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We provide an algorithm to convert integrable equations to regular systems near
non-characteristic, movable singularity manifolds of solutions. We show how the al-
gorithm is equivalent to the Painlevé test. We also use the algorithm to prove the
convergence of the Laurent series obtained from the Painlevé test.

1. Introduction. A differential equation is said to have the Painlevé property
if its solutions are single-valued near movable singularities [18] [20]. The property is
very important because its close connection to the integrability and chaos [7] [16].

The study of the Painlevé property has a long history. In 1856, Birot and Bouquet
[3] determined first order equations of the form F (u′, u) = 0 satisfying the Painlevé
property. Later on, L. Fuchs [4], Poincaré, and Painlevé [17] extended the result to
equations of the form F (u′, u, x) = 0. In 1887, Picard raised the natural question
of the classification of equations of the form F (u′′, u′, u, x) = 0 with the Painlevé
property. The problem was settled by Painlevé [18] [19], Gambier [6], and R. Fuchs
[5].

The most widely used method for studying the Painlevé property has been the
Painlevé test. The method has been used since more than a century ago [8] and played
a key role in Sonia Kowalevskaya’s monumental work [15]. It was formalized in [2] [20],
and has been widely used as the test for the Painlevé property (and consequently, as
the test for integrability). The test assumes a stronger version of the Painlevé property
by requiring that the solutions must be meromorphic (thereby excluding single-valued
essential singularities such as e

1
x−x0 ) near movable singularities and then test the

formal algebraic compatibility as a consequence of the requirement. Consequently,
the relation between the Painlevé test and the Painlevé property is heuristic at best.
For equations passing the Painlevé test, further rigorous proofs are needed in order to
establish the Painlevé property [11] [18]. In fact, further proofs are necessary even for
the convergence of the series obtained from the Painlevé test. Naturally, such proofs
must contain some analytic ingredients that are missing in the Painlevé test.

The techniques such as inverse scattering transform may be used to find certain
classes of solutions of integrable equations and can be then used to show that these
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solutions have Painlevé property [2] [16]. Besides this, there have been only two
attempts (of more than 90 years apart !) at directly proving the Painlevé property:
Painlevé’s original proof [18] for the equation (the first of six Painlevé equations)

u′′ = 6u2 + x, (1.1)

and Joshi and Kruskal’s proposal [11] for the six Painlevé equations. As pointed out
before, both approaches must rely on some analytic ingredients. In Painlevé’s case,
he converted the equation (1.1) into


dθ

dx
= 1 +

1
4
xθ4 +

1
4
θ5 − 1

2
ξθ6,

dξ

dx
=

1
8
x2θ +

3
8
xθ2 +

(
1
4
− xξ

)
θ3 − 5

4
ξθ4 − 3

2
ξ2θ5,

(1.2)

near movable singularities, where u = θ−2, and ξ is essentially the resonance in the
Painlevé test for (1.1). On the other hand, Joshi and Kruskal converted the six
Painlevé equations into integral equations.

If we want to systematically investigate analytic properties for equations passing
the Painlevé test, a natural thing we should try is to generalize the analytic ingredients
in the two direct approaches above. Indeed, we will show in this paper that there is
a general algorithm for finding a regular system like (1.2). We call such a regular
system a mirror system of the original equation. In a subsequent paper [9], we will
show how to find mirror systems for integrable systems.

We give two immediate applications of the mirror systems. The first is to use the
regularity of the mirror system as a test for integrability. In fact, we will prove in [10]
that a differential equation passes the Painlevé test (in the most strict sense) if and
only if it has a regular mirror system. The second application is to use the mirror
system to give a conceptual proof that the Laurent series generated by a successful
application of the Painlevé test are indeed convergent. The argument is based on
applying the Cauchy-Kowalevski theorem to the mirror system. In particular, such an
argument always works for integrable ordinary differential equations. For integrable
partial differential equations, however, the mirror system does not in general are in the
form for which we can directly apply the Cauchy-Kowalevski theorem. In some cases,
such as Burger’s equation and the KdV equation, we may get around this by some
further modifications. As a consequence, we are still able to give a conceptual proof
of the convergence of the Laurent series from the Painlevé test to these equations.

In order to give a conceptual proof of the convergence of the Laurent series from
the Painlevé test for other pertial differential equations, we will also propose an al-
ternative algorithm. Despite complicated outcome of this algorithm, we can always
apply the Cauchy-Kowalevski theorem at the end. As a result, we are able to give a
conceptual proof of the convergence of the Laurent series from the Painlevé test to
equations such as mKdV, cKdV, Boussinesq, KP, Sine-Gordon, etc. We also believe
that successfully carrying out the alternative algorithm is equivalent to passing the
Painlevé test.

This alternative algorithm was inspired by an example of Kruskal. In January of
1998, Kruskal discovered that if u satisfies the second Painlevé equation, qthen u−1

satisfies a 6-th order regular analytic equation. Then the first author found that if u
satisfies the first Painlevé equation, then u− 1

2 satisfies an 8-th order regular analytic
equation. Further experimentation led to the alternative algorithm.
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The paper is organized as follows: In Section 2, we present the algorithm for find-
ing the mirror systems, using Burger’s equation and the KdV equation as examples.
In Section 3, we explain the relation between our algorithm and the Painlevé test.
Then in Section 4, we show how to use the mirror system to test the integrability,
using the generalized second Painlevé equation and the generalized KdV equation as
examples. In Section 5, we explain how to use the mirror system to prove the conver-
gence of the series obtained from the Painlevé test. Finally, we describe an alternative
algorithm in Section 6.

2. Algorithm. In this section, we propose an algorithm for finding a regular
system from a given (presumably integrable) differential equation. We consider a
complex differential equation of the form

∂nu

∂xn
= F (x, z, u, · · · , Dα∗

u), (2.1)

where
1. u = u(x, z), x ∈ C, z ∈ Cd;
2. The multi-indices α∗ satisfy |α∗| ≤ n and α∗ �= (n, 0, · · · , 0);
3. F is analytic in x, z, rational in u, and polynomial in derivatives of u.

