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Abstract

This is a survey on our work generalizing the classical Dehn-Sommerville
equations (analogous to Poincaré duality, see [10]) for f -vectors of triangula-
tions of manifolds without boundary to general polyhedra. Our key observation
is that the exact data needed for the generalization is the classification of points
of polyhedra by the Euler characteristics of their links. From this viewpoint, a
point is regular if the Euler characteristic of the link is the same as the sphere
of the appropriate dimension. For any polyhedron, the extent to which the
classical Dehn-Sommerville equations are still valid is measured by the size of
the singularities from Eulerian viewpoint.
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1 Introduction

Manifolds are spaces with the same certain local properties as the Euclidean spaces.
The choice of the local property depends on specific problems one is interested in.
Thus smooth, PL, and topological manifolds are locally homeomorphic (in various
senses) to Euclidean spaces. Homology manifolds have the same local homology as
the Euclidean balls. Moreover, it is often possible to generalize the solution of some
problems for manifolds to singular spaces, i.e., spaces that fail to satisfy the local
property along some lower dimensional part.

In this survey, we are concerned with the combinatorial problem of linear condi-
tions on the number of simplices at various dimensions for triangulations of a fixed
polyhedron. It turns out that the exact data needed for determining these linear con-
ditions is the Euler characteristic of the links of points in the polyhedron. In other
words, if a polyhedron has no singularity from Eulerian viewpoint, then the linear
conditions on the number of simplices for all triangulations of the polyhedron is the
same as the ones for usual PL-manifolds.

Let X be an n-dimensional compact polyhedron. For any triangulation ∆ of X,
define the f -vector f(X, ∆) = (f0, f1, · · · , fn), where fi is the number of i-simplices
in ∆. In addition to the Euler equation χ(f) = f0 − f1 + · · · + (−1)nfn = χ(X), it
has been known for a long time that the f -vector of a simplicial polytope (which is
a special triangulation of sphere) also satisfies the Dehn-Sommerville equations (1)
(see [2] [7] [15] [17], for examples). In [10], Klee showed that the equation is also valid
for triangulations ∆ with the property that the simplicial link of an s-dimensional
simplex in ∆ has the same Euler characteristic as Sn−s. Our Lemma 2.2.1 further
implies that this is equivalent to the link of any point in the polyhedron has the
same Euler characteristic as Sn−1. Following Klee, we call such polyhedra Eulerian
manifolds.

The classical Dehn-Sommerville equations (1) is the combinatorial analogue of
the Poincaré duality for the homology of boundaryless manifolds. One may think of
the linear theory of f -vectors as the analogue of the homology theory (the general-
ized homology theory, or stable homotopy theory, is the additive part of homotopy
theory). Although Poincaré duality spaces are not yet manifolds (a further surgery
obstruction needs to vanish [13]), in our simpler combinatorial theory the classical
Dehn-Sommerville equations indeed characterizes Eulerian manifolds (see Theorem
4.2.2).

The Poincaré duality (for homotopy invariant homology theories) fails for singular
spaces. Moreover, the extent to which the Poincaré duality fails can be measured
by the size of the singularities [6]. Analogously, our generalized Dehn-Sommerville
equations (3) give explicit measurement on the extent to which the classical Dehn-
Sommerville equations fail in terms of the size of singularities from Eulerian viewpoint.

One way to study the topology of singular spaces is to think of spaces as obtained
by gluing manifold pieces together in a particularly nice way. Such stratified view-
point can also be adapted to our study of linear conditions on f -vectors. Thus we
introduce the notion of Eulerian stratified spaces and parallelly establish the theory
of linear conditions on the system of f -vectors of individual Eulerian manifold pieces.
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Additionally, there is a combinatorial structure inherent in any Eulerian stratification
(Theorem 5.2.1). Such structure should underlie many linear combinatorial theories.

The classification of f -vectors for certain class of triangulations of certain class
of polyhedra is an interesting and difficult problem. The historical highlights include
the classifications for all triangulations of all compact polyhedra [9] [11], for all tri-
angulations of all closed surfaces [8] [14], and for all simplicial polytopes [1] [12] [16].
The classification typically involves linear equalities and nonlinear inequalities. What
we present here is the linear equalities. The nonlinear inequalities are much harder.
We hope that our approach, especially the stratified one, may shed some light on the
classification problem.

The survey is organized as follows. In section 2 we review the classical Dehn-
Sommerville equations and its generalization to polyhedra. In section 3 we discuss the
Dehn-Sommerville equations for manifolds with boundary and its Eulerian analogues.
This lays down the foundation for understanding more complicated situations. In
section 4 we present our main results for arbitrary polyhedra and more detailed
results for simplest singular spaces. In section 5 we present our stratified theory.

Some detailed proofs are included to illustrate the main techniques used in devel-
oping our theories. More details can be found in [3] [4] [5].

Finally we remark that an f -vector over an n-dimensional polyhedron X is an
(n+1)-dimensional vector. However, we find it often more convenient to think of the
f -vector stably, i.e., by adding zeros at coordinates at dimensions > n, we may think
of f as N -dimensional vector for any N ≥ n + 1.

