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Abstract

The isovariant homotopy classification was proved to have equivariant period-
icity SG(M, rel ∂) ∼= SG(M ×DV, rel ∂) for the following cases: V is the four fold
permutation representation of an odd order group [Y], or V is twice of any complex
representation of a compact abelian group [WY]. In this paper, the equivariant pe-
riodicity is proved for twice of the natural complex representation of SU(2), and
twice of any complex representation of O(2), providing further evidence that the
equivariant periodicity should be true for twice of any complex representation of
any compact Lie group.
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Let S(M, rel ∂M) be the homeomorphism classes of topological manifolds that are
homotopy equivalent to M and restrict to homeomorphisms on the boundary. Sieben-
mann proved that the homotopy classification of topological manifolds has the four fold
periodicity (Appendix C of [KS]):

S(M, rel ∂M) ∼= S(M ×D4, rel ∂(M ×D4)).

As pointed out by Nicas, this is in fact not quite correct in the context of manifolds [N].
The deviation may be a copy of Z. On the other hand, this is indeed true if the consid-
eration is enlarged to ANR-homology manifolds [BFMW]. Our purpose is to extend the
periodicity to the isovariant (i.e., preserving the isotropy groups) homotopy classification
of equivariant topological manifolds

SG(M, rel ∂M) ∼= SG(M ×DV, rel ∂(M ×DV )),

where DV is the unit ball of some unitary G-representation V . Because of the fact that
G may acts nontrivilly on DV , such kind of generalization is theoretically and practically
quite useful (see [WY] for a more detailed discussion). Again the exact isomorphism is
true only in the context of equivariant ANR-homology manifolds. However, the deviation
in the context of equivariant topological manifolds is several copies of Z and is well
understood. Therefore we will not be concerned with the deviation and will pretend that
the exact statement is true for topological manifolds.

Under some mild combinatorial and small gap conditions, the equivariant periodicity
has been proved for the following cases:

1. G is a finite group. V = RS ⊗ R4 is a permutation representation, where S is a
finite G-set such that all its orbits are of odd order [Y].

2. G is a compact abelian group, including the torus group. V = W ⊕W is twice of
some complex representation W [WY].

Moreover, it was suggested in [WY] that the equivariant periodicity should be true for
twice of a complex representation of any (abelian or nonabelian) compact Lie group. This
paper provides some evidence in this direction. The main result is the following theorem.

Theorem 0.1 Suppose that M is a homotopically stratified G-manifold with codimension
≥ 3 gap. Suppose that V is a G-representation such that M and M × V have the same
isotropy everywhere. Then there is a natural isomorphism

SG(M, rel ∂M) ∼= SG(M ×DV, rel ∂(M ×DV ))

for the following cases:
(1) V = C2 ⊕C2 = R8 is twice the natural representation of G = SU(2) on C2;
(2) V = H ⊗R R2 = R8 is the quaternionization of the natural representation of

G = O(2) on R2.
The result remains true for the representations of G′ induced from a group homomor-

phism G′ → G.
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The codimension ≥ 3 gap condition is the following: If H ⊂ K are subgroups of
G, and MH

α ⊃ MK
β are two connected components of fixed point subsets. Then either

MH
α = MK

β or dimMH
α ≥ dimMK

β +3. The condition will make sure that the isovariant and
equivariant connected fixed point components are in one-to-one correspondence, and the
corresponding components have isomorphic fundamental groups. The assumption is useful
because the surgery and K-obstructions are basically determined by such combinatorial
data. Moreover, such gap condition is often satisfied in applications.

The condition that M and M × V have the same isotropy everywhere was introduced
in [Y] and means the following: For any x ∈ M , there is an equivariant neighborhood U
of x, such that iso(U) = iso(U × V ), where “iso” means the collection of isotropy groups.
The condition makes sure that the isovariant fixed point components of M and M × V
are in one-to-one correspondence, a naturally necessary combinatorial condition for the
structures on M and M×DV to be equivalent. Moreover, if M has codimension ≥ 3 gap,
then the same isotropy everywhere condition implies that M × V also has codimension
≥ 3 gap.

The statement in the theorem about representations induced from group homomor-
phisms may be applied to subgroups. For example, we get periodicity for the dihedral
groups as subgroups of O(2).

From the representation theory, any complex representation of O(2) is induced either
from a representation of Z2 via the group homomorphism det : O(2)→ {±1}, or from the
complexification of the natural O(2)-representation on R2 via a homomorphism O(2)→
O(2). In fact, this is also true for the dihedral subgroups of O(2). Therefore by repeatedly
making use of the periodicity for the abelian group {±1} and the above theorem, we may
conclude the following:

Corollary 0.2 The equivariant periodicity holds for twice of any complex representation
of O(2) or D2n.

The proof of the theorem is similar to the one in [WY]. The key is to construct a
periodicity space that contains the representation, so that away from the representation,
we have a stratified π−π structure. The Wall’s π−π theorem [Wa] can be generalized to
show that the surgery obstructions always vanish for the product of the such π−π structure
with any equivariant manifold. Moreover, the Tate cohomology of the K-theoretical
obstructions also vanish for such products. By making use of Weinberger’s stratified
surgery theory [We], we are then able to prove the periodicity.

This paper is organized as follows: In the first part, the key properties that enable
us to prove the periodicity in [WY][Y] are analyzed. This motivates the definition 1.1
of stratified isovariant π − π structures and the definition 1.8 of equivariant periodicity
spaces. Some useful properties of these objects are also proved. In the second part, the
periodicity spaces for actions by SU(2) and O(2) are constructed. The SU(2)-periodicity
space is a simple straightforward generalization of the S1-periodicity space in [WY]. The
construction of O(2)-periodicity space requires much more effort. In the third part, the
general periodicity theorem 3.1 is proved. Therefore if one can find periodicity spaces (ac-
cording to the definition 1.8) for other group actions, then one would obtain corresponding
periodicity statement.
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The author would like to point out that the definition 1.8 is very likely to be superseded
by better ones. I hope that with more advanced machinery, one may come up with a
definition of periodicity spaces that enables us to prove the following conjecture posed
in [WY]: Twice of any complex representation of any compact Lie group is a periodicity
representation.

1 Definition of Periodicity Spaces

The periodicity in the classical (nonequivariant) surgery theory was induced from the
following isomorphisms

L(X)
×CP2

∼= L(X ×CP2)
incl∼= L(X ×D4, rel S3). (1)

The reason for×CP2 to be isomorphic is that CP2 is a closed manifold of signature 1. The
reason for the inclusion to be isomorphic is that CP2 is connected and simply connected.
Therefore if we replace CP2 by any closed, connected, simply connected manifold P 4p

of signature 1, and replace (D4, S3) by (D4p, S4p−1), then (1) is still isomorphic. Such a
manifold P is a periodicity manifold for the classical surgery theory.

The equivariant periodicity manifolds for the equivariant surgery theory were intro-
duced in [DS] and [Y] as a straightforward generalization of the classical periodicity man-
ifolds. A G-manifold P is a G-periodicity manifold if for any subgroup H of G, PH is
closed, connected, simply connected, and has equivariant π0WH-signature 1. Here the
signature condition means that the π0WH-invariant intersection form of PH at the middle
dimension is isomorphic to the form

multiplication : Z⊗ Z→ Z, trivial group action

up to adding equivariant hyperbolic symmetric forms.
Unfortunately, such equivariant periodicity manifolds do not arise easily. The candi-

date considered in [Y] is the following

P = ×SCP2 = CP2 ×CP2 × · · · ×CP2 (S copies),

where S is a finite G-set, and G acts on P through permutation. It was then proved
(theorem 3.16 of [Y]) that if the orbits in S are all of odd orders, then P is a periodicity
manifold. Dovermann and Schultz considered the special case S = G for a finite group G
acting by left multiplication. In addition to the fact that P is a periodic manifold for odd
order G, they also showed that P is not periodic for even order G (theorem 3.7(ii) of [DS],
even for the general case that CP2 is replaced by any classical periodicity manifold).