Step 1 Find the dominant behavior.

We look for a solution of the form u(x, z) ∼ u0(x, z)φ(x, z)k near a non-characteristic,
movable singularity manifold φ = 0 (by non-characteristic we have φx �= 0 along the
singularity manifold). By solving the dominant equation we determine all possible
k’s. As in the Painlevé test, we require that all these k’s are integers.

For example, consider Burger’s equation

uxx = −ut − uux. (2.2)

The substitution u ∼ u0φ
k into the equation tells us that the dominant equation is

u0k(k − 1)φk−2φ2
x ∼ −u2

0kφ2k−1φx. This implies k − 2 = 2k − 1, or k = −1.

Step 2 Introduce indicial normalization.

For each of the k’s found in the first step, we introduce the transform

u = θk. (2.3)

Since u has order k near its movable singularity, the new variable θ has order 1.
Therefore we call the transform (2.3) the indicial normalization.

Substituting (2.3) into (2.1), we get an equation for θ. Near the non-characteristic,
movable singularity manifold φ = 0, the equation is of the form

θl ∂
nθ

∂xn
= G(x, z, θ, · · · , Dα∗

θ), (2.4)

where G is analytic in all variables except x and z, so the only singularities in G are
fixed ones.

For Burger’s equation, we only need to consider the transform

u = θ−1. (2.5)
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After simple calculations, we get

θ θx2 = −θ θt − θx + 2 θ2
x. (2.6)

Note that this equation is singular when θ = 0.

Step 3 Find leading behaviors for the derivatives of θ and the resonace derivatives.

We apply various derivatives to (2.4) and get a set of differential equations, which
we denote by E = 0. From this set of equations, our ultimate goal is to find expansions

Dαθ = λ(0)
α + θλ(1)

α + θ2λ(2)
α + · · · , (2.7)

where λ
(∗)
α are functions of θzβ and θxj+1zβ , for resonance derivatives θxj+1 (this notion

will be introduced below). In this step, we only try to find the leading behaviors λ
(0)
α .

We symbolically expand E in terms of θ: E = E0 + θE1 + θ2E2 + · · ·, where each
Ei is analytic in the derivatives of θ. Then we try to solve E0 = 0 and find λ

(0)
α .

Let us consider the example of Burger’s equation. We apply Dα, with |α| ≤ 2, to
(2.6) and get the following degree≤ 2 part of E = 0

−θx + 2 θ2
x + θ (−θt − θx2) = 0, (2.8)

−θt θx − θx2 + 3 θx θx2 + θ (−θxt − θx3) = 0, (2.9)
−θ2

t − θxt + 4 θx θxt − θt θx2 + θ (−θt2 − θx2t) = 0, (2.10)
−2 θx θxt − θt θx2 + 3 θ2

x2 − θx3 + 2 θx θx3 + θ (−θx2t − θx4) = 0, (2.11)
−θt2 θx − 2 θt θxt + 3 θxt θx2 − θx2t + 3 θx θx2t − θt θx3

+θ (−θxt2 − θx3t) = 0, (2.12)
−3 θt θt2 + 4 θ2

xt − θxt2 + 4 θx θxt2 − θt2 θx2 − 2 θt θx2t

+θ (−θt3 − θx2t2) = 0. (2.13)

By ignoring the terms containing θ, we get the degree≤ 2 part of E0 = 0.

−θx + 2 θ2
x = 0, (2.14)

−θt θx − θx2 + 3 θx θx2 = 0, (2.15)
−θ2

t − θxt + 4 θx θxt − θt θx2 = 0, (2.16)
−2 θx θxt − θt θx2 + 3 θ2

x2 − θx3 + 2 θx θx3 = 0, (2.17)
−θt2 θx − 2 θt θxt + 3 θxt θx2 − θx2t + 3 θx θx2t − θt θx3 = 0, (2.18)
−3 θt θt2 + 4 θ2

xt − θxt2 + 4 θx θxt2 − θt2 θx2 − 2 θt θx2t = 0. (2.19)

By the non-characteristic assumption, we have θx �= 0 near the singularity φ = 0.
Thus the solution of the equation (2.14) gives

θx =
1
2

+ O(θ). (2.20)

Substituting this into (2.15) and (2.16) and then solve for θx2 and θxt, we have

θx2 = θt + O(θ), (2.21)
θxt = 2 θ2

t + O(θ). (2.22)
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We further substitute (2.20), (2.21), and (2.22) into (2.17), (2.18), and (2.19). Then
we find that (2.11) only yields a trivial relation

0 = O(θ),

while we can still find the leading behaviors of θx2t and θxt2 from the other two
equations

θx2t = −4 θ3
t + θt2 + 2 θt θx3 + O(θ), (2.23)

θxt2 = −24 θ4
t + 6 θt θt2 + 4 θ2

t θx3 + O(θ). (2.24)

The fact that (2.11) becomes trivial is related to the fact that in applying the
Painlevé test, the Burger’s equation has a resonance at j = 2. In general, a resonance
at j in the Painlevé test corresponds to the fact that the leading behavior of θxj+1

can be arbitrarily chosen. Thus we call such θxj+1 a resonance derivative. For more
detailed discussion about the correspondence, see Section 3.1.

As in the case of the Painlevé test, for an n-th order equation, we require that
there are (n−1) derivatives θxj1+1 , · · ·, θxjn−1+1 , j1 < · · · < jn−1, such that the leading
behaviors cannot be determined. We also note that if the leading behavior of θxj+1

cannot be determined, then the leading behavior of θxj+1zβ cannot be determined
either. Thus we should not count θxj+1zβ as independent resonnce derivatives.

