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Abstract. We use the Lorenz system, the Rikitake model and the nonlinear Schrödinger

equation to demonstrate that for completely integrable systems, there exist what we

call the regular mirror systems near movable singularities. The method for finding

the mirror systems is very similar to the original WTC version of the Painlevé test

[8]. It tests the complete integrability and gives a systematic and conceptual proof

that the formal Laurent series generated by the Painlevé test are convergent.
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1. Introduction. When Painlevé [5] studied movable singularities of solutions

of the equation

u′′ = 6u2 + x, (1.1)

he introduced two new dependent variables θ and ξ by

u = θ−2, θ′ = 1 +
1
4
xθ4 +

1
4
θ5 − 1

2
θ6ξ,
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and converted the equation into the following regular system


dθ

dx
= 1 +

1
4
xθ4 +

1
4
θ5 − 1

2
θ6ξ,

dξ

dx
=

1
8
x2θ +

3
8
xθ2 + θ3

(
1
4
− xξ

)
− 5

4
θ4ξ − 3

2
θ5ξ2.

This differential system (which we called the mirror system in [3] [4]) determines the

behaviors of solutions near their algebraic movable singularities. The regularity of the

system makes it possible to apply the Cauchy-Kowalevski theorem. This implies that

the solutions of (1.1) must be meromorphic near algebraic movable singularities.

Our recent work [3] has demonstrated that, for single high order equations, what

Painlevé did a century ago is a general property. In fact, we will argue in [4] that the

existence of regular mirror systems is equivalent to the Painlevé test [1] [8], which has

been the most effective algorithm for detecting complete integrability. Moreover, we

can use the mirror system to show that the formal Laurent series solutions obtained

from the Painlevé test must be convergent, and thereby justify the Painlevé test.

The first purpose of this paper is to demonstrate how to apply the similar idea

to systems of differential equations. Secondly, we have gained much insight in our

algorithm since we finished [3], and we would like to take the opportunity to present

our algorithm in a more understandable way (and to incorporate the necessary changes

needed for systems). We will work out the details for the examples of the Lorenz

system, the Rikitake model, and the nonlinear Schrödinger equation. The treatment

of the Lorenz system is the most standard. The Rikitake model has a double root

as resonance. And the nonlinear Schrödinger equation is a PDE, with one resonance

parameter appearing as leading behavior.

Our construction of the mirror system is done under the best scenario assumption.

As we will argue in [4], successfully carrying out our construction is in fact equiva-

lent to passing the Painlevé test (meaning there is enough number of non-negative
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resonances). It is quite possible that we can still construct some sort of partial mir-

ror system in cases such as insufficient number of resonances, negative resonances, or

fractional resonances. We will try to explore these in future research.

2. Algorithm for Mirror Systems. Our algorithm for finding the mirror sys-

tems for differential systems is based on a computation similar to the original version

of Weiss, Tabor, and Carnevale’s Painlevé test for PDEs [8]. We outline the steps

as follows, using a first order ODE system in dependent variables X, Y , and Z as

example.

Step 1: Find the dominant behavior in the neighborhood of the movable singularity.

Step 2: Introduce indicial normalization by writing one dependent variable in the

form θ−k, where k is the leading exponent of the dependent variable.

Suppose our ODE system has the following dominant behavior

X = X0(t − t0)−k, Y = Y0(t − t0)−l, Z = Z0(t − t0)−m

near movable singularities (only one of k, l, and m needs to be positive). Then we

may choose a positive leading exponent, say k, and introduce indicial normalization

X = θ−k.

Step 3: Find formal Laurent series of θ′ and the other dependent variables in powers

of θ.

For our ODE system, we are looking for the following formal Laurent θ-series


θ′ = a0 + a1θ + a2θ
2 + · · · ,

Y = θ−l(b0 + b1θ + b2θ
2 + · · ·),

Z = θ−m(c0 + c1θ + c2θ
2 + · · ·),

(2.1)

where a∗, b∗, and c∗ functions of t (but not t0). The way to find these is similar to the

Painlevé test. The leading coefficients a0, b0, and c0 can be found from the dominant
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balance equations. The later coefficients are computed from a linear recursive relation

obtained by substituting the series (2.1) into the system.