It should also be noted that Browder suggested the construction of P = ×GCP2 with
the permutation action by a finite group G long time ago (1976 AMS Summer Symposium
on Algebraic and Geometric Topology at Stanford). The purpose was to increase the
dimensional gap between fixed point components of various subgroups to a big one by
crossing with (maybe several copies of) P . The periodicity property of P implies that the
process preserves much interesting geometric information, while the big gap enables people
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to apply many geometric machineries. The purpose is well served for odd order groups
and will evidently not be achieved for even order ones. In fact, Dovermann and Schultz
proved that one may never obtain big gaps by crossing with Z2-periodicity manifolds
(theorem 3.7(i) of [DS]).

It appears that there is no useful periodicity for actions of even order groups by using
only periodicity manifolds. However, the stratified approach to group actions motivates
the construction in [WY] of a periodicity space for actions of the circle group S1 and all
cyclic groups. The resulting periodicity may be further extended to actions of all compact
abelian groups. Moreover, such periodicity often increases the gap to a big one, for actions
by abelian groups of odd as well as even orders.

The S1-periodicity space considered in [WY] is

P = CP2 ∪D3, (2)

where D3 is attached to CP2 via the identification S2 = CP1. The action of S1 is trivial
on D3, and by the formula

λ[z1, z2, z3] = [λz1, λz2, z3] (3)

on CP2.
By CP2 = D4∪S3↗S2 (the map S3 → S2 is the Hopf bundle map), P is an S1-stratified

space with three strata
P = D4 ∪S3↗ S2

↖S2 ∪D3. (4)

S1 acts on D4 ⊂ C2 (the first two coordinates of (3)) by complex multiplication, and acts
trivially on D3 and S2.

The following two properties enable us to prove the S1-periodicity:

1. The signature of CP2 is 1, and the euler characteristic is 3, an odd number;

2. D3 is a manifold with boundary S2. Both are fixed by S1 , and have isomorphic
fundamental groups (the trivial group).

Strictly speaking, we should consider the π0S
1-equivariant signature and euler character-

istic. However, these are the same as the nonequivariant one because π0S
1 is trivial.

The S1-periodicity is similarly obtained by first considering (compare with (1)):

LS1(X)
×P→ LS1(X × P )

incl← LS1(X ×D4, rel S3), (5)

where the S1-stratification on X × P is induced from that of P . The inclusion map fits
into a long exact sequence in which the third term is LS1(X × (D3, S2)). Because of the
second property of P , each isovariant fixed point component of X × (D3, S2) is a π − π
pair. By the equivariant version of Wall’s π−π theorem [BQ], LS1(X×(D3, S2)) vanishes.
Consequently, the inclusion is an isomorphism. It is a little more complicated to show
that ×P is isomorphic. We simply point out that this essentially is a consequence of the
first property of P . The fact about the euler characteristic is used in studying the map
×P in the “destablization” stage of the homotopically stratified surgery theory.

It is quite conceivable that periodicity spaces may be constructed for actions of other
compact Lie groups. In order to clarify the structure of such spaces, we first elaborate on
the second property of (2) (4).
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Let G be a compact Lie group. A G-stratified space X is generally indexed by a
partially ordered set A. The closed strata of X will be denoted by Xα, while the (pure)
open ones by Xα. Xα is a G-space.

X/G is a stratified space doubly indexed by A and the collection Iso(X) of isotropy
subgroups of X. We say X is homotopically G-stratified if X/G is a homotopically strat-
ified space.

Let B be a partially ordered set. Let ∂B be a copy of B, and β ∈ B correspond to
∂β ∈ ∂B. Then the double 2B = B

∐
∂B is partially ordered by keeping the original

partial orders in B and ∂B, and adding the extra orders ∂β < β.

Definition 1.1 A homotopically G-stratified space X is an isovariant π − π structure if
X is indexed by the double 2B of some partially ordered set B, such that for any β ∈ B,
Xβ ∪X∂β is a manifold with boundary X∂β, and the pair (Xβ ∪X∂β, X∂β) satisfies the
isovariant π − π condition: the connected components of Xβ and X∂β are in one-to-one
correspondence; and the corresponding ones have isomorphic fundamental groups.

The classical π − π theorem has the following straightforward elaboration.

Proposition 1.2 Suppose a homotopically G-stratified space X is an isovariant π − π
structure. Then LG(X) vanishes.

Proof: Let β be a minimal element of B. Then LG(X) fits into a long exact sequence
in which the other two terms are LG(Xβ ∪ X∂β, X∂β) and LG(X − (Xβ ∪ X∂β)) =
LG(X, rel Xβ ∪X∂β). Since (Xβ ∪ X∂β, X∂β) satisfies the isovariant π − π condition,
LG(Xβ ∪ X∂β, X∂β) vanishes by the equivariant π − π theorem. Since X − (Xβ ∪ X∂β)
is also an isovariant π − π structure with smaller index set 2(B − {β}), its surgery ob-
structions may be assumed to vanish by induction. Then we may conclude that LG(X)
vanishes.

Remark 1.3 We will need the similar proposition for the other obstruction theories.
By inspecting the proof of the proposition, we see that the following are the sufficient
conditions for the proposition 1.2 to be valid for a stratified obstruction theory Λ:

1. (classical π − π theorem) For an unstratified manifold pair (X, ∂X) with X, ∂X
connected, and π1X = π1∂X, the obstruction Λ(X, ∂X) is trivial;

2. (decomposition along singularities) For a stratified space X and a closed union Y
of strata of X, Λ(X) fits into a long exact sequence in which the other two terms
are Λ(Y ) and Λ(X − Y ) = Λ(X, rel Y ).

The (nonstratified) equivariant π − π theorem used in the proof of the proposition 1.2 is
a consequence of the two conditions.

Because we will take product with periodicity spaces, we need to know the behavior
of isovariant π − π structures with respect to products.

Proposition 1.4 Suppose X and Y are homotopically G-stratified spaces. If X is an
isovariant π − π structure, then X × Y is also an isovariant π − π structure.
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Proof: Suppose the π− π structure of X is indexed by 2B, and Y is indexed by C. Then
X ×Y has a stratification indexed by 2(B×C) with strata pairs (X ×Y )(β,γ) = Xβ×Y γ

and (X×Y )∂(β,γ) = X∂β×Y γ. However, it is not immediately clear that the pair satisfies
the isovariant π − π condition.

The problem is that the isovariant components behave badly with respect to products
(XH = {x ∈ X : Gx = H}):

(X × Y )H = ∪H1∩H2=HXH1 × YH2 . (6)

However, we may view the above expression as a stratification of (X × Y )H with pure
strata XH1 × YH2 . Therefore to complete the proof of the proposition, it suffices to show
the following result and then apply it to the inclusion X∂β × Y γ ⊂ (Xβ ∪X∂β)× Y γ.

Proposition 1.5 Suppose that f : X → Y is a homotopically transverse map between ho-
motopically stratified spaces. If f is a one-to-one correspondence between the components
of pure strata, and induces surjections (or isomorphisms) between fundamental groups of
the corresponding components, then f∗ : π1X → π1Y is surjective (or isomorphic).

Proof: We may assume that X = X̄ ∪EX × I ∪X0, where X̄ is a top stratum of X, X0 is
a closed union of all strata except X̄, and EX → X0 is a stratified system of fibrations.

We may further assume that Y and f have similar decompositions, such that fE :
EX → EY is a map of stratified systems of fibrations over the homotopically stratified
map f0.