If we cannot find enough resonance derivatives, then we cannot carry our algo-
rithm further. In fact, this corresponds to failing the Painlevé test. Therefore from
now on, we assume we can find enough resonance derivatives. Once we find all of
them, we may stop finding expansions of more derivatives of θ.

For the Burger’s equation, we have already found the only resonance derivative
θx3 . Thus we have completed the third step.

Step 4 Find expansions for the (non-resonance) derivatives of θ.

After finding the leading behaviors λ
(0)
α , we try to find the first order behaviors

λ
(1)
α . This can be done by substituting Dαθ = λ

(0)
α + θλ

(1)
α into E0 + θE1 = 0 and solve

for λ
(1)
α .
Let us again consider the Burger’s equation, for which the degree≤ 2 part of

E0 + θE1 = 0 is exactly (2.8–2.13). However, we should drop (2.17) from the list
because of the resoance derivative θx3 .

We substitute θx = 1
2 + θλ

(1)
1,0 and (2.21) into (2.8) to get λ

(1)
1,0 = 2 θt. Thus

θx =
1
2

+ 2 θ θt + O(θ2). (2.25)

Similarly, we substitute θx2 = θt + θλ
(1)
2,0, θxt = 2 θ2

t + θλ
(1)
1,1 and (2.21), (2.22), (2.25)

to (2.11), (2.12), respectively. Solving for λ
(1)
2,0 and λ

(1)
1,1, we get

θx2 = θt + θ
(
−4 θ2

t + 2 θx3

)
+ O(θ2), (2.26)

θxt = 2 θ2
t + θ

(
−24 θ3

t + 2 θt2 + 4 θt θx3

)
+ O(θ2). (2.27)

In general, further refinements of the expansions for the derivatives of θ are
needed. Thus, after finding the leading and the first order behaviors, we substi-
tute Dαθ = λ

(0)
α + θλ

(1)
α + θ2λ

(2)
α into E0 + θE1 + θ2E2 = 0 and solve for the second
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order behaviors. We should keep continuing until the highest resonance derivative
appears in the expansions of θx, · · ·, θxn−1 .

For the Burger’s equation, one more round of computation gives us

θx =
1
2

+ 2θθt + θ2(−12θ2
t + 2θx3) + O(θ3). (2.28)

which contains the only resonance derivative θx3 . This completes the fourth step for
the Burger’s equation.

Step 5 Introduce new variables for the mirror system.

The new variables are introduced by cutting at the expansions of θx, · · ·, θxn−1 at
the resonance derivatives. For the Burger’s equation, we follow (2.28) and introduce
ξ by

θx =
1
2

+ 2θθt + θ2ξ. (2.29)

The example of the Burger’s equation is too simple to address a technical point.
To illustrate this, we consider the example of the KdV equation

ut − 6(u2)x + uxxx = 0.

The indicial normalization for the equation is u = θ−2. After carrying out the steps
1 through 4, we get two branches of expansions, one of which is

θx = 1 − θ2 θt

8
+ θ4

(
−5 θ2

t

192
+

θx5

24

)

+θ5 31θt2

192
+ θ6

(
143 θ3

t

4608
+

41 θt θx5

2880
− 7 θx7

360

)
+ O(θ7), (2.30)

θx2 = −θ
θt

4
+ θ3

(
− θ2

t

24
+

θx5

6

)

+θ4 59θt2

96
+ θ5

(
107 θ3

t

768
+

θt θx5

30
− 3 θx7

40

)
+ O(θ6), (2.31)

where θx5 and θx7 are the resonance derivatives.
By cutting the expansion (2.30) at the first resonance θx5 , we introduce a new

variable ξ by

θx = 1 − θ2 θt

8
+ θ4 ξ. (2.32)

The new variable ξ and the resonance derivative θx5 are related by

ξ = −5 θ2
t

192
+

θx5

24
+ θ

31 θt2

192
+ θ2

(
143 θ3

t

4608
+

41 θt θx5

2880
− 7 θx7

360

)
+ O(θ3).

We may formally converting this and get

θx5 = 24 ξ +
5 θ2

t

8
− θ

31 θt2

8
+ θ2

(
−41 ξ θt

5
− 23 θ3

t

24
+

7 θx7

15

)
+ O(θ3).
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Substituting this into the expansion (2.31), we have

θx2 = −θ
θt

4
+ θ3

(
4 ξ +

θ2
t

16

)
− θ4 θt2

32
+ θ5

(
−17 ξ θt

30
+

θ3
t

2304
+

θx7

360

)
+ O(θ6).

By cutting the expansion above at the second resonance derivative θx7 , we get

θx2 = −θ
θt

4
+ θ3

(
4 ξ +

θ2
t

16

)
− θ4 θt2

32
+ θ5 η, (2.33)

which introduces another new variable η.
Note that the new variables are in some sense equivalent to the resonance deriva-

tives. The key technical point is that after introducing a new variable (ξ, for KdV),
we should express the corresponding resonance derivative (θx5) in terms of the new
variable and the other new variables introduced before. Then we need to substitute
the expression to update the expansions for higher order derivatives (θx2), in which
the lower order resonance derivatives (θx5) have all been replaced by the new variables
introduced so far (ξ).

Step 6 Derive the mirror system.

After completing the last step, we introduce new variables ξ1, · · · , ξn−1 by


θx = λ̄
(0)
1 + θλ̄

(1)
1 + · · · + θj1−1λ̄

(j1−1)
1 + θj1ξ1,

θx2 = λ̄
(0)
2 + θλ̄

(1)
2 + · · · + θj2−2λ̄

(j2−2)
2 + θj2−1ξ2,

...
θxn−1 = λ̄

(0)
n−1 + θλ̄

(1)
n−1 + · · · + θjn−1−n+2λ̄

(jn−1−n+2)
n−1 + θjn−1−n+1ξn−1,

(2.34)
where λ̄

(∗)
q are functions of θzβ , (ξ1)zβ , · · ·, (ξq−1)zβ . The variables for our mirror

system are θ, ξ1, · · ·, ξn−1. It remains to find the equations for their derivatives with
respect to x.