There is one important difference between our algorithm and the Painlevé test:

The function φ used in [8] to define the singularity manifold depends only on the

singularity, and is independent of the resonance parameters. In our algorithm, the

function θ is “equivalent” to the solution, and has the resonance parameters implicitly

built in. This is reflected in that, in substituting (2.1) into the original system, we

need to use

X ′ = −kθ−k−1θ′ = −kθ−k−1(a0 + a1θ + a2θ
2 + · · ·),

and

Y ′ = θ−l(b′0 + b′1θ + b′2θ
2 + · · ·)

+θ−l−1((−l)b0 + (−l + 1)b1θ + (−l + 2)b2θ
2 + · · ·)(a0 + a1θ + a2θ + · · ·),

and similarly for Z ′.

For autonomous systems, the coefficients a∗, b∗, and c∗ are constants. This makes

the computation a little easier.

For our ODE system, the determinant of the coefficient matrix in the recursive

relation is a polynomial of degree 3. It has the same roots (resonances) as the de-

terminant in the Painlevé test. The compatibility in our sense is equivalent to the

compatibility in the Painlevé test. If j is the largest resonance, then we may stop the

computation until aj , bj , and cj are found.

Step 4: Truncate the Laurent θ-series of the dependent variables at the resonances

one after another by introducing new variables.

For the third order system, we expect to get two resonance parameters r1 and r2
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at resonances j1 ≤ j2. Suppose we have

Y = θ−l(b0 + b1θ + b2θ
2 + · · · + (p1r1 + q1)θj1 + · · ·),

with p1 �= 0 (if this does not happen for Y , then this happens for Z). Then we

introduce ξ by truncating Y at r1

Y = θ−l(b0 + b1θ + b2θ
2 + · · · + ξθj1). (2.2)

Moreover, we may convert

ξ = p1r1 + q1 + bj1+1θ + bj1+2θ
2 + · · · ,

and get

r1 = p−1
1 (ξ − q1) + β1θ + β2θ

2 + · · · .

Substituting this into the θ-series of Z, we get

Z = θ−m(c0 + c1θ + c2θ
2 + · · · + (p2r2 + q2)θj2 + · · ·),

where p2 is necessarily nonzero and the coefficients only involve t, ξ, and r2 (not

involving t0 and r1). Then we introduce η by truncating Z at r2

Z = θ−m(c0 + c1θ + c2θ
2 + · · · + ηθj2). (2.3)

Step 5: Convert the original differential system into a differential system (the mirror

system) about new variables.

The formulas X = θ−k, (2.2), and (2.3) is a transformation between (X, Y, Z) and

(θ, ξ, η). If the system for (X, Y, Z) passes the Painlevé test, then the mirror system

for (θ, ξ, η) should be regular [4].

This completes the description of the algorithm.
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The method also applies to higher order case. We only need to use

X ′′ = (−k)(−k − 1)θ−k−2θ′2 − kθk−1θ′′

= (−k)(−k − 1)θ−k−2(a0 + a1θ + a2θ
2 + · · ·)2

−kθk−1(a′
0 + a′

1θ + a′
2θ

2 + · · ·)

−kθk−1(a1 + 2a2θ + · · ·)(a0 + a1θ + a2θ
2 + · · ·),

and similar formulae for Y ′′, Z ′′ and higher derivatives.

The method also applies to PDE systems. The only difference is that the co-

efficients in the θ-series involve more variables, and we need to use formulae such

as

∂yY = θ−l(∂yb0 + (∂yb1)θ + (∂yb2)θ2 + · · ·)

+θ−l−1((−l)b0 + (−l + 1)b1θ + (−l + 2)b2θ
2 + · · ·)(∂yθ).

In particular, the coefficients of the θ-series may involve ∂yθ, ∂y2θ, · · ·.

3. Examples of Mirror Systems. The Painlevé test has been used to uncover

integrable cases of many systems of physical interest. For example, Segur found four

integrable cases for the Lorenz system [7]. More examples can be found in [2] [6]. In

this section, we demonstrate our algorithm by working out some classical examples.