By Vam-Kampen theorem, we have pushouts of fundamental groups and maps between
them

π1EX → π1X0

↓ ↓
π1X̄ → π1X

=⇒
π1EY → π1Y0

↓ ↓
π1Ȳ → π1Y

(7)

Suppose that f induces surjections on the fundamental groups of pure strata. Then f̄∗ :
π1X̄ → π1Ȳ is surjective. Moreover, we may assume by induction that f0∗ : π1X0 → π1Y0

is surjective. Therefore, we conclude that f∗ : π1X → π1Y is surjective.
To prove the isomorphism part of the statement, we observe that the homotopy strat-

ifications of X0 and Y0 induce homotopy stratifications of EX and EY , such that the
restrictions of fE on pure strata are the fibration maps over the corresponding restric-
tions of f0. The assumption that f0 induces isomorphisms between the fundamental
groups of the pure strata of X0 and Y0 implies that fE∗ induces surjections (not neces-
sarily isomorphisms!) between the fundamental groups of the pure strata of EX and EY .
By the surjectivity part of the proposition that we just proved, fE∗ : π1EX → π1EY is
surjective.

Now in the map (7) between pushouts, fE∗ is surjective, f̄∗ is assumed to be isomorphic,
and f0∗ may be assumed to be isomorphic by induction. It then follows that f∗ : π1X →
π1Y is isomorphic.

Remark 1.6 Strictly speaking, if some spaces in (35) are not connected, then we need
to use the term groupoid instead of groups in the proof. In the language of fundamental
groups, there may be some extra generators and relations that produce HNN-extensions.
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The one-to-one correspondence between the components makes these HNN-extensions
equivalent for X and Y .

The following useful result says that isovariant π−π structures may be restricted and
induced.

Proposition 1.7 Suppose that a homotopically G-stratified space X is an isovariant π−π
structure. Then for any subgroup H of G, X is an isovariant π − π structure as an H-
space, and XH is an isovariant π − π structure as a WH-space.

Proof: The statement about XH follows from the definition. In proving the statement
about X as an H-space, one faces the complication of writing down the isovariant com-
ponents of the H-action in terms of the components of the G-action:

XK,for H-action = ∪K′∩H=GXK′,for G-action, K ⊂ H. (8)

As in the proof of the proposition 1.4, we think of the expression (8) as a stratification of
the isovariant components of the H-space X, with certain XK′,for G-action as pure strata.
Then by the proposition 1.5, the inclusion

X∂β
K,for H-action ⊂ (X∂β ∪Xβ)K,for H-action

induces an isomorphism between fundamental groups.

Now we are ready to present our definition of the equivariant periodicity spaces.

Definition 1.8 A G-periodicity space with periodicity representation V is a homotopi-
cally G-stratified space P satisfying the following properties:

1. The representation disk DV is a closed stratum of P . Moreover, a closed union
of DV with some other strata of P is a closed G-manifold Q after forgetting the
stratification. Q has the property that for any subgroup H ⊂ G, the connected
component of QH that contains DV H is a WH-manifold with π0WH-signature 1
and π0WH-euler characteristic an odd number;

2. P −DV is a G-stratified isovariant π − π structure.

Remark 1.9 The definition is very likely to be superseded by better ones as more techni-
cal machineries are available. Here we simply specify the basic properties our machinery
requires.

By making use of the proposition 1.4, it is easy to prove the following result.

Lemma 1.10 The products of periodicity spaces are periodicity spaces.

It also immediately follows from our definition and the proposition 1.7 that periodicity
spaces can be induced and restricted.

Lemma 1.11 If P is a G-periodicity space with G-periodicity representation V , then

1. For any homomorphism G′ → G, the induced action makes P a G′-periodicity space
with the induced G′-periodicity representation V ;

2. For any subgroup H ⊂ G, PH is a WH-periodicity space with WH-periodicity
representation V H .
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2 Periodicity Spaces for SU(2) and O(2)

We will make the free use of the following facts in constructing the periodicity spaces for
SU(2) and O(2).

S1 is the circle group of complex numbers of norm 1. SO(2) ∼= S1 and the natural
representation of SO(2) on R2 = C is the same as the scalar multiplication by complex
numbers in S1.

Similarly, let S3 be the Lie group of quaternionic numbers of norm 1. Then SU(2) ∼= S3

and the natural representation of SU(2) on C2 = H is the same as the scalar multiplication
on the right by quaternions in S3.

Motivated by (2), we consider the SU(2)-stratified space

P = HP2 ∪D5, (9)

where D5 is attached to HP2 via the identification S4 = HP1. The action of SU(2) = S3

is trivial on D5, and by the formula

λ[z1, z2, z3] = [z1λ, z2λ, z3] (10)

on HP2.
By HP2 = D8 ∪S7↗ S4 (the map S7 → S4 is the quaternionic Hopf bundle map). P

is an SU(2)-stratified space with three strata

P = D8 ∪S7↗ S4
↖S4 ∪D5, (11)

where SU(2) acts on D8 ⊂ C4 (the first two coordinates of (10)) via twice of the natural
representation of SU(2) on C2, and acts trivially on D5 and S4. By taking Q = HP2, it
is easy to see that P is SU(2)-periodic.

Lemma 2.1 (11) is an SU(2)-periodicity space with twice of the natural SU(2)-representation
as the periodicity representation.

Our O(2)-periodicity space is much more complicated. Its stratification contains four
isovariant π − π pairs.

Let
V = H⊗R R2 = H2

be the quaternionization of the natural representation of O(2) on R2. Motivated by the
way the periodicity spaces are constructed for S1 = SO(1) and SU(2), we start with the
projective space

CP(V ⊕C) = DV ∪SV ↗Hopf CP(V ) (12)

with the induced O(2)-action. Next we list all the subgroups of O(2) and study their
fixed points in CP(V ⊕C).

The group O(2) consists of two types of elements: The rotations

ρθ =

(
cos θ − sin θ
sin θ cos θ

)
θ ∈ Rmod2π
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by angle θ and the flippings

τθ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
θ ∈ Rmodπ

with respect to the subspace ρθ(R⊕ 0).
The only nontrivial infinite closed subgroup of O(2) is the circle of rotations:

S1 = SO(2) = {ρθ}.

The finite subgroups of O(2) are the cyclic subgroups of rotations:

Cn =< ρ 2π
n

>, n > 1,

the 2 element subgroups of flippings:

Bθ =< τθ >= {1, τθ},

and the dihedral subgroups of rotations and flippings:

Aθ,n =< ρ 2π
n

, τθ >= Bθ ∝ Cn, n > 1.

The normalizers and the Weyl groups of the subgroups are

N(S1) = O(2), W (S1) = {1, τ̄0} ∼= Z2;
N(Cn) = O(2), W (Cn) = O(2)/Cn

∼= O(2);
N(Bθ) = Aθ,2, W (Bθ) = {1,−1} ∼= Z2;
N(Aθ,n) = Aθ,2n, W (Aθ,n) = {1, ρ̄π

n
} ∼= Z2.

The fixed points of the subgroups are described by the following proposition.

Proposition 2.2 Suppose that W is a unitary complex H-representation. Then

CP(W )H =
∐
κ

CP(W κ),

where
W κ = {w ∈ W : hw = κ(h)w for all h ∈ H}

is the eigenspace of a homomorphism (complex character) κ : H → S1.

We also observe that

CP(W ⊕C)H = CP(WH ⊕C)
∐

[
∐

κ nontrivial

CP(W κ)]. (13)

CP(WH ⊕C) is the component of CP(W ⊕C)H containing DWH . If the group action
preserves orientation and dimC WH is always even (e.g., W is twice of some other complex
representation), then the equivariant signature of CP(WH ⊕C) is 1, and the equivariant
euler characteristic is 1 + dimC WH , an odd number. What prevents CP(W ⊕ C) to
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become a periodicity manifold is the potential existence of nontrivial “eigencharacter” κ,
making the fixed points nonconnected.