From (2.34) and (θx)x = θx2 , we find

θj1(ξ1)x = λ̄
(0)
2 + θλ̄

(1)
2 + · · · + θj2−2λ̄

(j2−2)
2 + θj2−1ξ2

−Dx[λ̄(0)
1 + θλ̄

(1)
1 + · · · + θj1−1λ̄

(j1−1)
1 ] − p1θ

j1−1θxξ1.

The right side involves θzβ , θxzβ , (ξ1)zβ , and ξ2. We substitute θxzβ by the first
formula in (2.34). Then the right side no longer involves derivatives in x. After
simplification, we will see that the right side has a common factor θj1 . Dividing the
factor, we get an equation for (ξ1)x.

Similarly, from (2.34), (θx2)x = θx3 , and the equation for (ξ1)x we just obtained,
we may find the equation for (ξ2)x. We may continue one by one and find the equations
for (ξ1)x, · · ·, (ξn−2)x.

To find an equation for (ξn−1)x, we substitute (2.34) and their derivatives in z
into the right side of (2.4). We think of the left side of (2.4) as θl(θxn−1)x and replace
θxn−1 by the the formula in (2.34). Then we get an equality of the form

θl+jn−1−n+1(ξn−1)x + · · · = · · · ,
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where · · · on both sides only involve θzβ , (ξ1)zβ , · · ·, (ξn−1)zβ , (ξ1)xzβ , · · ·, (ξn−2)xzβ .
Then we substitute the known equations for (ξ1)x, · · ·, (ξn−2)x into the derivatives
(ξ1)xzβ , · · ·, (ξn−2)xzβ . The result is an expression of θl+jn−1−n+1(ξn−1)x in terms of
θzβ , (ξ1)zβ , · · ·, (ξn−1)zβ . After simplification and dividing by θl+jn−1−n+1, we will
get a regular equation for (ξn−1)x.

For example, we substitute (2.29) into (2.6) and get

θ

(
1
2

+ 2θθt + θ2ξ

)
x

= −θ θt − θx + 2 θ2
x. (2.35)

From (2.29), we have formulae for θx and θxt. Substituting these into (2.35), we get
an equation

−2θtξ − 2θξt − 4θt2 − ξx = 0. (2.36)

Combining (2.29) and (2.36) together, we have a differential system for (θ, ξ)
 θx =

1
2

+ 2θθt + θ2ξ,

ξx = −4θt2 − 2θtξ − 2θξt.
(2.37)

This is a mirror system for Burger’s equation.
As for the one branch of the KdV equation discussed in step 5, we identify (2.33)

with the derivative of (2.32) and solve for ξx. The result is

ξx = −3 θt2

64
+ θ

(
η +

5 ξ θt

4

)
+ θ2 ξt

8
− 4 θ3 ξ2. (2.38)

We substitute (2.32) and (2.33) into the equation

− θ2 θt + 12 θx − 12 θ3
x + 9 θ θx θx2 − θ2 θx3 = 0

obtained by applying the indicial normalization u = θ−2 to the KdV equation. Then
we replace θx3 by the derivative of (2.33) and solve for ηx. The result is

ηx = −ξt

4
+

3 θt θt2

256
+ θ

(
4 ξ2 − η θt

2
− 5 ξ θ2

t

16
− θt3

256

)

+θ2

(
θt ξt

8
− ξ θt2

32

)
+ θ3

(
4 ξ η +

9 ξ2 θt

2
+

ξt2

32

)
− 12 θ5 ξ3. (2.39)

The regular equations (2.32), (2.38) and (2.39) form a mirror system of the KdV
equation.

3. Mirror System and Painlevé Test. In this section, we explain the relation
between our algorithm and the Painlevé test from two perspectives. In fact, we have
in [10] a theoretical argument that successfully carrying out our algorithm (and get a
regular mirror system at the end) is equivalent to passing the Painlevé test.

3.1. Resonances and Resonace Derivatives. For a solution u near a non-
characteristic, movable singularity manifold φ(x, z) = 0, the Painlevé test assumes
the expansion

u = φk
∞∑

i=0

uiφ
i. (3.1)
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Without loss of generality, we may further assume

φ = x + ψ(z), ui = ui(z), (3.2)

by the non-characteristic assumption. Rewrite (2.3) formally as

θ = φ

( ∞∑
i=0

uiφ
i

)1/k

.

Then for any positive integer j, we have

θxj+1 ∼ (j + 1)!
k

u
−1+ 1

k
0 uj + a function depending on ui’s with i < j,

to the leading order of θ. If j is a resonance in the Painlevé test, then uj can be
arbitrarily chosen (as a funciton of z). As a result, θxj+1 (and its derivatives in z)
can be equally arbitrarily chosen. As we have seen in examples such as (2.11), this
happens in our algorithm when the equation from E0 = 0 that should compute the
leading behavior of θxj+1 for us becomes trivial.