3.1. The Lorenz system. The Lorenz system is an autonomous differential

system: 


X ′ = σ(Y − X),
Y ′ = −XZ + RX − Y,
Z ′ = XY − BZ,

(3.1)

where σ, R, and B are constants. In general, this system is not integrable and is

well known for the chaotic behavior of its solutions. The Painlevé test tells us four

completely integrable cases for the Lorenz system:
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1. σ = 0;

2. σ = 1/2, B = 1, R = 0;

3. σ = 1, B = 2, R = 1/9;

4. σ = 1/3, B = 0, R arbitrary.

If σ = 0, then X is a constant and the system is linear. Therefore we will not

investigate the case anymore. The three other cases were found by the Painlevé test.

In what follows, we try to carry out our algorithm for the Lorenz system. We will see

that we are successful in exactly these three cases.

By dominant balance we find the leading behavior

X = X0(t − t0)−1, Y = Y0(t − t0)−2, Z = Z0(t − t0)−2,

near a movable singularity t = t0. This suggests us to introduce the indicial normal-

ization X = θ−1 and try to compute the formal θ-series (2.1), with l = m = 2 and a∗,

b∗, c∗ constants (because the system is autonomous).

Substituting (2.1) into the Lorenz system, we get the equations for the leading

coefficients

a0 = −σb0, −2a0b0 = −c0, −2a0c0 = b0; (3.2)

and the recursive relation for the higher order coefficients


an + σbn = δ1,nσ,

−2b0an + (n − 2)a0bn + cn = δ2,nR − bn−1 −
n−1∑
j=1

(j − 2)an−jbj ,

−2c0an − bn + (n − 2)a0cn = −Bcn−1 −
n−1∑
j=1

(j − 2)an−jcj .

(3.3)

By solving (3.2), we find two possible branches of leading behaviors

a0 = ± i

2
, b0 = ∓ i

2σ
, c0 =

1
2σ

.

Substituting these into the coefficient matrix on the left of (3.3), we see that the

determinant of the coefficient matrix is −1
4
(n − 2)(n − 4). Therefore there are two
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resonances j = 2, 4, and we need to find the compatibility condition for each resonance.

We will carry this out only for the branch a0 = i/2. The discussion for the other

branch is similar.

From the recursive relation (3.3), we find

a1 =
1
3
− σ +

2
3
B, b1 = 2 − 1

3σ
− 2

3σ
B, c1 = 2i − i

σ
B.

Then for n = 2, the recursive relation becomes


a2 + σb2 = 0,

i

σ
a2 + c2 = −1 − 2σ +

2
9σ

+ 2B +
2
9σ

B − 4
9σ

B2 + R,

− 1
σ

a2 − b2 =
2i

3
− 2iσ +

i

3
B − i

3σ
B +

i

3σ
B2.

(3.4)

The system is consistent if and only if

B2 + B (−1 + σ) + 2 (1 − 3σ) σ = 0.

This means that we need to consider two possibilities

B = 2σ, or B = 1 − 3σ.

Case 1: B = 2σ.

In this case, we solve (3.4) and get

a2 = −σr1, b2 = r1, c2 = ir1 −
5
9

+
2
9σ

+
2σ

9
+ R,

where r1 is the first resonance parameter. Then from the recursive relation, we further

have 


a3 = −4i

3
σr1 −

20i

3
σ2r1 −

16
9

σ +
40
9

σ2 − 16
9

σ3 − 8Rσ2,

b3 = −4i

3
r1 +

20i

3
σr1 +

16
9

− 40
9

σ +
16
9

σ2 + 8Rσ,

c3 = −4σr1 +
8i

9
− 20i

9
σ +

8i

9
σ2 + 4iRσ,
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Substituting the known coefficients into the recursive relation for n = 4, we have


−a4 − σb4 = 0,

i

σ
a4 + ib4 + c4 = −16

9
+

4i

3
r1 −

16i

3
σr1 −

20i

3
σ2r1

+
8
3
σ +

8
3
σ2 − 16

9
σ3 − 8Rσ − 8Rσ2,

− 1
σ

a4 − b4 + ic4 = − 8i

27
+

4
3
σr1 +

28
3

σ2r1

−4i

3
σ +

44i

9
σ2 − 56i

27
σ3 − 4i

3
Rσ − 28i

3
Rσ2.

(3.5)

The system is consistent for arbitrary choice of r1 if and only if

{
1 − 11σ + (24 − 45R)σ2 + (−14 + 9R)σ3 + 4σ4 = 0,

1 − 3σ + 2σ2 = 0.