ρθ has two complex eigenvalues eiθ, e−iθ for the representation V . If θ �= 0modπ, then
the eigenspaces in V are respectively

(1, i)H = {(w, iw) : w ∈ H}, (1,−i)H = {(w,−iw) : w ∈ H}.

Note that these are independent of the choice of the angle. Therefore they are actually
the eigenspaces of the rotation subgroup S1, corresponding to the two characters:

id : SO(2)→ S1, ρθ �→ eiθ; conj : SO(2)→ S1, ρθ �→ e−iθ.

By (13),

CP(V ⊕C)S1

= CP(V ⊕C)Cn = 0
∐

CP((1, i)H)
∐

CP((1,−i)H), n > 2. (14)

The action of the Weyl group W (S1) = Z2 fixes 0 and exchanges the other two compo-
nents. The action of the Weyl group W (Cn) = O(2) factors through O(2)→ Z2.

τθ has two eigenvalues 1 and −1, with corresponding eigenspaces in V :

Hθ = ρθ(H⊕ 0), Hθ+π
2

= ρθ+π
2
(H⊕ 0).

Thus by (13) again,

CP(V ⊕C)Bθ = CP(Hθ ⊕C)
∐

CP(Hθ+π
2
). (15)

The Weyl group Z2 acts by −1 ⊕ 1 on the first component and trivially on the second
component.

The fixed points of Aθ,n, n > 2, are the intersection of the fixed points of Cn, n > 2,
and those of Bθ. However, the intersections

CP((1, i)H) ∩CP(Hθ ⊕C), CP((1,−i)H) ∩CP(Hθ ⊕C)

are easily seen to be empty. Therefore

CP(V ⊕C)Aθ,n = 0, n > 2. (16)

The action of the Weyl group Z2 has to be trivial.
It remains to study the cyclic group C2 and the 4 element groups Aθ,2. We have

CP(V ⊕C)C2 = 0
∐

CP(V ), (17)

The action of the Weyl group O(2)/C2 is trivial at 0 and is the one coming from the
induced action of O(2) on CP(V ) (such action is trivial when restricted to C2). Moreover,
by taking the intersection of the fixed points of C2 and Bθ, we obtain

CP(V ⊕C)Aθ,2 = 0
∐

CP(Hθ)
∐

CP(Hθ+π
2
). (18)

The Weyl group Z2 acts trivially at 0 and exchanges the other two components.
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Although the fixed point subspaces of CP(V ⊕C) are often not connected, the com-
ponents not containing 0 are all contained in the submanifold CP(V ). Therefore we
may think of CP(V ⊕ C) as a two strata space (12) with the equivariant submani-
fold CP(V ) as the smaller stratum (later on we need to single out another submanifold
S2 × {±1} ⊂ CP(V ), making CP(V ⊕ C) a three strata space). If there is an SU(2)-
manifold E with CP(V ) as boundary, such that the pair (E,CP(V )) satisfies the isovari-
ant π−π condition (see the definition 1.1), then DV ∪SV →CP(V ) E is an SU(2)-periodicity
space.

Our attempt of constructing E makes use of the quaternionic structure of the repre-
sentation V . Consider the Hopf bundle map

S2 → CP(V )→ HP(V ).

This is an equivariant SU(2)-bundle. Since the fibre is a sphere, the mapping cylinder

E = CP(V )× I ∪HP(V )

is an SU(2)-manifold with boundary CP(V ).
To check whether (E,CP(V )) satisfies the isovariant π−π condition, we need to know

the structure of the fixed points in HP(V ) and its relation to the structure of the fixed
points of CP(V ). First we need the quaternionic version of the proposition 2.2.

Proposition 2.3 Suppose that W is a unitary quaternionic H-representation. Then

HP(W )H =
∐

conj. class of κ

HP(W κ),

where
W κ = {w ∈ V : hw = κ(h)w for all h ∈ H}

is the set of eigenvectors of a homomorphism (quarternionic character) κ : H → S3.

Remark 2.4 If hw = κw, then h(λw) = λκλ−1(λw). Therefore by the noncommuta-
tivity of the quaternionic multiplication, W κ may not be a quaternionic subspace of W .
However, we do have

HW κ = ∪λW
λκλ−1

.

The quaternionic projective space of W κ then makes sense for the conjugacy class of κ.

The general relation between CP(W )H and HP(W )H is not very clear. However, we
observe that if H is generated by a single element h, then the character κ is given by a
complex or quaternionic eigenvalue a of h, and we will use the notation

W h=a = W κ = {w ∈ W : hw = aw}.

As further pointed out in the remark above, only the conjugacy class of the eigenvalue
matters in the quaternionic case. The following proposition summarizes the facts in this
respect.
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Proposition 2.5 The conjugacy action of S3 ⊂ H on itself has the following properties:
(1) The action has two fixed points: the real numbers 1 and −1;
(2) Any nonreal quaternion is conjugate to exactly two complex numbers a and ā;
(3) The isotropy subgroup of any nonreal complex number is S1, the complex numbers

in S3.

We are now ready to study the relation between CP(W )h and HP(W )h.

Proposition 2.6 The projection CP(W )h → HP(W )h is surjective. A component of
HP(W )h is of the form HP(W h=a) for some complex number a. The components of
CP(W )h over HP(W h=a) are the following:

1. If a is real, then W h=a is a quaternionic subspace of W , and there is only one
corresponding component CP(W h=a). Moreover, CP(W h=a) → HP(W h=a) is a
Hopf bundle with S2 fibre;

2. If a is not real, then there are exactly two corresponding components CP(W h=a) and
CP(W h=ā). Moreover, the projections CP(W h=a)→ HP(W h=a)← CP(W h=ā) are
homeomorphic.

Proof: By the proposition 2.3, a component of HP(W )h is of the form HP(W h=b) for
some quaternion b. By the proposition 2.5, b is conjugate to a complex number a. Thus
by the remark above, HP(W h=b) = HP(W h=a). This proves the statement about the
components of HP(W )h.

The components of CP(W )h over HP(W h=a) have to be of the form CP(W h=c) with
c being a complex number conjugating to a via quaternions. By the first and the second
properties of the proposition 2.5, we have the two situations listed in this proposition.

If a is real (i.e., a = 1 or −1), then the fact that W h=a is a quaternionic space implies
that the projection CP(W h=a)→ HP(W h=a) is a Hopf bundle.

If a is not real, then we need to show that the projection CP(W h=a) → HP(W h=a)
is homeomorphic. It is obviously surjective. For the injectivity, we consider vectors
u, v ∈ W h=a of length 1, such that [u]H = [v]H ∈ HP(W h=a). Thus v = λu for some
quaternion λ ∈ S3. Therefore λau = λhu = hλu = hv = av = aλu. Since u �= 0, we see
that λ−1aλ = a. By the third property of the proposition 2.5, λ is a complex number.
Consequently, [u]C = [λu]C = [v]C ∈ CP(W h=a). This proves the injectivity.

Finally, the projection CP(W )h → HP(W )h is surjective because in both cases, the
projections on components are surjective.

Now we are ready to study the fixed points in E.
First we observe that C2 = {1,−1} fixes E. Therefore the action of O(2) factors

through O(2)/C2
∼= O(2).

If θ �= 0modπ, then the two complex eigenvalues eiθ, e−iθ of ρθ are not real. Therefore
the fixed points of Cn =< ρ 2π

n
>, n > 2, and S1 are described by the second case of the

proposition 2.6. The following proposition describes the S1-fixed points of E. The same
description applies to the fixed points of Cn, n > 2, with the action of the Weyl group
factoring through O(2)→ Z2.