2 Dehn-Sommerville Equations

2.1 Classical Theory

An n-dimensional Eulerian manifold is defined in [10] as a finite simplicial complex
∆ such that for any simplex σ of dimension s, the simplicial link

lk(σ, ∆) = {τ ∈ ∆ : σ and τ are complementary faces in a simplex σ ∗ τ ∈ ∆}

has the same Euler characteristic 1−(−1)n−s as an (n−s−1)-sphere. As a consequence
of this property, the f -vector of an Eulerian n-manifold satisfies the Dehn-Sommerville
equations:

(1 − (−1)n−i)fi +
n∑

j=i+1

(−1)n−j−1
(

j + 1

i + 1

)
fj = 0, 0 ≤ i ≤ n − 1. (1)

We call the coefficient matrix D(n) on the left side the n-th Dehn-Sommerville Matrix.
We have explicitly
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for even n:

D(n) =
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for odd n:

D(n) =
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

Note that rankD(n) =
[

n+1
2

]
. Moreover, if m < n and m, n have the same parity,

then there is a decomposition

D(n) =

(
D(m) F (m, n)

0 E(m, n)

)
. (2)

This means that stably speaking, there are only two Dehn-Sommerville matrices:
D(even) and D(odd). Thus for any vector v ∈ Rm and n ≥ m, D(n)v depends only
on the parity of n.

2.2 Dehn-Sommerville Equations on Polyhedra

Our generalization of the classical Dehn-Sommerville equations to triangulations of
arbitrary polyhedra is based on the following two observations:

1. The assumption about the Euler characteristics of the simplicial links is an
intrinsic property of the geometrical realization of the simplicial complex. In
other words, the property is independent of the choice of triangulations of a
polyhedron;

2. Klee’s proof of the Dehn-Sommerville equations can be generalized to arbitrary
simplicial complexes.

A (locally compact) polyhedron may be characterized as a space X such that any
point x ∈ X has a cone neighborhood xL with x as the cone point. L is a compact
polyhedron of lower dimension and is unique up to piecewise linear homeomorphism.
L is the link of x in X and is denoted lk(x, X). Our first observation is summarized
in the following lemma.
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Lemma 2.2.1 Suppose ∆ is a triangulation of a polyhedron X. Suppose σs ∈ ∆ is
an s-dimensional simplex and x ∈ σ̇ is an interior point of the simplex. Then

χ(lk(σ, ∆)) = 1 − (−1)s + (−1)sχ(lk(x, X)).

The lemma is a consequence of the homeomorphism lk(x, X) = ∂σ ∗ |lk(σ, ∆)|,
where |?| is the geometrical realization of simplicial complexes and ∗ is the join of
spaces. The lemma shows that Klee’s condition χ(lk(σ, ∆)) = 1−(−1)n−s is equivalent
to χ(lk(x, X)) = 1 − (−1)n = χ(Sn−1). This leads to the following more intrinsic
definition of Eulerian manifolds.

Definition 2.2.2 A locally compact polyhedron M is called an n-dimensional Eule-
rian manifold (without boundary) if the link of any point in M has the same Euler
characteristic 1 − (−1)n as an (n − 1)-sphere.

We remark that the Euler characteristic of links determines only the parity of n.
However, if m is the topological dimension of M , then the link of a point in the interior
of an m-dimensional simplex in a triangulation is an (m − 1)-sphere. Therefore m
and n have the same parity and we will usually take n = m.

Our second observation is based on the following reformulation of Klee’s proof of
(1):

∑
dimσ=i

χ(lk(σ, ∆)) =
∑

dimσ=i

∑
τ∈lk(σ,∆)

(−1)dimτ

=
∑

dimσ=i

∑
ρ⊃σ
ρ�=σ

(−1)dimρ−i−1

=
∑

dimρ>i

∑
σ⊂ρ

dimσ=i

(−1)dimρ−i−1

=
∑

dimρ>i

(−1)dimρ−i−1
(

dimρ + 1

i + 1

)

=
∑
j>i

(−1)j−i−1
(

j + 1

i + 1

)
fj(X, ∆),

where τ ∈ lk(σ, ∆) is in one-to-one correspondence with ρ = σ ∗ τ . In case X is
an Eulerian manifold, the left side is simply (1 − (−1)n−i)fi(X, ∆), and the Dehn-
Sommerville equations then easily follows. For a general polyhedron, we have to
classify simplices according to χ(lk(σ, ∆)). In view of Lemma 2.2.1, we introduce

Xk = {x ∈ X : χ(lk(x, X)) = k}.

Then Lemma 2.2.1 implies

Xk =
⋃
{σ̇ : χ(lk(σ, X)) = 1 − (−1)dim σ + (−1)dim σk},
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so that Xk is a union of the interiors of some simplices in the triangulation ∆. In
particular, we have the f -vectors f(Xk, ∆) that count the number of simplices whose
interiors are in Xk and

∑
dimσ=i

χ(lk(σ, ∆)) =
∑
k

(1 − (−1)i + (−1)ik)fi(Xk, ∆).

It is then not difficult to deduce the following generalized Dehn-Sommerville equa-
tions.

Theorem 2.2.3 Suppose Xn is a compact polyhedron. Then for any triangulation ∆
of X and any m ≥ n,

D(m)f(X, ∆) =
∑

k �=1−(−1)m

(1 − (−1)m + (−1)mk)f(Xk, ∆). (3)

3 Eulerian Manifolds with Boundary

The generalized Dehn-Sommerville equations (3) enable us to study linear equations
on more complicated polyhedra. In this section, we deduce properties on the Dehn-
Sommerville matrix D(n) by applying (3) to PL-manifolds with boundary. Then we
make use of the properties of D(n) to study the following analogue of PL-manifolds.