Solving these, we have

σ = 1/2, R = 0; or σ = 1, R = 1/9,

Case 1A: σ = 1/2, B = 1, R = 0.

In this case, we solve (3.5) and get


θ′ =
i

2
+

1
2
θ +

1
2
r1θ

2 − ir1θ
3 − 1

2
r2θ

4 + · · · ,

Y = −iθ−2 + r1 + 2ir1θ + r2θ
2 + · · · ,

Z = θ−2 + ir1 − 2r1θ − 3ir1θ
2 + · · · ,

where r2 is the second resonance parameter.

Now we introduce new variables ξ and η from the Laurent θ-series of Y and Z.

By cutting the θ-series of Y at r1, we introduce ξ

Y = −iθ−2 + ξ. (3.6)

From the θ-series of ξ, we have

r1 = ξ − 2iξθ − (r2 + 4ξ)θ2 + · · · .

Substituting this into the θ-series of Z, we have

Z = θ−2 + iξ − (ir2 + 3iξ)θ2 + · · · .
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By cutting the θ-series of Z at r2, we introduce η

Z = θ−2 + iξ + ηθ2. (3.7)

Combining (3.6) and (3.7) with X = θ−1, we have a change of variable (X, Y, Z) ↔

(θ, ξ, η). Then it is easy to convert the Lorenz system (3.1) into the following


θ′ =
i

2
+

1
2
θ − ξ

2
θ2,

ξ′ = −ξ − ηθ,

η′ = −2η + ξηθ.

(3.8)

This is a mirror system of the Lorenz system in the case 1A of the branch θ′ ∼ i/2.

The most important feature for the singularity analysis is that the system is regular

near θ = 0, which corresponds to the movable singularity of the Lorenz system.

Case 1B: σ = 1, B = 2, R = 1/9.

In this case, we get the following Laurent θ-series


θ′ =
i

2
+

2
3
θ − r1θ

2 − 16i

3
r1θ

3 − r2θ
4 + · · · ,

Y = − i

2
θ−2 +

1
3
θ−1 + r1 +

16i

3
r1θ + r2θ

2 + · · · ,

Z =
1
2
θ−2 + ir1 − 4r1θ − 32i

3
r1θ

2 + · · · ,

.

where r1 and r2 can be arbitrary. By first cutting Y at r1 and then Z at r2, we

introduce new variables ξ and η by


X = θ−1,

Y = − i

2
θ−2 +

1
3
θ−1 + ξ,

Z =
1
2
θ−2 + iξ +

4
3
ξθ + ηθ2.

The transformation converts the Lorenz system (3.1) into the following mirror system


θ′ =
i

2
+

2
3
θ − ξθ2,

ξ′ = −8
3
ξ − ηθ,

η′ =
4
3
ξ3 − 2η + 2ξηθ.
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Case 2: B = 1 − 3σ.

The compatibility condition at the resonance j = 4 leads to the following condition

σ = 1/3, B = 0, R arbitrary.

Under the condition, we get the following θ-series


θ′ =
i

2
− 1

3
r1θ

2 − 1
3
r2θ

4 + · · · ,

Y = −3i

2
θ−2 + θ−1 + r1 + r2θ

2 + · · · ,

Z =
3
2
θ−2 + 2iθ−1 + ir1 − 1 + R − 4

3
r1θ + · · · .

Based on these we introduce new variables ξ and η


X = θ−1,

Y = −3i

2
θ−2 + θ−1 + ξ,

Z =
3
2
θ−2 + 2iθ−1 + iξ − 1 + R − 4

3
ξθ + ηθ2,

by cutting the θ-series of Y at r1 and then the θ-series of Z at r2. Under the trans-

formation, the Lorenz system becomes


θ′ =
i

2
− 1

3
ξθ2,

ξ′ = −ηθ,

η′ = −4
9
ξ2 − 4

3
η +

2
3
ξηθ.