13



Proposition 2.7 ES1 ∼= S2 × [−1, 1], with the action of the Weyl group Z2 given by the
antipodal on S2 and the flipping t �→ −t on the interval.

Proof: ES1
is the mapping cylinder of

CP(V )S1
= CP((1, i)H)

∐
CP((1,−i)H)

→ HP(V )S1
= HP((1, i)H) = HP((1,−i)H),

From the natural identifications

HP((1, i)H) ∼= CP((1, i)H) ∼= CP(H) = S2, [w, iw]→ [w], (19)

HP((1,−i)H) ∼= CP((1,−i)H) ∼= CP(H) = S2, [w,−iw]→ [w], (20)

we see that
ES1

= S2 × [−1, 1], (21)

where we put CP(V )S1
at the two ends S2 × {±1} and HP(V )S1

at the middle S2 × 0.
As for the action of the Weyl group W (S1) = Z2, we observe that the action is

the flipping t → −t on the interval [−1, 1] because the Weyl group exchanges the two
components CP((1, i)H) and CP((1,−i)H). In the S2 direction, we consider the action
at the level t = 0:

τ0[w, iw] = [w,−iw] = [jw, i(jw)] ∈ HP((1, i)H).

If we use the identification (19), then

τ0[w] = [jw] ∈ CP(H) = S2.

This is the antipodal map.

The eigenvalues of τθ over V are 1 and −1. Therefore the fixed points of Bθ =< τθ >
are described by the first case of the proposition 2.6. In particular, Hθ is always a
quaternionic subspace of V , and EBθ is the mapping cylinder of

CP(V )Bθ = CP(Hθ)
∐

CP(Hθ+π
2
)

→ HP(V )Bθ = HP(Hθ)
∐

HP(Hθ+π
2
).

In fact, the projection is simply S2 ∐
S2 → 2 points. Therefore

EBθ = D3
∐

D3. (22)

The action of the Weyl group Z2 is trivial.
The fixed points of Aθ,n is the intersection of the fixed points of Cn and Bθ. Because

HP((1, i)H) ∩ HP(Hθ) and HP((1,−i)H) ∩ HP(Hθ) are easily seen to be empty, we
have

EAθ,n = ∅, n > 2. (23)

Moreover, since C2 acts trivially on CP(V ),

EAθ,2 = EBθ = D3
∐

D3. (24)

14



CP(Hθ ) = S2

CP(Hθ + π
2
) = S2

W(Aθ ,2 )

W(S1)

CP((1,i)H) = S2

S2 = HP((1,i)H)

      
= HP((1,−i)H)

HP(Hθ + π
2
) =∗

CP(V ) = CP(V )C2 HP(V ) = HP(V )C2

also  for Bθ

also  for  
Cn ,n > 2

HP(Hθ ) =∗

CP((1,−i)H) = S2

The Weyl group Z2 of Aθ,2 exchanges the two disks (in contrast to the behavior of the
Weyl group of Bθ).

The following is the picture of all fixed points in E.

In order that the O(2)-stratified space P1 = CP(V ⊕ C) ∪CP(V ) E to be periodic,
(E, ∂E) = (E,CP(V )) has to satisfy the isovariant π − π condition. We see from the
above picture that (E, ∂E) has codimension ≥ 3 gap. Therefore the inclusion from the
isovariant components to the equivariant components is one-to-one, and the corresponding
components have isomorphic fundamental groups. Consequently, the isovariant π − π
condition is the same as the analogous equivariant π − π condition. In what follows, we
check such equivariant condition.

First of all, the whole space E is fixed by the subgroup C2 = {1,−1}. Both E and
∂E have trivial fundamental groups. Hence the equivariant π − π condition is satisfied
by C2.

Second, the fixed points EBθ = EAθ,2 consists of two components, each of which is
homeomorphic to D3, with boundary homeomorphic to S2. Both have trivial fundamental
groups. Hence the equivariant π − π condition is satisfied by Bθ and Aθ,2.

Third, the equivariant π − π condition is trivially satisfied by Aθ,n, n > 2, since no
points in E is fixed by the subgroup.

The problem arises with the fixed points of S1 and Cn, n > 2. The proposition 2.7
shows that ES1

= ECn = S2 × [−1, 1] is connected, while ∂ES1
= ∂ECn = S2 × {±1} has

two components.
The failure of the π − π condition for (E, ∂E)S1

= (E, ∂E)Cn may be fixed by a
Z2-equivariant nullcobordism (F, F ∂) of the pair (E, ∂E)S1

such that both (F, ES1
) and
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hopf

hopfhopf

hopf

S2

S2 × [−1,1]

Z2

Z2

D3 × −1

Z2

D3 ×1

Fixed by Z2

(F ∂, ∂ES1
) satisfy the isovariant π − π condition. With such (F, F ∂),

P2 = P1 ∪ F = CP(V ⊕C) ∪CP(V ) E ∪ES1 F.

is a periodicity space (Strictly speaking, we should take the union of P1 with O(2)×N(S1)F .
However, O(2) = N(S1).).

We choose F ∂ = D3×{±1} as the Z2-equivariant nullcobordism of ∂ES1
= S2×{±1}.

Then ES1∪∂ES1 F ∂ = S2×[−1, 1]∪D3×{±1} is a sphere S3, and the Z2-action is antipodal.
Therefore we may consider the Hopf bundle

S1 → S3 → S2.

This is a principal S1-bundle, with the antipodal action on S3 induced by the fibrewise
S1-action. The associated disc bundle

F = S3 × I ∪ S2

is then a Z2-equivariant nullcobordism of the antipodal S3.

Clearly, (F ∂, ∂ES1
) = (D3, S2)× {±1} is a Z2-isovariant π − π structure.

As for the pair (F, ES1
), we have

FZ2 = S2 �= ∅ = (ES1

)Z2 .

On the Z2-free part, however,

F − FZ2 = S3 × [0, 1) ⊃ S2 × [−1, 1] = ES1 − (ES1

)Z2

are all connected and simply connected. Thus the free part of (F, ES1
) satisfies the

isovariant π − π condition, while the nonfree part fails to satisfy.
The failure on the nonfree part may again be fixed by another nullcobordism D3 of

FZ2 = S2. The pair (D3, S2) satisfies the π − π condition.
In conclusion, we build our periodicity space by successively equivariantly nullcobor-

ding fixed point components, eliminating all the nullcobordisms that do not satisfy the
π − π condition. The space we end up with is (recall V = H2)

P = CP(V ⊕C) ∪CP(V )(CP(V )× I ∪HP(V ))
∪S2×[−1,1](S

3 × I ∪ S2)
∪S2D3,

(25)
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hopf

hopf

hopf

hopf

CP(V )

HP(V )

S2 × 0

S2 ×1

S2 × −1

hopf

hopf

hopf
D3

arrows = taking mapping 
cylinder of the hopf map fixed by B θ  and A θ,2 fixed by S1  and Cn , n >2

fixed 
by O(2)

DV SV

hopf

hopf

hopf

The picture of the periodicity space P

S2

D3 ×1

D3 × −1

The action of O(2) on P is the induced one on the projective spaces. It is the antipodal
action on S3 via the homomorphism O(2)→ Z2. The action is trivial on D3.

The stratification of P is illustrated by the following diagram.

CP(V ⊕C)(5)

∪
CP(V )(∂4) ⊂ E(4) S2

(∂2) ⊂ D3
(2)

∪ ∩
ES1

(∂3) ⊂ F(3)

∪ ∩
∂ES1

(∂1) ⊂ F ∂
(1)

where
CP(V ⊕C) = DV ∪SV ↗Hopf CP(V ),
E = CP(V )× I ∪Hopf HP(V ),

ES1
= S2 × [−1, 1],

∂ES1
= S2 × {±1},

F = S3 × I ∪Hopf S2,
F ∂ = D3 × {±1}.