Definition 3.0.4 A (locally compact) polyhedron Mn is an Eulerian manifold with a
closed subpolyhedron ∂M as boundary if dim ∂M = n − 1 and

χ(lk(x, M)) =

{
1 − (−1)n if x ∈ M − ∂M
1 if x ∈ ∂M

PL-manifolds with boundary are clearly Eulerian manifolds with boundary. For
an Eulerian manifold Mn with boundary ∂M , the Dehn-Sommerville equation (3)
becomes

D(m)f(M, ∆) =

{
f(∂M, ∂∆) if m − n is even
2f(M, ∆) − f(∂M, ∂∆) if m − n is odd.

(4)

3.1 Linear Conditions over Manifolds with Boundary

It is well known that the only (rational) linear conditions on f -vectors of triangulations
of simplicial polytopes are the Euler equation and the Dehn-Sommerville equations
(see [2] [7] [17], for examples). This is the consequence of the following two facts:

1. The rank of combined Euler and Dehn-Sommerville equations for f -vectors of
n-dimensional simplicial polytopes is

[
n
2

]
+ 1;

2. There are n-dimensional simplicial polytopes δn
i , 0 ≤ i ≤

[
n+1

2

]
, with affinely

independent f -vectors.
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The first fact implies that the dimension of the affine span of the f -vectors of all
simplicial polytopes is at most n + 1−

[
n
2

]
− 1 =

[
n+1

2

]
. The second fact implies that

the dimension of the affine span is at least
[

n+1
2

]
.

The argument can be easily adapted to compact PL-manifolds, or more generally
compact Eulerian manifolds. The result is summarized in the following theorem.

Theorem 3.1.1 Suppose Mn is a compact Eulerian manifold. Then the only linear
conditions on the f -vectors of all triangulations of M are

1. the Euler equation χ(v) = χ(M) and the Dehn-Sommerville equations D(n)v =
0 in case ∂M = ∅;

2. the Euler equation χ(v) = χ(M) in case ∂M �= ∅.

Proof: Suppose M has no boundary. Then the Euler and the Dehn-Sommerville
equations are satisfied. This further implies that the affine span of the f -vectors of
all triangulations of a given closed PL-manifold M has dimension ≤

[
n+1

2

]
. Now to

find
[

n+1
2

]
+1 triangulations of the manifold with affinely independent f -vectors, we fix

a triangulation ∆ of M and construct “connected sums” ∆#δn
i (delete the interior of

one n-dimensional simplex each from ∆ and δn
i , and then glue them together along the

boundaries of the simplices). The second fact implies that the f -vectors f(M, ∆#δn
i ),

0 ≤ i ≤
[

n+1
2

]
, are all affinely independent. The first part of the theorem then follows

by dimension reason, as in the simplicial polytope case.
Suppose M has nonempty boundary. The Euler equation is still valid, and spec-

ifies an affine subspace of dimension n. Therefore to prove the second part of the
theorem, it suffices to find n + 1 triangulations of M with affinely independent f -
vectors. We fix a triangulation ∆ of M . By taking connected sums with δn−1

j ,

0 ≤ j ≤
[

n
2

]
, we obtain triangulations ∂∆#δn−1

j of ∂M with affinely independent
f -vectors. These triangulations may be extended to the interior of M to become
triangulations ∆0, ∆1, · · · , ∆[n

2 ]
of M such that f(∂M, ∂∆i) are affinely independent.

Now we take the connected sums of ∆0 with δn
i , 0 ≤ i ≤

[
n+1

2

]
, along an n-dimensional

simplex of ∆0 lying completely in the interior M − ∂M (such a simplex always ex-
ists if we start with a fine enough triangulation ∆). The results are triangulations
∆00, ∆01, · · · , ∆0[n+1

2 ] with affinely independent f -vectors and the same restrictions

∂∆0 on ∂M . Now consider the f -vectors of the triangulations

∆00, ∆01, · · · , ∆0[n+1
2 ]; ∆1, · · · , ∆[n

2 ]
.

The number of triangulations is 1 +
[

n+1
2

]
+

[
n
2

]
= n + 1. The reason for their f -

vectors to be affinely independent is the following general fact: Suppose D is a linear
transformation, and u1, · · · , ua, v1, · · · , vb are vectors such that

1. u1, · · · , ua are affinely independent;

2. Du1 = · · · = Dua;
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3. Du1, Dv1, · · · , Dvb are affinely independent.

Then u1, · · · , ua, v1, · · · , vb are affinely independent.
✷

3.2 Properties of Dehn-Sommerville Matrix and Eulerian Man-
ifolds

Note that the Euler equation explicitly depends on the Euler characteristic. Moreover,
for any n ≥ 0, any positive integer (or for n ≥ 2, any integer) can be the Euler
characteristic of an n-dimensional PL-manifold with boundary. Thus a corollary of
Theorem 3.1.1 is that there are no nontrivial linear equations for f -vectors of all
triangulations of all compact PL-manifolds (with or without boundary). On the
other hand, we have the following universal linear equations for any triangulation of
any compact n-dimensional PL-manifold M :

D(n − 1)D(n)f(M, ∆) = D(n − 1)f(∂M, ∂∆) = f(∂2M, ∂2∆) = f(∅, ∂2∆) = 0;

χ(D(n)f(M, ∆)) = χ(f(∂M, ∂∆)) = χ(∂M) = (1−(−1)n)χ(M) = (1−(−1)n)χ(f(M, ∆)).

Consequently we have the following properties of the Dehn-Sommerville matrix.

Lemma 3.2.1 D(n − 1)D(n) = 0, χ ◦ D(n) = (1 − (−1)n)χ.

The algebraic property of D(n) derived from considering PL-manifolds can then
be used to prove the following properties of Eulerian manifolds.