3.2. The Rikitake model. The Rikitake model


X ′ = −γX + βY + Y Z,
Y ′ = −γY − βX + XZ,
Z ′ = −XY + α,

(3.9)

describes earth’s magneto-hydrodynamic dynamo. The dominant balance argument

suggests us to introduce the indicial normalization X = θ−1 and try to find the

Laurent θ-series (2.1), with l = m = 1 and a∗, b∗, c∗ constants.

We substitute the θ-series into the system. By comparing the coefficients of

powers of θ on both sides, we get the equations for the leading coefficients

a0 = −b0c0, −a0b0 = c0, −a0c0 = −b0,
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which gives four possible branches of leading behaviors

(a0, b0, c0) =




(−i, 1, i)
(−i,−1,−i)
(i, 1,−i)
(i,−1, i)

(3.10)

We also have the recursive relation


an + c0bn + b0cn = δ1,nγ − βbn−1 −
n−1∑
j=1

bjcn−j ,

−b0an + (n − 1)a0bn − cn = −δ1,nβ − γbn−1 −
n−1∑
j=1

(j − 1)an−jbj ,

−c0an + bn + (n − 1)a0cn = δ2,nα −
n−1∑
j=1

(j − 1)an−jcj .

(3.11)

Substituting (3.10) into the coefficient matrix on the left of (3.11), we see that the

determinant of the coefficient matrix is −(n − 2)2. Therefore there is one double

resonance j = 2. By checking out the compatibility conditions, we find exactly two

cases.

From now on, we proceed with the first branch (a0, b0, c0) = (−i, 1, i). The

discussion for the other branches is similar.

Case 1: α = 0, β = 0.

We get the following θ-series




θ′ = −i − (ir1 + r2)θ2 + · · · ,
Y = θ−1 + r1θ + · · · ,
Z = iθ−1 + γ + r2θ + · · · .

By cutting the θ-series of Y at r1 and the θ-series of Z at r2 (at the same time), we

introduce new variables ξ and η




X = θ−1,

Y = θ−1 + ξθ,

Z = iθ−1 + γ + ηθ.
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The transformation converts the Rikitake system (3.9) into the following mirror sys-

tem 


θ′ = −i − (iξ + η)θ2 − γξθ3 − ξηθ4,

ξ′ = −2γξ + iξ2θ + γξ2θ2 + ξ2ηθ3,

η′ = −iγξ + η2θ + γξηθ2 + ξη2θ3.

(3.12)

Case 2: α = 0, γ = 0.

We get the following θ-series



θ′ = −i + 2βθ − (ir1 + r2)θ2 + · · · ,
Y = θ−1 + 2iβ + r1θ + · · · ,
Z = iθ−1 − β + r2θ + · · · .

By cutting the θ-series of Y at r1 and the θ-series of Z at r2, we introduce new

variables ξ and η




X = θ−1,

Y = θ−1 + 2iβ + ξθ,

Z = iθ−1 − β + ηθ.

The corresponding mirror system is




θ′ = −i + 2βθ − (iξ + η)θ2 − 2iβηθ3 − ξηθ4,

ξ′ = −2βξ − 2iβη + iξ2θ + 2iβξηθ2 + ξ2ηθ3,

η′ = η2θ + 2iβη2θ2 + ξη2θ3.

3.3. The nonlinear Schrödinger equation. It is well known that the nonlin-

ear Schrödinger equation (NLS)

iut + uxx − 2|u|2u = 0

is completely integrable. To find its mirror system, we complexify all variables and

write the NLS equation as a system

{
iut + uxx − 2u2v = 0,

−ivt + vxx − 2uv2 = 0,
(3.13)

in which u and v are treated as independent complex functions of x and t.
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The dominant balance argument suggests us to introduce the indicial normaliza-

tion u = θ−1 and try to find the Laurent θ-series:

{
θx = a0 + a1θ + a2θ

2 + · · · ,
v = θ−1(b0 + b1θ + b2θ

2 + · · ·), (3.14)

in which a∗, b∗, c∗ are functions of t, θt, θt2 , · · ·.

