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Quasi-triangular structures on Hopf algebras with positive
bases

Jiang-Hua Lu, Min Yan, and Yongchang Zhu

Abstract. A basis B of a finite dimensional Hopf algebra H is said to be
positive if all the structure constants of H relative to B are non-negative. A
quasi triangular structure R ∈ H ⊗ H is said to be positive with respect to
B if it has non-negative coefficients in the basis B ⊗ B of H ⊗ H. In our
earlier work, we showed that finite dimensional Hopf algebras with positive
bases are in one-to-one correspondence with group factorizations G = G+G−.
In this paper, we show that positive quasi-triangular structures on such Hopf
algebras are given by a pair of homomorphisms ξ, η : G+ → G− satisfying
some compatibility conditions. Further properties of such structures are also
discussed.

1. Introduction

Consider a finite dimensional Hopf algebra H over C with a basis B such that
all the structure constants with respect to this basis are non-negative. In [LYZ1] we
proved that any such Hopf algebra is isomorphic to the bicrossproduct Hopf algebra
H(G;G+, G−) coming from a factorization G = G+G− of a finite group G. The
construction of H(G;G+, G−) has already appeared in [Mj] [T] and will be recalled
in Section 2. We also showed that such Hopf algebras are exactly the linearizations
of Hopf algebras in the category of sets with correspondences as morphisms.

In this paper, we further study quasi-triangular structures R ∈ H ⊗H that are
positive in the sense that the coefficients of R in the basis B⊗B of H ⊗H are non-
negative. In Theorem 2.3, we show that for H = H(G;G+, G−) and B = G, such
structures are in one-to-one correspondence with pairs of group homomorphisms
ξ, η : G+ → G− such that

uv = (ξ(u)v)(uη(v)), ξ(xu)x u = xξ(u), η(xu)x u = xη(u),
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for all u, v ∈ G+ and x ∈ G−. Such data are further interpreted in Theorems 3.1
and 3.2 as certain extra structures on the group factorization G = G+G−.

We also show, in Theorem 4.3, that positive quasi-triangular Hopf algebras are
quasi-equivalent to certain normal forms. When restricted to triangular structures,
this implies that positive triangular Hopf algebras are twistings of group algebras.
See Corollary 5.2. The result recovers a construction by Etingof and Gelaki [EG].

Similar to our theory of Hopf algebras with positive bases, positive quasi-
triangular structures also have set-theoretical interpretations as bisections of some
groupoids. In particular, they are related to solutions of groupoid-theoretical Yang-
Baxter equation introduced in [WX]. This sets up the foundation of our study of
set-theoretical solutions of Yang-Baxter equation in [LYZ2].

The Hopf algebra H(G;G+, G−) has been studied in [BGM] under a different
context. Despite what the title and the abstract may suggest, only the standard
quasi-triangular structure of the Drinfel’d double of H(G;G+, G−) is studied in
[BGM]. Since the Drinfel’d double of a Hopf algebra with a positive basis still
has a positive basis, and the canonical quasi-triangular structure is easily seen to
be positive, the results of [BGM] concerning braiding fits nicely into our general
theory.

Finally, we would like to point out that our main results do not seem to apply
to general bialgebras with positive bases.

Acknowledgment We would like to thank Professor P. Etingof for illuminat-
ing comments. We would also like to thank the referee for many helpful suggestions.

2. Positive quasi-triangular structures

A factorization G = G+G− of a group G consists of two subgroups G+ and
G− such that any g ∈ G can be written as g = g+g− for unique g+ ∈ G+ and
g− ∈ G−. The group factorization is also called matched pair in [Mj] [T]. We will
denote (g+)−1 ∈ G+ and (g−)−1 ∈ G− simply by g−1

+ and g−1
− .

By considering the inverse map in a group factorization, we see that for every
g ∈ G, there are unique g+, ḡ+ ∈ G+ and g−, ḡ− ∈ G− such that

g = g+g− = ḡ−ḡ+.

This induces the following actions of G+ and G− on each other (from left and from
right)

G− × G+ → G+, (ḡ−, ḡ+) �→ g+ = ḡ− ḡ+,

G− × G+ → G−, (ḡ−, ḡ+) �→ g− = ḡ
ḡ+
− ,

G+ × G− → G+, (g+, g−) �→ ḡ+ = g
g−

+ ,

G+ × G− → G−, (g+, g−) �→ ḡ− = g+g−.