The terms in the diagram are closed strata. The numerical footnotes denote the indices.
The index set is obtained from the double of 1 < 2 < 3 < 4 < 5 by deleting ∂5.

Lemma 2.8 (25) is an O(2)-periodicity space with the four fold natural O(2)-representation
as the periodicity representation.
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3 Proof of the Periodicity

The theorem 0.1 is special cases of the following theorem.

Theorem 3.1 Suppose that M is a homotopically stratified G-manifold with codimension
≥ 3 gap. Suppose that P is a G-periodicity space with periodicity representation V , such
that M and M×V have the same isotropy everywhere. Then there is a natural equivalence

SG(M, rel ∂M) ∼= SG(M ×DV, rel ∂(M ×DV )).

Remark 3.2 The periodicity map in the theorem may depend on more than the rep-
resentation V . If the π − π structures in the periodicity spaces are cobordant through
π − π structures (of one dimension higher), then the corresponding periodicity maps are
homotopy equivalent.

Remark 3.3 The periodicity equivalence is natural with respect to transverse isovariant
G-maps, and the restriction to fixed points of subgroups. Such naturalities follow from
the formal nature of the proof of the Theorem.

Remark 3.4 For the special periodicity space for the abelian group actions, it was further
proved in [WY] that the periodicity is natural with respect to the induction SG(M) →
SG′(M) (provided that [G : im(G′)] is finite) and the restriction SG(M) → SWH(MH).
Such naturality remains true in general.

The proof of the theorem 3.1 is similar to the one in [WY].
We will use spacified version of the surgery theory. In the classical case, this was done

in [Q1]. The formalism may be adopted to the isovariant and more generally, stratified case
(see [We] for more details). Therefore L(X) will be a space whose homotopy groups are
the surgery obstructions groups of X at various dimensions (In particular, the proposition
1.2 may be interpreted as the contractibility of the space LG(X) for a G-isovariant π− π
structure X). Similarly, S(X) will be a space whose homotopy groups are the structure
sets of X ×∆i relative to the boundary for various i. We will also use K≤1 to denote an
involutive spectrum with

πiK
≤1 =




0 i > 1
whitehead torsion i = 1
finiteness obstruction i = 0
negative K-obstruction i < 0

Finally we note that long exact sequences of obstruction groups are usually the long exact
sequences of homotopy groups of fibrations of obstruction spaces.

According to Weinberger [We], the computation of the isovariant structure SG(M, rel ∂)
involves several fibrations. First we compute the stable isovariant structure through the
surgery fibration:

S−∞
G (M, rel ∂)→ H(M/G; L−∞

G (locM))→ L−∞
G (M). (26)
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L−∞
G is the stablization of Browder-Quinn’s isovariant surgery obstruction [BQ]. The dif-

ference between LG and L−∞
G is given by the Rothenberg fibration

LG → L−∞
G → Ĥ(Z2; K

≤1
G ). (27)

K≤1
G is Browder-Quinn’s isovariant K-obstruction [BQ]. Ĥ(Z2; ?) is the (spacified) Tate

cohomology, which may be applied to involutive spectra and converts an involutive fibra-
tion into a fibration.

The unstable structure SG(M, rel ∂) can then be computed from another Rothenberg
fibration

SG → S−∞
G → Ĥ(Z2; Whtop,≤0

G ). (28)

Whtop,≤0
G is the topological isovariant K-obstruction [Q2][S]. It is related to K≤1

G in a way
similar to the stable surgery fibration (26)

Whtop
G (M)→ H(M/G; K≤1

G (locM))→ K≤1
G (M). (29)

There is however one catch: Whtop,≤0
G is the truncation of Whtop

G at dimension 0. This
troublesome catch is responsible for our requirement on the equivariant euler characteristic
in the definition of periodicity spaces.

The theorem 3.1 is proved by showing successively that

M
×P
=⇒M × P

incl⇐= M × (DV, rel SV ), (30)

induces periodicity equivalences on LG, L−∞
G , S−∞

G , and SG.

Proof of the Periodicity on LG:

Consider the maps

LG(M)
×P−→ LG(M × P )

incl←− LG(M ×DV, rel SV )

induced by (30). The inclusion fits into a fibration

LG(M ×DV, rel SV )
incl−→ LG(M × P )→ LG(M × P −DV ), (31)

Since P −DV is an isovariant π−π structure, we conclude from the propositions 1.2 and
1.4 that LG(M × P −DV ) is contractible. Therefore the inclusion is an equivalence.

The proof that ×P also induces an equivalence is more complicated. We first consider
the case that G acts on M freely. Construct the diagram

LG(M ×Q)
incl←− LG(M ×DV, rel SV )

×Q ↑ ↖ φ ↓ incl

LG(M)
×P−→ LG(M × P )

(32)

where the map φ first restricts to Q ⊂ P and then forgets the stratification structure
inside Q. The two triangles are commutative by the geometric meaning of the maps.
Because M is a free G-manifold, ×Q may be identified with the map

L(M/G)→ L((M ×Q)/G)
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of classical surgery obstructions obtained as the transfer of the bundle

Q→ (M ×Q)/G→M/G. (33)

Lück and Ranicki [LR] proved that such map depends only on the π0G-equivariant signa-
ture of Q. Since the signature is 1, ×Q is an equivalence. Moreover, since G acts freely
on M , the horizontal inclusion is the inclusion L((M ×DV )/G) ⊂ L((M ×Q)/G) of clas-
sical surgery obstructions. By the simple connectivity of Q, we have π1((M ×DV )/G) =
π1(M/G) = π1((M×Q)/G). Consequently, the horizontal inclusion is an equivalence. Fi-
nally, we have already proved that the vertical inclusion is also an equivalence. Therefore
we may conclude that ×P at the bottom of the diagram is an equivalence.

For the general case, we induct on the isotropy subgroups of M . Let H be a maximal
isotropy subgroup of M . Then we consider the diagram

LG(M−GMH) → LG(M×P−G(MH×P H))
incl← LG(M×DV −G(MH×DV H),rel SV )

↓ ↓ ↓
LG(M)

×P→ LG(M×P )
incl← LG(M×DV,rel SV )

↓ ↓ ↓
LWH(MH)

×P H

→ LWH(MH×P H)
incl← LWH(MH×DV H ,rel SV )

(34)

where the columns are fibrations. Observe that WH acts freely on MH , and PH is a
WH-periodicity space by the lemma 1.11. We have just proved that the bottom maps
are equivalences. Therefore in order to prove the middle maps are equivalences, it suffices
to prove that the top maps are equivalences. We apply (30) to M −GMH and compare
it with the top of (34):

LG(M−GMH)
×P→ LG((M−GMH)×P )

incl← LG((M−GMH)×DV,rel SV )

‖ ↓ incl ↓ incl

LG(M−GMH) → LG(M×P−G(MH×P H))
incl← LG(M×DV −G(MH×DV H),rel SV )

(35)

By induction, we may assume that the upper row consists of equivalences. Therefore it
remains to show that the vertical inclusions are equivalences.

The condition that M and M × DV have the same isotropy everywhere imply that
the vertical inclusion on the right does not introduce any new strata or isovariant com-
ponents and induce isomorphisms on the fundamental groups of corresponding isovariant
components in pure strata. Therefore the right inclusion is an equivalence.

We have proved that the upper inclusion is an equivalence because P −DV is an
isovariant π − π structure. Similarly, the lower inclusion is an equivalence because both
P −DV and PH −DV H are isovariant π − π structures. As a consequence, the vertical
inclusion at the middle is an equivalence.