We substitute (3.14) into (3.13) to get the equation for the leading coefficients

2a2
0 − 2b0 = 0, (3.15)

and the recursive equation

{
(n − 4)a0an + 2bn = Fn,

(n − 4)a0b0an + [4b0 − (n2 − 3n + 2)a2
0]bn = Gn,

(3.16)

where

Fn = −δ1,niθt −
∑

j+k=n
j,k �=n

(j − 2)ajak −
∑

j+k=n−1

(∂xaj)k,

Gn = −i(n − 2)θtbn−1 − 2
∑

j+k=n
j,k �=n

bjbk + 2
∑

j+k+l=n
j,k,l �=n

ajakbl

−
∑

j+k+l=n−1
j �=n−1

(j + 1)aj+1akbl − 2
∑

j+k+l=n−1
l �=n−1

(l + 1)ajakbl+1

+
∑

j+k+l=n−2
l �=n−2

(l + 1)(l + 2)ajakbl+2 +
∑

j+k+l=n−2

(k + 1)(l + 1)ajak+1bl+1

−i∂tbn−2 −
∑

j+k+l=n−1

(∂xaj)kbl − 2
∑

j+k+l=n−1

aj(∂xbk)l

+
∑

j+k+l=n−1
l �=0

l(∂xaj)kbl + 2
∑

j+k+l=n−1
j �=n−1

(k + l)aj(∂xbk)l +
∑

j+k=n−2

(∂x2aj)k

and (∂xaj)k, (∂xbk)l, (∂x2aj)k mean the following: Since aj is a function of t, θt, θt2 ,

· · ·, the partial derivative ∂xaj is a function of t, θt, θt2 , · · ·, and the following θ-series

(θx)t =
∞∑

j=0

[∂taj + (j + 1)ajθt]θj , (θx)t2 , · · · .

Then we find the θ-series for ∂xaj , in which (∂xaj)k denotes the coefficeint of θk.

From (3.15), we find a0 = r1(t), b0 = r1(t)2 for an arbitrary nonzero function r1

(the first resonance parameter). From (3.16) we further find the θ-series for ux, v,
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and vx


ux = −r1θ
−2 − ir−1

1 θtθ
−1 − r−3

1 θ2
t +

i

2
r−2
1 r′1

+
(
−2r−1

1 r2 + r−3
1 θt2 −

7
2
r−4
1 r′1θt − 3ir−5

1 θ3
t

)
θ − r3θ

2 + · · · ,

v = r2
1θ

−1 + iθt + (−ir−1
1 r′1 + r−2

1 θ2
t )θ + r2θ

2+

+
(
−5

4
r−4
1 r′1

2 +
1
4
r−3
1 r′′1 − 3ir−2

1 r2θt

−19i

2
r−5
1 r′1θ

2
t + 8r−6

1 θ4
t + ir−4

1 θtθt2

)
θ3 + · · · ,

vx = −r3
1θ

−2 − ir1θtθ
−1 +

i

2
r′1 − r−1

1 θ2
t +

(
3
2
r−2
1 r′1θt + 2ir−3

1 θ3
t

)
θ

+
(
−r2

1r3 −
21
4

r−3
1 r′1

2 +
5
4
r−2
1 r′′1 − ir−1

1 r2θt

−53i

2
r−4
1 r′1θ

2
t + 20r−5

1 θ4
t + 4ir−3

1 θtθt2

)
θ2 + · · · ,

where r2 and r3 (the second and the third resonance parameters) are also arbitrary

functions of t. Then we successively cut ux at r1, v at r2, and vx at r3 to get the

change of variables


u = θ−1,
ux = ξθ−2,
v = ξ2θ−1 − iθt + ηθ2,

vx = ξ3θ−2 − 2iξθtθ
−1 + iξt + 2ξηθ + ζθ2.

This converts the NLS system (3.13) into the following regular system


θx = −ξ,
ξx = 2θ2η − iθt,
ηx = ζ,
ζx = −2θη2 − iηt.

(3.17)

Note that the mirror system (3.17) is the same as

{
θxx = −2θ2η + iθt,
ηxx = −2θη2 − iηt.