Corollary 3.2.2 Suppose Mn is a compact Eulerian manifold with boundary. Then
χ(∂M) = (1 − (−1)n)χ(M). In particular, if M is an odd dimensional compact
Eulerian manifold without boundary, then χ(M) = 0.

In addition to the corollary, we have the following simple properties. They follow
from easy computations on the Euler characteristics of links.

Proposition 3.2.3 Suppose M1 and M2 are Eulerian manifolds with homeomorphic
boundaries. Then the glue M1 ∪∂ M2 along a homeomorphism on the boundaries is a
boundaryless Eulerian manifold.

Proposition 3.2.4 Given polyhedra M1, M2 and closed subpolyhedra ∂M1 ⊂ M1,
∂M2 ⊂ M2 of codimension 1, the product M1 × M2 is an Eulerian manifold with
boundary (M1×∂M2)∪ (∂M1×M2) if and only if M1 and M2 are Eulerian manifolds
with boundaries ∂M1 and ∂M2.
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3.3 Dehn-Sommerville Homology and Eulerian Cobordism

The equality D(n − 1)D(n) = 0 gives rise to the following Dehn-Sommerville chain
complex:

DS∗ : · · · −→ Zn+1 D(n)−→ Zn −→ · · · −→ Z2 D(1)−→ Z,

where DSn = Zn+1. Its homology H∗DS may be computed as follows. The de-
composition (2) implies that the inclusion v ∈ DSn �→ (v, 0, 0) ∈ DSn+2 makes the
“suspension” Σ2DS∗ into a subcomplex of DS∗. Then we have a short exact sequence
0 → Σ2DS∗ → DS∗ → T∗ → 0 of chain complexes, with

T∗ : · · · −→ Z2 E(n,n+2)−→ · · · −→ Z2 E(1,3)−→ Z2 D(2)−→ Z2 D(1)−→ Z.

It is easy to verify that the homology of T∗ is trivial, which implies a “periodicity”
HnDS ∼= Hn+2DS. An easy computation then shows that H0DS = Z2 and H1DS =
0. Therefore HnDS = Z2 for even n and HnDS = 0 for odd n. Moreover, it can be
easily verified that the nontrival homology elements at even dimensions are detected
by the modulo 2 Euler characteristic.

The Dehn-Sommerville chain complex DS∗ may be compared with the “Eulerian
chain complex”

E∗ : · · · −→ En+1 ∂−→ En −→ · · · −→ E1 ∂−→ E0,

where En is the collection of compact n-dimensional triangulated Eulerian manifolds
and ∂ is the operation of taking boundary. The equality D(n)f(M, ∆) = f(∂M, ∂∆)
means that the map

f -vector : E∗ → DS∗

is a “chain homomorphism”.
Define two compact boundaryless Eulerian manifolds M1 and M2 to be cobordant

if M1
∐

M2 is the boundary of some compact Eulerian manifold W . Denote by ΩE
n the

cobordism classes of n-dimensional boundaryless compact Eulerian manifolds. Since
cobordant PL-manifolds have the same mod 2 Euler characteristic, which completely
determines elements in the Dehn-Sommerville homology, the f -vector map induces a
homomorphism ΩE

n → HnDS.
Suppose M is an odd dimensional compact Eulerian manifold without boundary.

Then by Corollary 3.2.2, coneM is an Eulerian manifold with boundary M . This
shows that ΩE

odd = 0. Similarly, the cone construction on even dimensional bound-
aryless Eulerian manifolds with Euler characteristic 2 enables us to prove that two
boundaryless Eulerian manifolds M1 and M2 are cobordant if and only if χ(M1) and
χ(M2) have the same parity. This implies ΩE

even = Z2.
In summary, we conclude the following.

Theorem 3.3.1 The f -vector and the modulo 2 Euler characteristic induce isomor-
phisms

ΩE
n
∼= HnDS ∼=

{
Z2 for even n
0 for odd n
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4 Linear Conditions over Polyhedra

Let Xn be any compact polyhedron. Denote

Xsing =
⋃

k �=1−(−1)n

Xk = {x : χ(lk(x, X)) �= 1 − (−1)n},

which is the singularity of X from Eulerian viewpoint. Then Theorem 2.2.3 implies
that, for any triangulation ∆ of X, the coordinates of the vector D(n)f(X, ∆) vanish
at dimensions > dim Xsing. This observation leads to the determination of rational
linear conditions on D(n)f(X, ∆) for all triangulations ∆.

If the singularities of X is simple in the sense that Xk is empty for all but k = 1−
(−1)n and k = k0 �= 1−(−1)n. Then Theorem 2.2.3 also implies that D(n)f(X, ∆) =
0 mod (1−(−1)n +(−1)nk0). This observation leads to the determination of all linear
conditions with value in any abelian group for all triangulations of Eulerian 2-strata
spaces.

4.1 Parity of Dimension

A technical result that plays a crucial role in the development of the linear conditions
on f -vectors is the following.

Lemma 4.1.1 For any polyhedron X, dim X and dim Xsing have different parity.

Proof: Denote n = dim X and s = dim Xsing. For a triangulation of X there is a
simplex σs such that σ̇ ⊂ Xk for some k �= 1 − (−1)n. Fix a point x ∈ σ̇. Then by
dimension reason we have a link pair (L, K) ⊂ (X, Xsing) very close to x such that
the open cone (ẋL, ẋK) = (xL − L, xK − K) is a neighborhood of x in (X, Xsing).
Moreover, points in ẋL − ẋK are Eulerian regular (i.e., inside X1−(−1)n), and points
in ẋK are in Xk.