The same isotropy everywhere condition and the codimension ≥ 3 condition imply
that both vertical inclusions do not introduce any new strata or isovariant components
and induce isomorphisms on the fundamental groups of isovariant components in pure
strata. Such maps induce equivalences on the surgery obstructions.

Proof of the Periodicity on L−∞
G :
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By Rothenberg fibration (27), the equivalences on the stable surgery obstruction L−∞
G

will follow from the compatible equivalences on LG and Ĥ(Z2; K
≤1
G ). Thus we need to

repeat the argument for the equivalence on LG again, this time on Ĥ(Z2; K
≤1
G ).

K≤1 is a functor over stratified (and in particular, equivariant) spaces. It has the
following decomposition property: If Y is a closed union of strata of X, then there is a
involutive fibration

K≤1(X − Y )→ K≤1(X)→ K≤1(Y ) (36)

with a natural (and often noninvolutive) splitting K≤1(Y )→ K≤1(X). Since the Tate co-
homology functor Ĥ(Z2; ?) converts involutive fibrations to fibrations, the decomposition
property implies that the functor Ĥ(Z2; K

≤1) satisfies the second condition (decompo-
sition along singularities) in the remark after the proposition 1.2. If we can show that
Ĥ(Z2; K

≤1) also satisfies the first condition in the remark (classical π−π theorem, which
K≤1 alone does not satisfy), then the proposition 1.2 is also valid for Ĥ(Z2; K

≤1
G ).

For a manifold pair (X, ∂X), we have

K≤1(X, ∂X) = K≤1(X, rel ∂X)×K≤1(X), (37)

with the involution
(α, β)∗ = (α∗ − (i∗β)∗, β∗), (38)

where i∗ : K≤1(∂X)→ K≤1(X, rel ∂X) is the natural inclusion map and satisfies

(i∗β)∗ = −i∗(β
∗). (39)

Suppose X, ∂X are connected, and π1X = π1∂X. Since K≤1 depends only on funda-
mental groups, we see that i∗ is an equivalence. It was easy to prove (see [WY], for
example) that the involution (38) in which i∗ is an isomorphism satisfying (39) has to
have the vanishing Tate cohomology. Therefore the classical π − π theorem is valid for
Ĥ(Z2; K

≤1).
With the proposition 1.2 at hand, we are able to show that the inclusion in (30) induces

an equivalence on Ĥ(Z2; K
≤1
G ), similar to the equivalence on LG.

In further repeating the argument for the periodicity of LG, we encounter the following
difference between LG and K≤1

G : By Anderson [A], the transfer of the K-obstructions is
given by multiplying the equivariant euler characteristic, instead of Lück and Ranicki’s
equivariant signature. In the definition of periodicity spaces, we have assumed that the
equivariant euler characteristic is an odd number (perhaps different for different isotropy
groups). Therefore the product with the number induces equivalences after localizing at
2. Since the Tate cohomology is 2-torsion, localization at 2 does not change the Tate
cohomology. Therefore by working with Ĥ(Z2; K

≤1
G ⊗ Z(2)) = Ĥ(Z2; K

≤1
G ), we may still

carry out the argument.
Despite the difference between LG and K≤1

G , we have all the properties we need to
repeat the proof of the periodicity on LG for the functor Ĥ(Z2; K

≤1
G ). Consequently, (30)

induces equivalences on the stable isovariant surgery obstructions L−∞
G .

Proof of the Periodicity on S−∞
G :
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To prove the periodicity for the stable structure S−∞
G , we view the periodicity on L−∞

G

as a natural equivalence between functors:

L−∞
G (?)

×P−→ L−∞
G (?× P )

incl←− L−∞
G (?×DV, rel SV ).

We may take the assemblies of their homologies over M/G to obtain a commutative
diagram

H(M/G; L−∞
G (locM)) → L−∞

G (M)
�↓ ×P �↓ ×P

H(M/G; L−∞
G ((locM)× P )) → L−∞

G (M × P )
�↑ incl �↑ incl

H(M/G; L−∞
G ((locM)×DV, rel SV )) → L−∞

G (M ×DV, rel SV )

(40)

The homotopy fibre of the top map is S−∞
G (M, rel ∂M). To work out the homotopy fibre

of the bottom map, we rewrite the homology:

H(M ×DV/G; LG(loc(M ×DV )))
Fubini� H(M/G; H(DV/Gx; LG(loc(M ×DV ))))

α� H(M/G; LG((locM)×DV, rel SV )).

(41)

The Fubini equivalence is a basic property of the stratified homology. α is obtained by
applying the homology to the natural transformation (of functors of locM)

α0 : H(DV/Gx; L
−∞
G (loc(M ×DV )))→ L−∞

G ((locM)×DV ).

α0 is an assembly over a cone DV/Gx = cone(SV/Gx), which is always an equivalence
(lemma 3.21 of [Y]). Consequently α is an equivalence. By the naturality of the Fubini
equivalence with respect to the assembly, the bottom of (40) may be identified with the
assembly of L−∞

G (?) over (M×DV )/G. The homotopy fibre of this assembly is S−∞
G (M×

DV, rel ∂(M ×DV )). Hence we obtain the equivalence between S−∞
G (M, rel ∂M) and

S−∞
G (M ×DV, rel ∂(M ×DV )). This proves the periodicity of the stable structure.

Proof of the Periodicity on SG:

The last step is destablization. By the Rothenberg fibration (28), the periodicity on
SG will follow from compatible periodicities on S−∞

G and on Ĥ(Z2; Whtop,≤0
G ). This is the

most intricate step.
The first intricacy is the meaning of the periodicity on Ĥ(Z2; Whtop,≤0

G ). We are not
studying the maps

Whtop,≤0
G (M)

×P→ Whtop,≤0
G (M × P )

incl← Whtop,≤0
G (M ×DV, rel SV )

induced from (30). In fact, these maps generally do not induce equivalences on the Tate
cohomologies.
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To clarify our problem, we start by considering a diagram similar to (40)

H(M/G; K≤1
G (locM)) → K≤1

G (M)
↓ ×P ↓ ×P

H(M/G; K≤1
G ((locM)× P )) → K≤1

G (M × P )
↑ incl ↑ incl

H(M/G; K≤1
G ((locM)×DV, rel SV )) → K≤1

G (M ×DV, rel SV )

(42)

We also introduce the notation Whtop
G (M ; A, rel B) as the homotopy fibre of the assembly

H(M/G; K≤1
G ((locM)× (A, rel B)))→ K≤1

G (M × (A, rel B)).

Then we have the induced maps between the homotopy fibres of the horizontal maps in
(42):

Whtop
G (M)

×P→ Whtop
G (M ; P )

incl← Whtop
G (M ; DV, rel SV ). (43)

As in the proof of the periodicity on S−∞
G , we may use Fubini equivalence to show that

Whtop
G (M ; DV, rel SV ) � Whtop

G (M ×DV, rel SV ). (44)

Because the proof makes use of the fact that DV = cone(SV ), we cannot conclude
Whtop

G (M ; P ) = Whtop
G (M×P ) (which is generally false). The situation is similar to what

happens for the periodicity on S−∞
G . We may introduce a notation S−∞

G (M ; P ) for the
homotopy fibre of the assembly at the middle row of (40). Then we obtain equivalences

S−∞
G (M)

×P� S−∞
G (M ; P )

incl� S−∞
G (M ×DV, rel SV ).

If we replace S−∞
G (M ; P ) by S−∞

G (M×P ), then we generally will not obtain equivalences.
Combining (43) and (44) together, we obtain the maps

Whtop
G (M)

×P→ Whtop
G (M ; P )

incl← Whtop
G (M ×DV, rel SV ) (45)

induced by (30) on the topological K-theoretical obstructions, compatible with the stable
periodicity. Therefore the problem boils down to proving that the truncation

Whtop,≤0
G (M)

×P→ Whtop,≤0
G (M ; P )

incl← Whtop,≤0
G (M ×DV, rel SV ) (46)

of (45) induces equivalences on Tate cohomologies.
Here arises the second intricacy. The maps in (43) are not equivalences themselves. It

is not hard to show that the maps in (43) indeed induce equivalences on Tate cohomologies.
However, this does not imply that, after the truncation, (46) still induces equivalences on
Tate cohomologies.