By definition, we have

g+g− = (g+g−)
(
g

g−
+

)
, g−g+ = (g−g+)

(
g

g+
−

)
.(2.1)

Moreover, the actions have the following properties{
g+(g−h−) = g+g−

(g
g−
+ )h−, (h+g+)g− = h

( g+g−)
+ g

g−
+ ,

g−(g+h+) = g−g+
(g

g+
− )h+, (h−g−)g+ = h

( g−g+)
− g

g+
− .

(2.2)
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(g+

g−)−1 = (g−1
− )g−1

+ , ( g−g+)−1 = g−1
+

(g−1
− ),

(g− g+)−1 = (g−1
+ )g−1

− , ( g+g−)−1 = g−1
−

(g−1
+ ).

(2.3)

A Hopf algebra H(G;G+, G−) has been constructed from a unique factorization
G = G+G− of a finite group. See [Mj] [T]. More precisely, H(G;G+, G−) is the
vector space spanned CG with the following Hopf algebra structure



multiplication: {g}{h} = δ
g

g−
+ ,h+

{gh−}
unit: 1 =

∑
g+∈G+

{g+}
co-multiplication: ∆{g} =

∑
h+∈G+

{g+h−1
+ (h+g−)} ⊗ {h+g−}

co-unit: ε{g} = δg+,e

antipode: S{g} = {g−1}
where we use {g} to denote the group element g ∈ G considered as an element of
H(G;G+, G−). We remark that the algebra structure on H(G;G+, G−) is that of
the cross-product of the group algebra CG− of G− and the function algebra C(G+)
of G+ with respect to the above right action of G− on G+. The coalgebra structure
can be similarly described in terms of the left action of G+ on G−. The Hopf
algebra H(G;G+, G−) has G as the obvious positive basis. In [LYZ1], we proved
the following classification theorem (the rescaling by positive numbers is necessary
because it preserves positive bases).

Theorem 2.1. Given any finite dimensional Hopf algebra H over C with a
positive basis B, we can always rescale B by some positive numbers, so that (H, B)
is isomorphic to (H(G;G+, G−), G) for a unique group G and a unique group fac-
torization G = G+G−.

Recall that a quasi-triangular structure on a Hopf algebra H is an invertible
element R ∈ H ⊗ H such that

τ∆(a) = R∆(a)R−1, for all a ∈ H(2.4)
(∆ ⊗ id)R = R13R23, (id ⊗ ∆)R = R13R12(2.5)

where τ(a ⊗ b) = b ⊗ a. We also recall that the conditions imply (ε ⊗ id)R =
(id ⊗ ε)R = 1 and (S ⊗ id)R = (id ⊗ S)R = R−1.

Definition 2.2. Let H be a finite dimensional Hopf algebra over C with a
positive basis B. An element R ∈ H⊗H is said to be positive if it is a linear combi-
nation of the basis elements {b1} ⊗ {b2}, b1, b2 ∈ B, with non-negative coefficients.
A quasi-triangular structure on H is said to be positive if it is given by a positive
element.

By Theorem 2.1, we may restrict our attention to H = H(G;G+, G−) and
B = G in the classification of positive quasi-triangular structures.

Theorem 2.3. Let G = G+G− be a finite group factorization. Let ξ, η : G+ →
G− be two group homomorphisms such that

uv = (ξ(u)v)(uη(v)),(2.6)
ξ(xu)x u = xξ(u),(2.7)
η(xu)x u = xη(u),(2.8)
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for all u, v ∈ G+, and x ∈ G−. Then

R =
∑

u,v∈G+

{u (η(v)u)−1} ⊗ {vξ(u)}

is a positive quasi-triangular structure on H(G;G+, G−). Conversely, every positive
quasi-triangular structure on H(G;G+, G−) is given by the construction above.

The theorem will be proved in Section 7. In the subsequent discussion and the
proof of the theorem, we need the following technical result.