If we change x to ix, this becomes the system (3.13) we started with! The transform

(θ, η) → (u, v) is

{
u = θ−1,
v = θ2

xθ−1 − iθt + ηθ2.
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The inverse transform (u, v) → (θ, η) is

{
θ = u−1,
η = u2

xu−1 − iut + u2v.

4. Convergence of the Laurent series in the Painlevé test. In [3], we made

use of the mirror systems of single high order completely integrable equations to give

conceptual proofs of the convergence of the Laurent series obtained from applying the

Painlevé test. The method involves the following steps:

1. Convert the Laurent series obtained from the Painlevé test into an initial

value problem for the appropriate mirror system;

2. Apply the Cauchy-Kowalevski theorem to the initial value problem and con-

clude the convergence of the power series solutions of the mirror system;

3. The convergent power series solutions of the mirror system lead to convergent

Laurent series solutions of the original system, because of the equivalence

between the original system and the mirror system;

4. Compare the Laurent series from step 3 with the series obtained from the

Painlevé test explicitly. If the two series are the same up to the order where

all the resonances appear, then the two series must be the same (because the

whole series are determined by those leading terms).

A consequence of these steps is the convergence of the Laurent series obtained form

the Painlevé test. Such convergence can be considered as the justification of the

Painlevé test.

The idea works equally well with systems. We present the details only for one

case of the Lorenz system. We will also present the outline for the other cases.
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4.1. One case of the Lorenz system. For the case 1A: σ = 1/2, B = 1,

R = 0, the Painlevé test produces the following formal Laurent series solution




X = −2it−1 +
i

2
+

(
− i

4
+

1
2
r̄1

)
t +

(
5i

32
− 3

8
r̄1

)
t2

+
(
− 5i

192
+

1
16

r̄1 +
1
6
r̄2

)
t3 + · · · ,

Y = 4it−2 − 2it−1 + r̄1 +
(

3i

8
− r̄1

)
t + r̄2t

2 + · · · ,

Z = −4t−2 + 2t−1 + ir̄1 +
(
−3

8
− ir̄1

)
t

+
(

29
96

+
5i

8
r̄1 +

1
4
r̄2
1 − 2i

3
r̄2

)
t2 + · · · ,

(4.1)

where r̄1 and r̄2 are the resonance parameters in the Painlevé test, and we use t

instead of (t − t0) because of the autonomous system. To show that these series are

convergent for small t and arbitrary r̄1 and r̄2 (the size of t may depend on r̄1 and

r̄2), we convert (4.1) to an initial value problem for the mirror system.

We substitute the formal Laurent series (4.1) into the transformation X = θ−1,

(3.6), and (3.7) to find the formal power series for θ, ξ, and η. The computation leads

to the following initial data

θ(0) = 0, ξ(0) = −5i

4
+ 3r̄1, η(0) = −23

12
− 5ir̄1 + r̄2

1 +
28i

3
r̄2,

for the mirror system (3.8).

By the Cauchy theorem, we know that the initial value problem for the mirror

system (3.8) has a power series solution which is convergent in a neighborhood of 0.

We may further find the power series for θ, ξ, and η by the usual method such as
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undetermined coefficients


θ =
i

2
t +

i

8
t2 +

(
− i

32
+

1
8
r̄1

)
t3 +

(
i

64
− 1

32
r̄1

)
t4

+
(

17i

1536
− 5

128
r̄1 −

i

32
r̄2
1 +

1
24

r̄2

)
t5 + · · · ,

ξ = −5i

4
+ 3r̄1 +

(
5i

4
− 3r̄1

)
t +

(
−31i

96
+

7
8
r̄1 +

i

4
r̄2
1 +

5
3
r̄2

)
t2 + · · · ,

η = −23
12

− 5ir̄1 + r̄2
1 +

28i

3
r̄2 + · · · .

Substituting these series back into X = θ−1, (3.6), and (3.7), we find the convergent

(i.e., not just formal) power series for X, Y , and Z. The computation shows that the

result is exactly (4.1). Thus we conclude that the Laurent series (4.1) are convergent.