3.2. Painlevé Revisited. As pointed out in the introduction, Painlevé already
used the mirror system in his proof of the Painlevé property for

y′′ = 6y2 + x. (3.3)

In this section, we analyze in detail what he actually did.
On page 228 of [18], Painlevé started by studying the generalized Laurent expan-

sion of a solution y at algebraic singular points x0. By dominant balance, he found the
leading term of this series. Then he made use of the equation to find the expansion

y =
1

(x − x0)2
− x0

10
(x − x0)2 −

1
6
(x − x0)3 + h(x − x0)4 +

x2
0

18
(x − x0)6 + · · · , (3.4)

where h is an arbitrary constant (resonance). Next he rewrote the expansion (3.4)
into

y =
1

(x − x0)2
− x

10
(x− x0)2 −

1
15

(x− x0)3 + h(x− x0)4 +
x2

18
(x− x0)6 + · · · , (3.5)

so that the coefficients are all independent of the specific point x0. Taking derivative
of (3.5) yields

y′ = − 2
(x − x0)3

− x

5
(x−x0)−

3
10

(x−x0)2 +4h(x−x0)3 +
x2

3
(x−x0)5 + · · · . (3.6)

Eliminating (x − x0) from (3.5) and (3.6), he got the expansion

y′ = − 2
εy3/2

− xεy1/2

2
− y

2
+ 7hεy3/2 + · · · , ε = ±1. (3.7)

In principle, one may invert (3.5) to get an expansion of (x − x0) in terms of εy1/2

and then put the expansion into (3.6) to get (3.7).
A subtle point in Painlevé’s process is that he converted the familiar series (3.4)

that people would usually use for singularity analysis (as in the Painlevé test) to a less
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familiar series (3.6). In fact, Painlevé’s intention was not to use the series to analyze
the singularity. He merely made use of the series in order to derive the expansion
(3.7) and ultimately his differential system. Therefore it is very important that the
coefficients in the series should not depend on the point x0, as is required by the
system.

Next Painlevé introduced (the indicial normalization) z = εy1/2 to make powers
in the expansion (3.7) integral. Then he cut the expansion (3.7) at the arbitrary
constant h by introducing a new variable u. This gives rise to the transformation

y =
1
z2

, y′ = − 2
z3

− xz

2
− z2

2
+ uz3 (3.8)

that converts the original equation (3.3) into his regular system.
Note that eliminating y from (3.8) gives us

dz

dx
= 1 +

xz4

4
+

z5

4
− u

2
z6.

This is exactly the change of variable one would get through our algorithm, except
we would call − 1

2u the new variable. While Painlevé made concrete computations of
the generalized Laurent series in order to introduce his new variable, our algorithm
provides a more direct and systematic way of accomplishing the same.

4. Mirror System as a Detector of Integrability. In this section, we will
show more example of the mirror system. In fact, to illustrate that our algorithm is
equivalent to the Painlevé test, we will start with a generally non-integrable equation
and derive all the integrable cases.

4.1. The Generalized Painlevé II. Consider the following generalization of
the second Painlevé equation

u′′ = 2u3 + a u + b, (4.1)

where a = a(t) and b = b(t) are analytic functions. From the dominant balance, we
need to apply the indicial normalization u = θ−1. This converts the equation (4.1) to

−2 − a θ2 − b θ3 + 2 θ′
2 − θ θ′′ = 0. (4.2)

Our algorithm leads to two possible branches of expansions, on of which is

θ′ = 1 +
a θ2

2
+ θ3

(
b +

a′

2

)

+θ4

(
−a2

6
+

13 b′

12
+

7 a′′

24
+

θ(5)

24

)
+ · · · ,

where θ(5) is the only resonance derivative. This suggests us to introduce a new
variable ξ (for this branch) by

θ′ = 1 +
a θ2

2
+ θ3

(
b +

a′

2

)
+ θ4 ξ. (4.3)
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Substitute θ′′ in (4.2) by the derivative of (4.3). Then substitute θ′ in the resulting
equation by (4.3). We have

ξ′ =
(
−b′ − a′′

2

)
θ−1 +

(
−a b

2
− a a′

4

)
+ θ

(
−b2 − a ξ − b a′ − a′2

4

)

+θ2

(
−3 b ξ − 3 ξ a′

2

)
− 2 θ3 ξ2. (4.4)

The equations (4.3) and (4.4) form a system for (θ, ξ). The system is regular at θ = 0
if and only if

−b′ − a′′

2
= 0. (4.5)

Similarly, for the other branch of expansions, we should introduce a new variable
ξ by

θ′ = −1 − a θ2

2
+ θ3

(
−b +

a′

2

)
+ θ4 ξ. (4.6)

Then the equation (4.2) is converted to

ξ′ =
(

b′ − a′′

2

)
θ−1 +

(
−a b

2
+

a a′

4

)
+ θ

(
−b2 + a ξ + b a′ − a′2

4

)

+θ2

(
3 b ξ − 3 ξ a′

2

)
− 2 θ3 ξ2. (4.7)

Again, the system (4.6) and (4.7) for (θ, ξ) is regular if and only if

b′ − a′′

2
= 0. (4.8)

In general, both branches of expansions may appear. Therefore, in order that
(4.1) to be integrable, we expect that the mirror systems for both branches should be
regular. In other words, we need both (4.5) and (4.8) hold. This leads to

a′′ = b′ = 0.

After a linear change of variables, we end up with the standard second Painlevé
equation

u′′ = 2u3 + zu + α.

4.2. The Generalized KdV. In section 7.2.5 of [1], the Painlevé test was used
to show that the generalized KdV equation

ut − 6(u2)x + uxxx + a(t)u = 0, (4.9)

where a(t) is an analytic function, is integrable if and only if

a(t) = 0 or a(t) =
1

2(t − t0)
.
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The first case may be normalized to become the KdV equation

ut + 6uux + uxxx = 0.

The second case may be normalized to become the cylindrical KdV equation

ut + 6uux + uxxx +
u

2t
= 0.

