof of Theorem 2 that the Theorem may be interpreted

as the exactness of the sequence

0 → A
incl−→ Zn+1 (D(n),χ)−→ Zn+1

in case the triangulations are fixed on ∂M , or the exactness of the sequence

0 → A
incl−→ Zn+1 χ−→ Z
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in case ∂M = ∅ and the triangulations are not fixed on ∂M . If the condition

of Lemma 15 may be verified for the two sequences, then the conclusion λ =

µβ means precisely that λ is a linear combination of the Dehn-Sommerville

equations and the Euler equation in the first case, or a multiple of the Euler

equation in the second case.

Therefore the proof of Theorem 4 is reduced to showing that the images

of (D(n), χ) and χ are direct summands. The image of χ is the whole Z and

so is trivially a direct summand.

To prove that the image of (D(n), χ) is a direct summand, we make use

of the equality (5) and Theorem 7.

If n is odd, we have from (4) and (5) that
 D(n − 1) 0

χ −2





 D(n)

χ


 = 0.

Conversely, suppose that D(n − 1)x = 0 and χ(x) = 2a. Then χ(x) = 0

modulo 2, and by Theorem 7, [x] ∈ Hn−1DS vanishes. This means that

x = D(n)y for some y. Then it follows from (5) that 2a = χ(D(n)y) = 2χ(y).

Thus we have (x, a) = (D(n), χ)y. So we proved that

im


 D(n)

χ


 = ker


 D(n − 1) 0

χ −2


 .

Since the kernel of any linear map Zn+1 → Zn+1 is a direct summand, we see

that the image of (D(n), χ) is a direct summand of Zn+1.

If n is even, we have from (4) that

(D(n − 1), 0)


 D(n)

χ


 = 0.
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Conversely, suppose that D(n − 1)x = 0 and a is any integer. Then by

Theorem 7, [x] ∈ Hn−1DS = 0. This means that x = D(n)y for some y. Let

z = y + (a − χ(y), 0, 0, · · ·).

Then it follows from the expression of the matrix D(n) (the first column

consists of zeros) that D(n)z = D(n)y = x and χ(z) = χ(y)+(a−χ(y)) = a.

So we proved that

im


 D(n)

χ


 = ker(D(n − 1), 0).

It again follows that the image of (D(n), χ) is a direct summand of Zn+1.

This completes the proof of Theorem 4.
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