If we delete x from (ẋL, ẋK), then we obtain (L, K) × R, satisfying:

1. L is a compact polyhedron and K is a closed subpolyhedron;

2. χ(lk((y, t), L ×R)) = 1 − (−1)n for y ∈ L − K and χ(lk((y, t), L ×R)) = k for
y ∈ K.

The second condition is equivalent to χ(lk(y, L)) = 1 − (−1)n−1 for y ∈ L − K and
χ(lk(y, L)) = 2 − k for y ∈ K. By Theorem 2.2.3, we have

D(n − 1)f(L, ∆) = (1 − (−1)n−1 + (−1)n−1(2 − k))f(K, ∆|K)

= (1 − (−1)n + (−1)nk)f(K, ∆|K)

for any triangulation ∆ of (L, K). By Lemma 3.2.1, we then have

0 = D(n − 2)D(n − 1)f(L, ∆) = (1 − (−1)n + (−1)nk)D(n − 2)f(K, ∆|K).

Since 1 − (−1)n + (−1)nk �= 0, we conclude that D(n − 2)f(K, ∆|K) = 0.
Since σ̇ is a neighborhood of x in Xsing and K = lk(x, Xsing), we have K ∼= Ss−1.

Therefore by (4) and D(n − 2)f(K, ∆|K) = 0 we conclude that s − 1 and n − 2 have
the same parity.

✷
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4.2 Rational Linear Conditions over Polyhedra

The Dehn-Sommerville equations (3) imply that the coordinates of D(n)f(X, ∆) at
dimensions > s = dim Xsing vanish. By Lemma 4.1.1, we know n and s + 1 have
the same parity. In view of the decomposition (2), we see that the coordinates of
D(n)f(X, ∆) at dimensions > s is exactly (0, E(s + 1, n))f(X, ∆), where 0 occupies
the first s + 2 columns.

Thus for any fixed compact polyhedron Xn, the f -vector of any triangulation
satisfies χ(v) = χ(X) and (0, E(s + 1, n))v = 0. The rank of these two equations is
n−s+1

2
. Then a slight modification of the proof of Theorem 3.1.1 shows that there are

n+s+1
2

+ 1 triangulations of X with affinely independent f -vectors. This implies the
following result.

Theorem 4.2.1 Suppose Xn is a compact polyhedron. Let s be the dimension of the
part of X where the Euler characteristic of links are not 1 − (−1)n. Then the only
rational linear conditions on the f -vectors of all triangulations of X are the Euler
equation χ(v) = χ(X) and the partial Dehn-Sommerville equations (0, E(s+1, n))v =
0.

In case the Eulerian singular part of X is empty, (0, E(s + 1, n))v = 0 should
be replaced by the full Dehn-Sommerville equations D(n)v = 0. Conversely, if the
Eulerian singular part is not empty, then (0, E(s + 1, n))v = 0 is never the full
Dehn-Sommerville equations. Therefore we conclude that the full Dehn-Sommerville
equations characterize boundaryless Eulerian manifolds.

Theorem 4.2.2 A compact polyhedron X is a boundaryless Eulerian manifold if and
only if there is m ≥ dim X such that D(m)f(X, ∆) = 0 for any triangulation ∆ of
X.

4.3 Eulerian 2-Strata Spaces

We consider the special case that there are two types of points in a polyhedron from
the viewpoint of Euler characteristic.

Definition 4.3.1 A locally compact polyhedron Xn is an Eulerian 2-strata space if
there is k �= 1 − (−1)n and a closed subpolyhedron Y ⊂ X, such that

χ(lk(x, X)) =

{
1 − (−1)n if x ∈ X − Y
k if x ∈ Y

We call Y the lower stratum and X − Y the upper stratum of X.

In case k = 1 and dim Y = n − 1, X is an Eulerian manifold with boundary Y .
Another special case is when X is a disjoint union of Eulerian manifolds (possibly

of different dimensions) without boundary. Those Eulerian manifolds in X with
dimensions of the same parity as dim X form the upper stratum. The lower stratum
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Y consists of the ones with dimensions of different parity from dimX. Thus k =
1 + (−1)dim X .

For a compact Eulerian 2-strata space (Xn, Y ), the generalized Dehn-Sommerville
equations (3) become

D(n)f(X, ∆) = (1 − (−1)n + (−1)nk)f(Y, ∆|Y ). (5)

In particular, this means that the f -vector of the lower stratum may be expressed in
terms of the f -vector of the whole polyhedron.

A prototypical example of Eulerian 2-strata spaces is PL 2-strata spaces widely
studied in topology: (X, Y ) is a PL 2-strata space if Y is a closed and connected
subpolyhedron of X, X −Y and Y are PL-manifolds, and a neighborhood of Y in X
is the mapping cylinder of a PL-block bundle map f : L → Y with homeomorphic
fibre over different components of Y . Any two points y1, y2 ∈ Y in such a PL 2-strata
space have homeomorphic neighborhoods in X. In particular, PL 2-strata spaces are
Eulerian 2-strata spaces.

In [4], we proved the following result, which indicates that Eulerian 2-strata spaces
have similar structures as PL 2-strata spaces.

Theorem 4.3.2 A polyhedron Xn with a closed subpolyhedron Y is an Eulerian 2-
strata space with k �= 1 − (−1)n if and only if

1. X − Y and Y are Eulerian manifolds without boundary;

2. A neighborhood of Y in X is the mapping cylinder of a PL-map f : L → Y
such that χ(f−1(y)) = 1 + (−1)n − (−1)nk for any y ∈ Y .