Now we try to use our algorithm to get the same conclusion. For the indicial
normalization u = θ−2, we have the equation for θ

θ3 a(t)
2

− θ2 θt + 12 θx − 12 θ3
x + 9 θ θx θx2 − θ2 θx3 = 0. (4.10)

Our algorithm leads to two possible branches of expansions. One is

θx = 1 − θ2 θt

8
+ θ3 a(t)

6
+ θ4

(
−5 θ2

t

192
+

θx5

24

)
+ θ5

(
11 a(t) θt

32
+

31 θt2

192

)

+ θ6

(
−691 a(t)2

480
− 169 a′(t)

240
+

143 θ3
t

4608
+

41 θt θx5

2880
− 7 θx7

360

)
+ · · · ,

θx2 = −θ
θt

4
+ θ2 a(t)

2
+ θ3

(
− θ2

t

24
+

θx5

6

)
+ θ4

(
19 a(t) θt

16
+

59 θt2

96

)

+ θ5

(
−1313 a(t)2

240
− 649 a′(t)

240
+

107 θ3
t

768
+

θt θx5

30
− 3 θx7

40

)
+ · · · .

This leads to the introduction of new variables ξ and η by

θx = 1 − θ2 θt

8
+ θ3 a(t)

6
+ θ4 ξ, (4.11)

θx2 = −θ
θt

4
+ θ2 a(t)

2
+ θ3

(
4 ξ +

θ2
t

16

)
+ θ4

(
−3 a(t) θt

16
− θt2

32

)
+ θ5 η. (4.12)

If (4.9) is integrable, then we expect the mirror system for (θ, ξ, η) to be regular.
As in the case of the KdV equation, the change of variables (4.11) and (4.12) from

(θ, θx, θx2) to (θ, ξ, η) converts (4.10) to

ξx = −a(t) θt

48
− 3 θt2

64
+ θ

(
−a(t)2

12
+ η +

a′(t)
48

+
5 ξ θt

4

)

+θ2

(
−7 a(t) ξ

6
+

ξt

8

)
− 4 θ3 ξ2, (4.13)

ηx = θ−1

(
−a(t)2

12
− a′(t)

24

)
+

a(t) ξ

6
+

a(t) θ2
t

128
− ξt

4
+

3 θt θt2

256

+θ

(
4 ξ2 +

a(t)2 θt

16
− η θt

2
+

a′(t) θt

96
− 5 ξ θ2

t

16
− 13 a(t) θt2

384
− θt3

256

)

+θ2

(
−a(t)3

18
+

2 a(t) η

3
+

a(t) a′(t)
32

+
a′′(t)
192

+
21 a(t) ξ θt

16
+

θt ξt

8
− ξ θt2

32

)

+θ3

(
−a(t)2 ξ + 4 ξ η +

9 ξ2 θt

2
+

3 a(t) ξt

16
+

ξt2

32

)
−6 a(t) θ4 ξ2 − 12 θ5 ξ3. (4.14)
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Thus, in order for the mirror system (consisting of (4.11), (4.13) and (4.14)) to be
regular near θ = 0, the function a(t) must satisfy

−a(t)2

12
− a′(t)

24
= 0. (4.15)

The solution of this equation gives either

a(t) = 0, or a(t) =
1

2(t − t0)
.

For the other branch, we introduce

θx = −1 − θ2 θt

8
+ θ3 a(t)

6
+ θ4 ξ,

θx2 = θ
θt

4
− θ2 a(t)

2
+ θ3

(
−4 ξ +

θ2
t

16

)
+ θ4

(
−3 a(t) θt

16
− θt2

32

)
+ θ5 η.

We can also obtain a mirror system for these new variables (θ, ξ, η). Again, the system
becomes regular if and only if equation (4.15) holds.

5. Convergence of Series in Painlevé Test. The Painlevé test produces the
following formal solution of Burger’s equation near movable singularity x = ψ(t)

u =
2

x − ψ(t)
+ ψ′(t) + r(t)(x − ψ(t)) + · · · , (5.1)

where r(t) (the only resonance) is an arbitrary function. The solution is formal in the
sense that the Painlevé test cannot tell us the convergence of the series.

By converting Burger’s equation into an integral equation and applying contraction-
mapping argument, Joshi and Petersen [13] have shown that the series is actually
convergent to a solution of Burger’s equation for any given holomorphic functions
ψ(t) and r(t). Here we prove the same result by making use of the mirror system and
the Cauchy-Kowalevski theorem in place of the integral equation and the contraction-
mapping theorem.

The mirror system (2.37) for the Burger’s equation is not suitable for applying
the Cauchy-Kowalevski theorem, because of the second order derivative θt2 on the
right side. By introducing a new variable α = θt, we may extend the mirror system
to 


θx =

1
2

+ 2θα + θ2ξ,

ξx = −4αt − 2αξ − 2θξt,

αx = 2α2 + 2α θ ξ + 2 θ αt + θ2 ξt,

(5.2)

where we use αx = (θx)t to find the third equation. The extended mirror system (5.2)
is suitable for applying the Cauchy-Kowalevski theorem.

The next thing we need to do is to convert the series (5.1) into an (equivalent)
initial value condition for (5.2) along the singularity manifold x = ψ(t). From (5.1)
and θ = u−1, we have

θ = −1
2
(x − ψ) − ψ′

4
(x − ψ)2 +

(
ψ′2

8
− r

4

)
(x − ψ)3 + · · · . (5.3)
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Taking derivative of this with respect to t, we have

α = −ψ′

2
+

ψ′2

2
(x − ψ) +

(
3rψ′

4
− 3ψ′3

8
− ψ′′

4

)
(x − ψ)2 + · · · .

Substituting the series for θ and α into the first equation in (5.2) and solve for ξ, we
have

ξ = −3r − 3ψ′2

2
+ · · · .

From these power series, we find the following initial data for the mirror system along
the singularity

θ = 0, ξ = −3r(t) − 3ψ′(t)2

2
, α = −ψ′(t)

2
, at x = ψ(t). (5.4)

Now we are ready to show the convergence of (5.1). By the Cauchy-Kowalevski
theorem, the extended mirror system (5.2) with the initial value condition (5.4) has
a unique analytic solution (θ(x, t), α(x, t), ξ(x, t)) near x = ψ(t). Then u = θ−1 is a
solution of Burger’s equation near x = ψ(t). Moreover, from the usual power series
method, we find the expansion for θ is indeed (5.3). Then an easy computation shows
that the Laurent series of u = θ−1 is exactly (5.1).