Lemma 2.4. The conditions (2.6), (2.7), (2.8) imply

ξ(u)v = ξ(uη(v)),(2.9)
uη(v) = η(ξ(u)v).(2.10)

Moreover, each of (2.6) through (2.10) is equivalent to the corresponding condition
below

uv = (η(u)v)(uξ(v)),(2.11)
uxξ(u x) = ξ(u)x,(2.12)
uxη(u x) = η(u)x,(2.13)

vξ(u) = ξ(η(v)u),(2.14)

η(v)u = η(vξ(u)).(2.15)

Proof. Given conditions (2.6) and (2.7), the following computation

ξ(u)ξ(v)
(2.6)
= ξ(ξ(u)v)ξ(uη(v))

(2.7)
= ξ(u)ξ(v)(ξ(u)v)−1ξ(uη(v))

shows that (2.9) is also true. Similarly, (2.6) and (2.8) imply (2.10).
If (2.6) holds, then we have

v−1u−1 (2.6)
=

(
ξ(v)−1

(u−1)
) (

(v−1)η(u)−1
)

(2.3)
= (uξ(v))−1(η(u)v)−1.

By taking inverse of both sides, we get (2.11). Using (2.3) in the similar way, we
may prove that (2.11) implies (2.6). The other equivalences can also be proved
similarly.

3. The meaning of positive quasi-triangular structures

The statement of Theorem 2.3 appears to be rather technical. In this section,
we provide two interpretations of these technicalities as additional structures on
the group factorization.

Theorem 3.1. Let G = G+G− be a finite group factorization. Let ξ, η : G+ →
G− be two group homomorphisms, and denote

G′
+ = {uξ(u−1) : u ∈ G+}, G′′

+ = {η(u−1)u : u ∈ G+},

F (uξ(u−1)) = η(u)u−1 : G′
+ → G′′

+.

Then the conditions (2.6), (2.7), (2.8) in Theorem 2.3 are equivalent to
(a) Both G′

+ and G′′
+ are normal subgroups of G;

(b) F is a group isomorphism.
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We note that the map F in the theorem is well-defined, by the uniqueness of
the factorization.

Proof. From

uξ(u−1)vξ(v−1)
(2.1)
= u(ξ(u−1)v)(ξ(u−1)v)ξ(v−1),(3.1)

η(u)u−1η(v)v−1 (2.1)
= η(u)(u−1

η(v))((u−1)η(v))v−1,(3.2)

we see that the condition (b) means (u(ξ(u−1)v))−1 = ((u−1)η(v))v−1. This is
exactly (2.6).

The fact that G′
+ is normal means that for any u ∈ G+ and x ∈ G−, we can

find v ∈ G+ such that xuξ(u−1) = vξ(v−1)x. By the uniqueness of factorization,
this means

xu = v, (xu)ξ(u−1) = ξ(v−1)x.

This is clearly equivalent to (2.7). Similarly, the fact that G′′
+ is normal is equivalent

to (2.8).
It remains to show that (2.6), (2.7), (2.8) imply G′

+ and G′′
+ are indeed sub-

groups. By (3.1) and the definition of G′
+, G′

+ is a subgroup if and only if
ξ(u(ξ(u−1)v))−1 = (ξ(u−1)v)ξ(v−1). This equality is verified as follows

ξ
(
u(ξ(u−1)v)

)−1 (2.6)
= ξ

(
v((u−1)η(v))−1

)−1

= ξ((u−1)η(v))ξ(v−1)
(2.9)
= (ξ(u−1)v)ξ(v−1),

where we used the fact that (2.6) and (2.7) imply (2.9) (see Lemma 2.4). Thus we
conclude that G′

+ is indeed a subgroup. Similarly, G′′
+ is also a subgroup.

Next we give an alternative description for the data (G = G+G−, ξ, η). Let G−
be a group acting on another group A as automorphisms, with the action denoted
by (x, a) �→ x · a : G− × A → A. Then we have the semi-direct product group
G = A � G−, with the group structure given by

(ax)(by) = a(x · b)xy, a, b ∈ A, x, y ∈ G−.

A map ζ : A → G− is called a shift if

ζ(a)ζ(b) = ζ(a(ζ(a) · b)).(3.3)

The condition is equivalent to the fact that {aζ(a) : a ∈ A} is a subgroup of G.
Moreover, if ζ is bijective, then ζ is a shift if and only if ζ−1 : G− → A is a 1-cocycle
of G− with coefficients in A.