We get around the difficulty by repeating the proof of the periodicity on LG for the
second time.

We will often make use of the following trick: Suppose that K1 → K2 → K3 is a
natural fibration of involutive functors, such that there is a (not necessarily involutive)
splitting K3 → K2. Then we may take the fibres of the assemblies of homologies of the
functors to obtain a new fibration of involutive functors W1 → W2 → W3 with a (still
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not necessarily involutive) splitting W3 → W2. The splitting enables us to truncate and
still obtain a fibration of involutive functors: W≤0

1 → W≤0
2 → W≤0

3 . Moreover, since the
Tate cohomology converts involutive fibrations to fibrations, we see that Ĥ(Z2; W

≤0
1 ) →

Ĥ(Z2; W
≤0
2 ) → Ĥ(Z2; W

≤0
3 ) is still a fibration. However, because the splittings was not

involutive, there may no longer be splitting Ĥ(Z2; W
≤0
3 )→ Ĥ(Z2; W

≤0
2 ) to this fibration.

In particular, if we apply our trick to (36), then we see that the functor Ĥ(Z2; Whtop,≤0
G (M ; ?))

satisfies the second condition (decomposition along singularities) in the remark after the
proposition 1.2. As in the proof of the periodicity of L−∞

G , we will check whether the
functor Ĥ(Z2; Whtop,≤0

G (M ; ?)) also satisfies the first condition (π − π theorem) in the
remark.

Thus we consider a G-manifold pair (X, ∂X) satisfying isovariant π−π condition. We
have decomposition of functors

K≤1
G (?× (X, ∂X)) = K≤1

G (?× (X, rel ∂X))×K≤1
G (?× ∂X) (47)

with the involution described by (38), in which i∗ satisfies (39). By the proposition 1.4,
M×(X, ∂X) still satisfies the isovariant π−π condition for any G-manifold M . Therefore
i∗ is an equivalence.

We take the fibre of the assembly of (47) over M/G and then truncate to obtain a
decomposition

Whtop,≤0
G (M ; X, Y ) = Whtop,≤0

G (M ; X, rel Y )×Whtop,≤0
G (M ; Y ). (48)

The description about the involution still holds, and i∗ is still an equivalence. Such descrip-
tion implies that the Tate cohomology of (48) is trivial. As in the proof of the periodicity
on L−∞

G , we see that the equivariant π − π theorem is valid for Ĥ(Z2; Whtop,≤0
G (M ; ?)).

Consequently, we are able to show that the inclusion in (46) induces equivalence on the
Tate cohomologies.

The next step is to prove that ×P in (46) induces equivalence on the Tate coho-
mologies. In proving the periodicity of L−∞

G , we first proved the free action case. The
corresponding case here is Ĥ(Z2; Whtop,≤0

G (M, rel Ms; ?)), where

Ms = ∪{1}=H⊂GMH

is the nonfree part of M , so that G acts freely on M −Ms.
Consider the commutative diagram of functors similar to (32)

K≤1
G ((?−?s)×Q)

incl←− K≤1
G ((?−?s)×DV, rel SV )

×Q ↑ ↖ φ ↓ incl

K≤1
G (?−?s)

×P−→ K≤1
G ((?−?s)× P )

(49)

In proving the periodicity on L−∞
G , we have shown that ×Q is an equivalence after local-

izing at 2, and the horizontal inclusion is an equivalence.
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After taking the fibres of the assemblies over M/G of the functors in (49) and then
truncating, we obtain

Whtop,≤0
G ((M, rel Ms)× (DV, rel SV ))

�↓ (44)

Whtop,≤0
G (M, rel Ms; Q)

incl←− Whtop,≤0
G (M, rel Ms; DV, rel SV )

×Q ↑ ↖ φ ↓ incl

Whtop,≤0
G (M, rel Ms)

×P−→ Whtop,≤0
G (M, rel Ms; P )

(50)

The map ×Q is still an equivalence after localizing at 2, and the horizontal inclusion is
also still an equivalence. Moreover, we have proved that the vertical inclusion induces an
equivalence on the Tate cohomologies. These imply that ×P induces an equivalence on
the Tate cohomologies.

To prove that ×P induces an equivalence on Ĥ(Z2; Whtop,≤0
G (M ; ?)) (not relative to

the nonfree part), we consider the more general problem of the equivalence on the functor
Ĥ(Z2; Whtop,≤0

G (M, rel MH; ?)), for a collection H of subgroups satisfying

g−1Kg ⊃ H ∈ H =⇒ K ∈ H.

In case H is all but the trivial subgroups, we have MH = Ms, and the equivalence has
been proved. The case H = ∅ is what we want at the end.

Let K ⊂ G be a maximal subgroup not in H. Let K = H ∪ {g−1Kg}. Then we
compare the theory K≤1 for ?−?H and ?−?K through a diagram similar to (34)

K≤1
G (?−?K) → K≤1

G (?×P−(?×P )K)
incl← K≤1

G (?×DV −(?×DV )K,rel SV )

↓ ↓ ↓
K≤1

G (?−?H)
×P→ K≤1

G ((?−?H)×P )
incl← K≤1

G ((?−?H)×DV,rel SV )

↓ ↓ ↓
K≤1

WK(?K−(?K)s)
×P K

→ K≤1
WK((?K−(?K)s)×P K)

incl← K≤1
WK((?K−(?K)s)×DV K ,rel SV )

(51)

where the columns are involutive fibrations with (noninvolutive splittings). We also have
the comparison similar to (35)

K≤1
G (?−?K)

×P→ K≤1
G ((?−?K)×P )

incl← K≤1
G ((?−?K)×DV,rel SV )

‖ ↓ incl ↓ incl

K≤1
G (?−?K) → K≤1

G (?×P−(?×P )K)
incl← K≤1

G (?×DV −(?×DV )K,rel SV )

(52)

If the functors in (52) are applied to the open pieces in M , then the same isotropy
everywhere condition, the codimension ≥ 3 condition, and the isovariant π − π structure
in P imply that the all inclusions in (52) are equivalences.

Now we replace the top row of (51) with the top row of (52), take the fibres of the
assemblies over M/G of the functors in the resulting diagram, and then truncate. The
trick described before produces a commutative diagram

Whtop,≤0
G (M,rel MK) → Whtop,≤0

G (M,rel MK;P ) ← Whtop,≤0
G (M,rel MK;DV,rel SV )

↓ ↓ ↓
Whtop,≤0

G (M,rel MH) → Whtop,≤0
G (M,rel MH;P ) ← Whtop,≤0

G (M,rel MH;DV,rel SV )

↓ ↓ ↓
Whtop,≤0

WK (MK ,(MK)s) → Whtop,≤0
WK (MK ,(MK)s;P K) ← Whtop,≤0

WK (MK ,(MK)s;DV K ,rel SV K)

(53)
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in which the columns are involutive fibrations. By the lemma 1.11, PK is a WK-
periodicity space with WK-periodicity representation V K . Therefore by what we just
proved, the bottom row of (53) induces equivalences on the Tate cohomologies. In the
top row of (53), there are fewer isotropy groups in M −MK than in M −MH. Therefore
we may assume by induction that it also induces equivalences on the Tate cohomologies.
Consequently, the middle row induces equivalences on the Tate cohomologies.

This completes the proof of the periodicity on the unstable structure SG.
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