A 1-dimensional Eulerian 2-strata space is obviously a graph (loops allowed) such
that each vertex is the meeting point of equal number of edges.

In [4], we found that compact 2-dimensional Eulerian 2-strata spaces are always
constructed in the following way: Start with a compact surface S with boundary and
a map f : ∂S → Z, where Z is a disjoint union of isolated points and circles. f
must satisfy the condition that for any z in Y = Z − isolated points = circles in Z,
f−1(z) consists of 2 − k points. If we glue the boundary ∂S to Z along f , then the
polyhedron X = S ∪f Z is an Eulerian 2-strata space with k and lower stratum Y .

We also have an explicit description of the maps f between circles in [4].

4.4 Integral Linear Conditions over Eulerian 2-Strata Spaces

For Eulerian 2-strata spaces, we can say more about the linear conditions on the
f -vectors. Specifically, we are able to obtain all linear conditions with values in any
abelian group on f -vectors of all triangulations of any compact Eulerian 2-strata
space. This involves the study of torsion linear conditions in addition to all the
rational linear conditions.

An obvious torsion linear condition one can draw from the Dehn-Sommerville
equations (5) for Eulerian 2-strata spaces is that D(n)f(X, ∆) = 0 mod (1− (−1)n +
(−1)nk). In [4], we proved that this is the only torsion linear condition.
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Theorem 4.4.1 Suppose (Xn, Y s) is a compact Eulerian 2-strata space. Then the
only integral linear conditions on the f -vectors f(X, ∆) for all triangulations ∆ of
X are the Euler equation χ(v) = χ(X), the partial Dehn-Sommerville equations
(0, E(s + 1, n))v = 0, and the torsion Dehn-Sommerville equations D(n)v = 0 mod
(1− (−1)n + (−1)nk). Moreover, any linear condition with value in an abelian group
factors through these equations.

If k = 1 or k = 1−(−1)n2, then 1−(−1)n+(−1)nk = ±1, so that the torsion Dehn-
Sommerville equations become trivial. Consequently, the integral linear conditions in
the theorem become χ(v) = χ(X) and (0, E(s + 1, n))v = 0.

The proof that the list is all the integral conditions is based on the fact that
the special triangulations δn

i used in the proof of Theorems 3.1.1 and 4.2.1 can be
carefully chosen so that the integral affine lattice generated by their f -vectors is an
“affine direct summand” of Zn+1. The proof about linear conditions with value in an
abelian group is based on the fact that the list of equations is a “direct summand” of
some sort.

We may also study the relative f -vector

f(X, Y, ∆) = f(X, ∆) − f(Y, ∆|Y ).

By Lemma 4.1.1 and Theorem 4.3.2, Y is a boundaryless Eulerian manifold with
dimension of different parity from n. Then (4) and (5) imply

D(n)f(X, Y, ∆) = (−1 − (−1)n + (−1)nk)f(Y, ∆|Y ). (6)

The following similar result is also proved in [4] by the same method.

Theorem 4.4.2 Suppose (Xn, Y s) is a compact Eulerian 2-strata space. Then the
only integral linear conditions on the relative f -vectors f(X, Y, ∆) for all triangu-
lations ∆ of X are the Euler equation χ(v) = χ(X) − χ(Y ), the partial Dehn-
Sommerville equations (0, E(s+1, n))v = 0, and the torsion Dehn-Sommerville equa-
tions D(n)v = 0 mod (−1 − (−1)n + (−1)nk). Moreover, any linear condition with
value in an abelian group factors through these equations.

Note that it is possible that k = 1+(−1)n. In this case, −1− (−1)n +(−1)nk = 0
and the integral linear conditions in Theorem 4.4.2 become χ(v) = χ(X)−χ(Y ) and
D(n)v = 0. Such situation never occurs in Theorem 4.4.1.

On the other hand, if k = 1 or k = 1 + (−1)n2, then −1− (−1)n + (−1)nk = ±1,
so that there is no torsion equations.

5 Eulerian Stratification

In this section, we generalize the notion of Eulerian 2-strata spaces to polyhedra with
more than 2 strata.
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Definition 5.0.3 A stratification of a compact polyhedron X is a collection {X̄a :
a ∈ P} of closed subpolyhedra indexed by a finite partially ordered set P , such that

X =
⋃

X̄a, X̄a

⋂
X̄b =

⋃
c≤a,c≤b

X̄c. (7)

A triangulation ∆ of X is called stratified if each X̄a is a subcomplex.

Denote
X̄<a =

⋃
b<a

X̄b, Xa = X̄a − X̄<a.

We call Xa strata and X̄a closed strata. The two conditions (7) for stratification may
be rephrased in terms of strata:

X =
⊔

a∈P

Xa, closure(Xa) =
⊔
b≤a

Xb, (8)

where the closure of Xa is simply X̄a.

Definition 5.0.4 An Eulerian stratification on a compact polyhedron X is a strati-
fication such that for x ∈ Xa and a ≤ b,

χ̄(a, b) = χ(lk(x, X̄b))

is independent of the choice of x.

Denote d(a) = dim Xa. For a point x in the interior of a d(a)-dimensional simplex
in a triangulation of Xa, we have

χ(a, a) = χ(lk(x, X̄a)) = χ(Sd(a)−1) = 1 − (−1)d(a). (9)

Then by the definition of Eulerian stratification, we have χ(lk(x, X̄a)) = 1− (−1)d(a)

for any x ∈ Xa. Since Xa is an open subset of X̄a, we have lk(x, X̄a) = lk(x, Xa)
for x ∈ Xa. Therefore Xa is an Eulerian manifold, so that an Eulerian stratified
polyhedron is obtained by gluing Eulerian manifolds in “Eulerian fashion”. In fact,
it is possible to generalize the structure Theorem 4.3.2 of Eulerian 2-strata spaces to
general Eulerian stratified polyhedra.