Theorem 3.2. There is a one-to-one correspondence between

1. triples (G = G+G−, ξ, η) satisfying the conditions of Theorem 3.1;
2. triples (G = A � G−, ζ, F ), where ζ : A → G− is a shift and F is an

automorphism of G, such that F (x) = x for any x ∈ G− and F (a)a ∈ G−
for any a ∈ A.
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Specifically, the correspondence is the following. Given (G = G+G−, ξ, η), we
define

A = G′
+ = {uξ(u−1) : u ∈ G+},

F (uξ(u−1)x) = η(u)u−1x, for u ∈ G+ and x ∈ G−

ζ(uξ(u−1)) = ξ(u), for u ∈ G+

(3.4)

Moreover, since A is a normal subgroup, conjugations by elements in G− give an
action of G− on A as automorphisms. Conversely, given (G = A � G−, ζ, F ), we
define

G+ = {aζ(a) : a ∈ A}
ξ = P |G+

η = P ◦ F−1|G+

(3.5)

where P is the natural homomorphism G = A � G− → G−, ax �→ x.

Proof of Theorem 3.2. First we show that if (G = G+G−, ξ, η) satisfies
Theorem 3.1, then the construction (3.4) is as described in Theorem 3.2.

For a = uξ(u−1), we have aζ(a) = u. Therefore the subset {aζ(a) : a ∈ A} =
G+ is a subgroup of G. This implies ζ is a shift.

By its very definition, F is a homomorphism if and only if F : G′
+ → G′′

+ is
an equivariant map with respect to the G−-actions defined by conjugations. For
x ∈ G− and a = uξ(u−1) ∈ G′

+, the action of x on a is

x · a = xuξ(u−1)x−1 = vξ(v−1), v = (xu)+ = xu,

and the action of x on F (a) is

x · F (a) = xη(u)u−1x−1 = η(w)w−1, w = (xu)+ = xu.

We conclude from this that v = w and F (x · a) = x · F (a).
Finally, we have F (x) = x for any x ∈ G− from the definition. Moreover, for

any a = uξ(u−1) ∈ A, we have

F (a)a = η(u)u−1uξ(u−1) = η(u)ξ(u−1) ∈ G−.

Now we turn to the construction (3.5).
First of all, since ζ is a shift, we know G+ is a subgroup of G. Moreover,

for any a ∈ A and x ∈ G−, the decomposition ax = (aζ(a))(ζ(a)−1x) gives the
factorization G = G+G−.

Since P and F−1 are homomorphisms, ξ and η are also homomorphisms.
We express an element in G as ux for unique u ∈ G+ and x ∈ G−. The element

is in A if and only if it is in the kernel of P . Since P (ux) = P (u)P (x) = ξ(u)x, we
see that A consists of elements of the form uξ(u−1), u ∈ G+. In other words, we
have A = G′

+, which in particular implies G′
+ is a normal subgroup. Similarly, by

considering those elements xu in the kernel of P◦F−1, we conclude that G′′
+ = F (A).

Since F is an automorphism, G′′
+ is also a normal subgroup.

Since F (G′
+) = G′′

+, for any u ∈ G+, we can find v ∈ G+ such that F (uξ(u−1)) =
η(v)v−1. Then by condition (b), we have η(v−1)vuξ(u−1) = F (uξ(u−1))uξ(u−1) ∈
G−. This implies uv ∈ G−. On the other hand, u, v ∈ G+ implies uv ∈ G+.
Therefore by the uniqueness of the factorization, we have uv = e. Consequently,
the formula F (uξ(u−1)) = η(u)u−1 holds.

�
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We finish the section with an example.
Any group factorization G = G+G− induces another group factorization G̃ =

G × G = G̃+G̃−, with

G̃+ = {(g+, g−) : g+ ∈ G+, g− ∈ G−}, G̃− = {(g, g) : g ∈ G}.
The Hopf algebra induced by this group factorization is in fact the Drinfel’d double
of H(G;G+, G−) (see [LYZ1]).

Consider homomorphisms{
ξ(g+, g−) = (g−, g−)
η(g+, g−) = (g+, g+) : G̃+ → G̃−.

The induced subgroups G̃′
+ = G × {e} and G̃′′

+ = {e} × G (as in Theorem 3.1)
are clearly normal. It is also easy to see that the map F : G̃′

+ → G̃′′
+ is given

by F (a, e) = (e, a), which is clearly a group isomorphism. The quasi-triangular
structure induced by these data is in fact the standard one on the Drinfel’d double
of H(G;G+, G−).