4.2. Other cases and systems. For the case 1B (σ = 1, B = 2, R = 1/9)

of the Lorenz system, the Painlevé test produces the following formal Laurent series

solution 


X = −2it−1 +
2i

3
+

(
−2i

3
+ r̄1

)
t +

(
32i

27
− 2r̄1

)
t2

+
(
−32i

81
+

2
3
r̄1 +

1
3
r̄2

)
t3 + · · · ,

Y = 2it−2 − 2it−1 + r̄1 +
(

46i

27
− 3r̄1

)
t + r̄2t

2 + · · · ,

Z = −2t−2 +
4
3
t−1 +

2
9

+ ir̄1 +
(
−20

27
− 4i

3
r̄1

)
t

+
(

142
81

+
8i

3
r̄1 +

1
2
r̄2
1 − 2i

3
r̄2

)
t2 + · · · ,

The convergence of the series may be proved by considering the following initial value

θ(0) = 0, ξ(0) = −16i

9
+ 3r̄1, η(0) = −1336

81
− 80i

3
r̄1 − 2r̄2

1 +
20i

3
r̄2,

for the corresponding mirror system.

For the case 2 (σ = 1/3, B = 0, R arbitrary), we should consider the following

initial data

θ(0) = 0, ξ(0) = 3r̄1, η(0) = −2
3
r̄2
1 +

20i

3
r̄2,
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for the corresponding mirror system. This leads to the convergence of the following

Laurent series obtained from the Painlevé test




X = −2it−1 +
1
3
r̄1t +

2
9
r̄2t

2 + · · · ,

Y = 6it−2 − 2it−1 + r̄1 +
1
3
r̄1t + r̄2t

2 + · · · ,

Z = −6t−2 + 4t−1 − 1 + R + ir̄1 −
4i

3
r̄1t +

(
1
6
r̄2
1 − 2i

3
r̄2

)
t2 + · · · .

For the branch of the Rikitake model considered in Section 3.2 in case α = β = 0,

we solve the mirror system (3.12) with the initial data

θ(0) = 0, ξ(0) = 2ir̄1 + r̄2, η(0) = −r̄1 + 2ir̄2.

This leads to the convergence of the following Laurent series




X = it−1 + (−r̄1 + ir̄2)t + · · · ,
Y = it−1 + r̄1t + · · · ,
Z = −t−1 + γ + r̄2t + · · · ,

obtained in the Painlevé test for the Rikitake model. The convergence of the Laurent

series in other cases of the Rikitake model can be proved similarly.

By solving the mirror system (3.17) for the NLS system (3.13) with the following

initial data along the initial manifold x = ψ(t):




θ = 0,

ξ = r̄−1
1 ,

η =
1
2
ψ′r̄′1 +

1
4
ψ′′r̄′1 + 6r̄2,

ζ =
1
72

ψ′4r̄1 +
i

12
ψ′ψ′′r̄1 +

1
9
r̄−1
1 r̄′21 − i

18
ψ′2r̄′1 +

1
12

r̄′′1 − 2iψ′r̄2 + 10r̄3,

where ψ, r̄1, r̄2, and r̄3 are arbitrary analytic functions and r̄1 �= 0, we can prove the
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convergence of the Laurent series


u = r̄1(x − ψ)−1 +
i

2
ψ′r̄1 +

(
− 1

12
ψ′2r̄1 +

i

6
r̄′1

)
(x − ψ)

+r̄2(x − ψ)2 + r̄3(x − ψ)3 + · · · ,

v = r̄−1
1 (x − ψ)−1 − i

2
ψ′r̄−1

1 +
(
− 1

12
ψ′2r̄−1

1 +
i

6
r̄−2
1 r̄′1

)
(x − ψ)

+
(
−1

4
ψ′′r̄−1

1 − r̄−2
1 r̄2

)
(x − ψ)2

+
(

i

6
ψ′ψ′′r̄−1

1 +
1
12

r̄−3
1 r̄′21 − 1

12
r̄−2
1 r̄′′1 + r̄−2

1 r̄3

)
(x − ψ)3 + · · · .

These are the Laurent series obtained in the Painlevé test.
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