Our proof of the convergence is a routine one:
1. Use our algorithm to find the mirror system and, if necessary, extend the

system so that the Cauchy-Kowalevski theorem is applicable;
2. Convert the given resonance functions into an initial condition for the (ex-

tended) mirror system;
3. Use power series method to solve the initial value problem (only up to certain

power so that all resonance functions appear);
4. Verify that the inverse indicial normalization converts the power series ob-

tained from the mirror system into the Laurent series one expects from the
Painlevé test.

We note that for integrable ordinary differential equations, the right side of the mirror
system involves no derivatives. Therefore the Cauchy-Kowalevski theorem is always
applicable. As a result, we always have a routine conceptual proof of the convergence
of the series from the Painlevé test. Our paper [10] contains more comprehensive
discussion on this point.

Let us illustrate the routine again with the KdV equation. The formal Laurent
series near movable singularity x = ψ(t) produced by the Painlevé test is

u = (x − ψ)−2 − ψ′

12
+ r1(x − ψ)2 − ψ′′

72
(x − ψ)3 + r2(x − ψ)4 + · · · , (5.5)

where r1 = r1(t) and r2 = r2(t) are arbitrary functions. Joshi and Srinivasan [14]
showed that the series must converge. Using our method, we extend the mirror system
(2.32), (2.38), (2.39) by introducing new variables α = θt, β = θt2 , and γ = ξt. The
extended system for (θ, ξ, η, α, β, γ) consists of their first order derivatives in x on the
left side, and analytic functions of the six variables and their first order derivatives in
t on the right side. Therefore the Cauchy-Kowalevski theorem can be applied to the
extended system.
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Then we need to convert the series (5.5) into the following initial data for the
extended mirror system at x = ψ(t):



θ = 0,

ξ = −5 r1(t)
2

− 5 ψ′(t)2

384
,

η = −7 r2(t) −
55 r1(t)ψ′(t)

24
− 73 ψ′(t)3

13824
,

α = −ψ′(t),

β = −ψ′′(t),

γ = −5 r′1(t)
2

− 7 ψ′(t) ψ′′(t)
96

.

Then we find the power series solution of the initial value problem. The power ex-
pansion for θ is

θ = (x − ψ(t)) +
ψ′(t)
24

(x − ψ(t))3 +

(
ψ′(t)2

384
− r1(t)

2

)
(x − ψ(t))5

+
ψ′′(t)
144

(x − ψ(t))6 +
(

5ψ′(t)3

27648
− r1(t)ψ′(t)

16
− r2(t)

2

)
(x − ψ(t))7 + · · · .

It is then not difficult to verify that u = θ−2 has expansion (5.5).
Finally, we remark that all the other results in [12] [13] [14], such as well-posedness

of the WTC Cauchy problem, will follow from the similar theorems on the ordinary
Cauchy problems.

6. An Alternative Algorithm. In applying the mirror system to prove the
convergence of the formal Laurent series solutions obtained from the PDE Painlevé
test, we encounter the problem of applying the Cauchy-Kowalevski theorem. While
we may use a little trick to get around the problem for Burger’s equation and KdV
equation, the trick does not always work. The Boussinesq equation is one such exam-
ple.

In this section, we provide another algorithm that gives rise to a regular equation
for which we can always apply the Cauchy-Kowalevski theorem. As a consequence,
we can also give a conceptual proof of the convergence of the formal Laurent series
solutions for many other integrable PDEs, including the Boussinesq equation.

In the alternative algorithm, we follow the first four steps in the algorithm in
Section 2, with additional attension paid to the following:

1. Keep track of the derivatives involved in the remainders of expansions;
2. Find “compatibility relations” corresponding to resonance derivatives;
3. Find expansions (and compatibility relations) for all derivatives up to the

largest order resonance derivative.
Let us explain these through the examples of the Burger’s equation and the KdV
equation.

We denote by OA,m(θl) an expression of the form θlR(x, z, · · · , Dβθ), where 0 ≤
|β| ≤ m, and R is analytic near θ = 0. Then for the Burger’s equation, the equation
(2.14) should really be more accurately written as −θx + 2θ2

x = OA,2(θ), and the
solution (2.20) is better described as

θx =
1
2

+ OA,2(θ).
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Similarly, all the expansions for the Burger’s equation in Section 2 had remainders of
the form OA,≤4(θ) or OA,≤4(θ2).

Recall that θx3 was the only resonance derivative for the Burger’s equation be-
cause the corresponding equation (2.17) that presumably computes the leading behav-
ior became 0 = OA,4(θ) after substituting (2.20), (2.21), and (2.22) into the equation.
However, if, in the second round of computation, we substitute (2.25), (2.26), and
(2.27) into (2.11), then we get a nontrivial relation

θ (−3 θt2 + 8 θt θx3 − θx4) = OA,4(θ2).

Dividing θ, we have

−3 θt2 + 8 θt θx3 − θx4 = OA,4(θ). (6.1)

This is the compatibility relation corresponding to the resonance derivative θx3 .
After finishing the first four steps (and paying the additional attension), we are

ready to construct a regular fifth order equation for θ for the Burger’s equation. We
we apply Dx3 to (2.6) to get

θ θx5 = −3 θxt θx2 − 3 θx θx2t − θt θx3 + 8 θx2 θx3 − θ θx3t − θx4 + θx θx4 .

Substituting (2.20-2.24), keeping in mind of the remainders OA,4(θ2), and simplifying,
we have

θ θx5 =
−3 θt2

2
+ 4 θt θx3 − θx4

2
+ OA,4(θ).