A stratified triangulation of X gives rise to a system of f -vectors of individual stra-
tum. In [5], the Dehn-Sommerville equations and the theory of linear conditions were
generalized to such systems. Moreover, we showed that the stratifications themselves
have interesting combinatorial structures.

5.1 Weighted f-vectors and Linear Conditions

For x ∈ Xa and a ≤ b, let

χ(a, b) = χ(lk(x, Xb)) = χ(lk(x, X̄b)) − χ(lk(x, X̄<b)).
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Then from (8) we have
χ̄(a, b) =

∑
a≤c≤b

χ(a, c). (10)

This is equivalent to
χ(a, b) =

∑
a≤c≤b

χ̄(a, c)µP (c, b), (11)

where µP is the Möbius function on the partially ordered set P . (8) and (10) implies
that the systems {χ̄(a, b)} and {χ(a, b)} determine each other. In particular, χ(a, b) is
independent of the choice of x ∈ Xa. We call χ(a, b) the relative Euler characteristic
between strata.

The Euler characteristic of the stratum Xa (which is usually not compact) is
χ(a) = χ(Xa) = χ(X̄a) − χ(X̄<a).

Let ∆ be a stratified triangulation of a stratified polyhedron X. Then each stra-
tum Xa is a union of interiors of some simplices in ∆. Let ∆a be the collection of
such simplices. Then we have the f -vector f(Xa, ∆a) of the a-th stratum. Clearly,
χ(f(Xa, ∆a)) = χ(a).

To study the linear conditions over the system {f(Xa, ∆a)} of f -vectors, we con-
sider a function ω on P and the ω-weighted f -vector

f(X, ∆, ω) =
∑
a∈P

f(Xa, ∆a)ω(a).

It satisfies the weighted Euler equation

χ(f(X, ∆, ω)) = χ(X, ω) =
∑
a∈P

χ(a)ω(a).

By choosing different weights, we may recover interesting f -vectors. For example, if
ω(a) = 1 for all index a, then the ω-weighted f -vector is the usual f -vector f(X, ∆).
Moreover, if we take ω to be 1 at a and vanish at other indices, then we recover
f(Xa, ∆a).

Note that the “effective dimension” of an ω-weighted f -vector is the dimension of
weight

d(ω) = max{d(a) : ω(a) �= 0}.
In fact, for any stratified triangulation, the ω-weighted f -vector of X is the same as
the ω-weighted f -vector of the union of strata of X of dimension ≤ d(ω).

The proof of Theorem 2.2.3 can be easily adapted to weighted f -vectors. A key
step is the analogue of Lemma 2.2.1 that computes the Euler characteristic of the
simplicial link lk(σ, ∆b) of a simplex σs ∈ ∆a in strata Xb, a ≤ b:

χ(lk(σ, ∆b)) = (1 − (−1)s)δ(a, b) + (−1)sχ(lk(x, X)),

where x is any interior point of σ, and δ(a, b) = 1 for a = b, δ(a, b) = 0 for a �= b.
From this it is easy to deduce the following Dehn-Sommerville equations for weighted
f -vectors.
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Theorem 5.1.1 Suppose ∆ is a stratified triangulation of an Eulerian stratified poly-
hedron X. Suppose ω is a weight function on the index set P . Then for any n ≥ dim X
we have

D(n)f(X, ∆, ω) = f(X, ∆, ∂nω),

where ∂nω is another weight function given by

∂nω(a) = (1 − (−1)n))ω(a) + (−1)n
∑
a≤b

χ(a, b)ω(b).

Therefore the application of the Dehn-Sommerville matrix to weighted f -vectors
is interpreted as a boundary operation on the weight. For example, the Dehn-
Sommerville equations (5) for an Eulerian 2-strata space (Xn, Y ) is interpreted as
sending ω = (1, 1) (values at upper and lower strata) to ∂nω = (0, 1−(−1)n+(−1)nk).
Note that since Y is an Eulerian manifold without boundary and with dimension of
different parity from n, we also have ∂n(0, 1) = (0, 2). Therefore we have ∂n(λ, µ) =
(0, (1 − (−1)n + (−1)nk)λ + 2(µ − λ)) = (0, (−1 − (−1)n + (−1)nk)λ + 2µ).

The correspondence between D(n) and ∂n enables us to translate properties of
D(n) (Lemma 3.2.1 in particular) to properties of ∂n. Thus the equality χ ◦ D(n) =
(1 − (−1)n)χ becomes

∑
a≤b

χ(a)χ(a, b) = 0, for any fixed b. (12)

The equality D(n − 1)D(n) = 0 becomes ∂n−1∂n = 0. If we further use the explicit
formula for ∂∗ in Theorem 5.1.1, the equality ∂n−1∂n = 0 means exactly

∑
a≤c≤b

χ(a, c)χ(a, b) = 2χ(a, b), for any fixed a, b. (13)

The analogue of Lemma 4.1.1 on the parity of dimensions is that r = d(ω) and
s = d(∂rω) should have different parity (recall that r is the “effective dimension” of
weighted f -vectors). To see this is indeed the case, we observe from the definition of
∂n that if θ �= 0 and ∂nθ = 0. Then for an index a with d(a) = d(ω) and ω(a) �= 0 we
have 0 = ∂nθ(a) = (1 − (−1)n+d(a))ω(a) from the definition of ∂∗ in Theorem 5.1.1.
Since ω(a) �= 0, we conclude that n and d(a) = d(ω) have the same parity. Now by
∂r−1∂r = 0, we may apply this to θ = ∂rω and n = r− 1. Therefore we conclude that
either ∂r = 0 or r − 1 and s have the same parity.

Once the analogue of Lemma 4.1.1 is established, the proof of Theorems 3.1.1 and
4.2.1 can be applied to obtain all the linear conditions on ω-weighted f -vectors for a
fixed weight.

Theorem 5.1.2 Suppose X is an Eulerian stratified polyhedron. Suppose ω is a
(rationally valued) weight function. Let r = d(ω) and s = d(∂rω). Then the only ra-
tional linear conditions on the ω-weighted f -vectors for all stratified triangulations of
X are the Euler equation χ(v) = χ(X, ω) and the partial Dehn-Sommerville equations
(0, E(s + 1, r))v = 0.
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When ∂rω = 0, the partial Dehn-Sommerville equations should be replaced by the
whole D(r)v = 0.

As a consequence of the theorem, we can also determine all the linear conditions
of all weighted f -vectors for all weights and all stratified triangulations.

Theorem 5.1.3 Suppose X is an Eulerian stratified polyhedron. Let n = dim X
and m = max{d(a) : n and d(a) have different parity}. Then the only rational linear
conditions on the weighted f -vectors for all weights and all stratified triangulations of
X are

1. the Euler equation χ(v) = 0 and the partial Dehn-Sommerville equations (0, E(m+
1, n))v = 0 in case all χ(a) = 0;

2. the partial Dehn-Sommerville equations (0, E(m + 1, n))v = 0 in case some
χ(a) �= 0.

Again in case all d(a) have the same parity as n (so that m is not defined), the
partial Dehn-Sommerville equations should be replaced by the whole D(n)v = 0.

5.2 Realization Theorem

The Euler characteristic χ(a) and the relative Euler characteristic χ(a, b) for an Eu-
lerian stratified polyhedron must satisfy (9), (12), (13). In [5], we proved that this is
all the relations between these numbers.

Theorem 5.2.1 Suppose P is a finite partially ordered set, and d : P → N is a
function such that d(b) − 2 ≥ d(a) ≥ 1 for a < b. Suppose χ(a) is a collection
of integers for a ∈ P , and χ(a, b) is another collection of integers for a ≤ b in P .
Then there exists an Eulerian stratified polyhedron X indexed by P with dimension
function d(a), Euler characteristic function χ(a), and relative Euler characteristic
function χ(a, b) if and only if (9), (12), (13) are satisfied.

The construction of the Eulerian stratified polyhedron X with prescribed combi-
natorial data is modeled on the structure of geometrically stratified spaces studied
by topologists. In 2-strata case, the structure Theorem 4.3.2 suggests that we need
to construct an Eulerian manifold Ylower without boundary as the lower stratum, a
PL-map f : L → Ylower such that χ(f−1(y)) is a prescribed constant for any y ∈ Ylower,
and an Eulerian manifold Yupper with L as boundary as the “closed interior” of the
upper stratum. Then X = Yupper∪L× [0, 1]∪f Ylower. If we choose L = Ylower×F and
f to be the projection, then the construction boils down to finding Eulerian manifolds
Ylower, Yupper, F , such that

1. Ylower is a boundaryless d(lower)-dimensional Eulerian manifold with Euler char-
acteristic χ(lower);

2. F is a boundaryless (d(upper) − d(lower) − 1)-dimensional Eulerian manifold
with Euler characteristic (−1)d(upper)−1χ(lower, upper);
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3. Yupper is a d(upper)-dimensional Eulerian manifold with Euler characteristic
(−1)d(upper)χ(upper) and boundary Ylower × F .

Note that for any even n ≥ 2, any integer can be realized as the Euler characteristic
of some n-dimensional boundaryless Eulerian manifold (in fact by PL-manifold).
Therefore by the computation of the cobordism group ΩE

∗ in Theorem 3.3.1, the
only condition for constructing Ylower, Yupper, F comes from the equality χ(∂M) =
(1−(−1)dim M)χ(M) for Eulerian manifolds M . The condition (9) means the relevant
pieces are Eulerian manifolds. The conditions (12) and (13) are exactly the equality
χ(∂M) = (1 − (−1)dim M)χ(M) for M to be one of the three pieces.

The general situation is more complicated only in bookkeeping. The key observa-
tion that (12) and (13) are equivalent to the equality χ(∂M) = (1− (−1)dim M)χ(M)
for all the pieces is still valid in general. The realization Theorem 5.2.1 then follows.

The theorem suggests a combinatorial structure intrinsic to Eulerian stratifica-
tions. The structure consists of a finite partially ordered set equipped with dimension
function d(a), the (Euler characteristic) function χ(a), and the relative (Euler charac-
teristic) function χ(a, b), satisfying (9), (12), (13). We expect a linear combinatorial
theory can be established over such structure, and such theory may include many
classical linear combinatorial theories.

A key feature in such a theory would be the boundary operator ∂n on the functions
over P introduced in Theorem 5.1.1. The property ∂n−1∂n = 0 and the fact that ∂n

depends only on the parity of n induces two homologies (at even and odd dimensions).
The homology should play a role in such problems as torsion linear conditions on
weighted f -vectors.
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