Then it follows from the compatibility relation (6.1) that

θ θx5 = OA,4(θ). (6.2)

Dividing θ, we get a regular equation for θ.
Now we consider the KdV equation. The first four steps gave us the following 24

expansions

θ2
x = 1 + OA,9(θ2),

θx2 = −θ θt θx

4
+ OA,9(θ2),

...

θxt6 =
715 θ9

t

32
− 105 θ2

t2 θt3

4
− 35 θt θ2

t3

2
− 105 θt θt2 θt4

4
− 21 θ2

t θt5

4

+
675 θ4

t θ2
t2 θx

4
+ 85 θ5

t θt3 θx + 45 θ2
t θ2

t2 θx5 + 20 θ3
t θt3 θx5

+
41 θ7

t θx θx5

4
+ 60 θ3

t θt2 θx5t + 15 θ4
t θx5t2 − 14 θ6

t θx7

+θ

(
−188397 θ7

t θt2

256
− 175 θt3 θt4

32
− 105 θt2 θt5

32
− 153 θt θt6

160

+
21111 θ2

t θ3
t2 θx

64
+

17911 θ3
t θt2 θt3 θx

32
+

1577 θ4
t θt4 θx

64

+
3 θx θx2t6

8
+

11 θt θx3t5

20
+ θ2

t θx θx4t4 +
75 θ3

t2 θx5

8
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+32 θt θt2 θt3 θx5 +
45 θ2

t θt4 θx5

8
+

2735 θ5
t θt2 θx θx5

16

+48 θt θ2
t2 θx5t +

45 θ2
t θt3 θx5t

2
− 10599 θ6

t θx θx5t

16

+
135 θ2

t θt2 θx5t2

4
+ 3 θ3

t θx5t3 − 14 θ4
t θx θx6t2

−847 θ4
t θt2 θx7

8
− 14 θ5

t θx7t − 28 θ6
t θx θx8

)
+ OA,9(θ2),

and 4 compatibility relations

0 = θ3

(
105 θt θt2 θx

2
+ 28 θx5t + 2 θx8

)

+θ4

(
455 θ4

t

16
+ 70 θt3 θx + 42 θ2

t θx θx5 − 42 θ2
x5 − 10 θt θx7

)
+ OA,9(θ5),

...

0 = θ

(
−315 θt θt2 θx

2
− 84 θx5t − 6 θx8

)

+θ2

(
− 525 θ4

t

8
− 140 θt3 θx − 168 θ2

t θx θx5 + 168 θ2
x5

+12 θt θx7 − 2 θx θx9

)
+ OA,9(θ3).

The first and the last compatibility relations correspond to the resonance derivatives
θx5 and θx7 . The middle two relations correspond to the “secondary” resonance
derivatives θx5t and θx5t2 and are consequences of the first and the last relations.

Now we are ready to construct a regular tenth order equation for θ for the KdV
equation. We use the indicial normalization u = θ−2 to change the KdV equation to a
third order singular equation for θ. Then we apply Dx7 and get a tenth order singular
equation for θ. We substitute the 24 expansions into this tenth order equation. After
simplifying, we get

θ2 θx10 = −315 θt θt2 θx

4
− 42 θx5t − 3 θx8

+θ

(
105 θ4

t

16
+ 70 θt3 θx − 168 θ2

t θx θx5 + 168 θ2
x5

−30 θt θx7 − 5 θx θx9

)
+ OA,9(θ2) (6.3)

Dividing θ3 and θ from the first and the last compatibility relations, we get

0 =
105 θt θt2 θx

2
+ 28 θx5t + 2 θx8

+θ

(
455 θ4

t

16
+ 70 θt3 θx + 42 θ2

t θx θx5 − 42 θ2
x5 − 10 θt θx7

)
+ OA,9(θ2), (6.4)

0 = −315 θt θt2 θx

2
− 84 θx5t − 6 θx8

+θ

(
− 525 θ4

t

8
− 140 θt3 θx − 168 θ2

t θx θx5 + 168 θ2
x5
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+12 θt θx7 − 2 θx θx9

)
+ OA,9(θ2). (6.5)

Adding 6 times (6.4) and 5/2 times (6.5) together, we have

0 = −315 θt θt2 θx

4
− 42 θx5t − 3 θx8

+θ

(
105 θ4

t

16
+ 70 θt3 θx − 168 θ2

t θx θx5 + 168 θ2
x5 − 30 θt θx7 − 5 θx θx9

)
+ OA,9(θ2).

Combining this with (6.3), we see that θ satisfies a tenth order regular equation.
In general, if n is the order of the equation and θxj+1 is the highest order resonance

derivatives, then we would expect a regular (n + j + 1) order equation for θ.
The obvious drawback of the alternative algorithm is its complexity. As a matter

of fact, we can hardly write down the whole equation explicitly. Despite the practical
problem, the algorithm does have some theoretical advantage.

Note that the high order regular equation we get for the Burger’s equation and
the KdV equation are in the form that we can apply Cauchy-Kowalevski theorem.
As a matter of fact, we have also done the computation for the following important
equations: mKdV, cKdV, Boussinesq, KP, Sine-Gordon, Mikhailov, Liouville. In all
the cases, we can apply the Cauchy-Kowalevski theorem to the high order regular
equation for θ. Consequently, by an argument similar to the one in Section 5, we have
a conceptual proof that the formal Laurent series solutions for these equations are
always convergent.

We have shown in [10] that successfully carrying out the algorithm in Section 2 is
equivalent to passing the Painlevé test. We believe this also holds for the alternative
algorithm. If this can be rigorously proved, then we have a conceptual proof that the
formal Laurent series solutions arising from successful application of the Painlevé test
to PDEs are always convergent.
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Math. 12: 117–232(1889).
[16] J. B. McLeod and P. J. Olver, The connection between partial differential equations solvable

by inverse scattering and ordinary differential equations of Painlevé type, SIAM J. Math.
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Bull. Soc. Math. France 28: 201–261(1900).
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