To find the alternative description, we use the identification

G̃′
+
∼= G : (a, e) ↔ a; G̃− ∼= G : (g, g) ↔ g.(3.6)

Then the equality (g, g)(a, e)(g, g)−1 = (gag−1, e) implies that G acts on A = G by
conjugations. Since (a, e) = uξ(u−1) for u = (a+, a−1

− ), the 1-cycle is

ζ(a) = a−1
−

after the identification (3.6). Moreover, since (e, a) = (a−1, e)(a, a) with respect to
the group factorization G̃ = G̃′

+G̃−, the automorphism on G �conj G is

F (a � g) = F (a � e)F (e � g) = (a−1
� e)(e � a)(e � g) = a−1

� ag.

4. Comparing positive quasi-triangular structures

Let G = G+G− and G = G′
+G− be two factorizations of a finite group G. Then

we have two Hopf algebra structures H(G;G+, G−) and H(G;G′
+, G−) on CG. In

this section, we will show that the two Hopf algebra structures are quasi-isomorphic.
We recall that a quasi-isomorphism between Hopf algebras H and H ′ consists of an
algebra isomorphism φ : H ′ → H and an invertible element T ∈ H ⊗ H satisfying

(φ ⊗ φ)∆(a) = T (∆φ(a))T−1, a ∈ H ′(4.1)

and

(T ⊗ 1)(∆ ⊗ id)T = (1 ⊗ T )(id ⊗ ∆)T.(4.2)

Moreover, if R is a quasi-triangular structure on H, then

R′ = (φ ⊗ φ)−1((τT )RT−1)(4.3)

is a quasi-triangular structure on H ′.
To avoid confusion about two structures on the same space CG, we consider

G = G+G− as the “standard” factorization, and G = G′
+G− as the “shifting” of the

standard factorization. All the notations in Section 2 refer to operations relative
to the factorization G = G+G− and the Hopf algebra structure H(G;G+, G−).
For any g ∈ G, we use {g} and {g}′ to denote g considered as an element in
H(G;G+, G−) and in H(G;G′

+, G−), respectively.
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The uniqueness of the two factorizations give rise to a “shifting map” σ : G+ →
G− such that

G′
+ = {σ(u)u : u ∈ G+}.(4.4)

The fact that G′
+ is a subgroup implies that for any u, v ∈ G+,

σ((uσ(v))v) = σ(u)(uσ(v)).(4.5)

By solving

σ(u)ux = yσ(v)v, u, v ∈ G+, x, y ∈ G−,

for v and y, we have

v = ux, y = σ(u)(ux)σ(v)−1 = σ(u)(ux)σ(ux)−1.

Therefore the left action of G′
+ on G− and the right action of G− on G′

+ are given
by

G′
+ × G− → G′

+, (σ(u)u, x) �→ σ(ux)ux,(4.6)

G′
+ × G− → G−, (σ(u)u, x) �→ σ(u)(ux)σ(ux)−1.(4.7)

Proposition 4.1. Denote

φ{σ(u)ux}′ = {ux} : H(G;G′
+, G−) → H(G;G+, G−),(4.8)

and

T =
∑

u,v∈G+

{uσ(v)} ⊗ {v}.(4.9)

Then (φ, T ) is a quasi-isomorphism of Hopf algebras.

Proof. First, from the action (4.6), we have

{σ(u)ux}′{σ(v)vy}′ = δux,v{σ(u)uxy}′.
This implies that φ preserves the multiplication. It is also easy to see that φ
preserves the unit. Therefore φ is an isomorphism of algebras.

Next, it is easy to verify that

T−1 =
∑

u,v∈G+

{uσ(v)−1} ⊗ {v}.

Then for any g+ ∈ G+ and g− ∈ G−, we have

T (∆φ{σ(g+)g+g−}′)T−1

=
∑

h+∈G+

{(
(g+h+)σ(h+)−1

)
σ(h+)(h+g−)σ(hg−

+ )−1
}
⊗ {h+g−}.

On the other hand,

∆{σ(g+)g+g−}′
(4.7)
=

∑
h+∈G+

{σ(g+)g+(σ(h+)h+)−1σ(h+)(h+g−)σ(hg−
+ )−1}′ ⊗ {σ(h+)h+g−}′.

Since G′
+ is a subgroup, we have

σ(g+)g+(σ(h+)h+)−1 = σ(w)w
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for some w ∈ G+. By considering the G+-components in the factorization G =
G−G+, we find w = (g+h−1

+ )σ(h+)−1
. Therefore

σ(g+)g+(σ(h+)h+)−1 = σ
(
(g+h−1

+ )σ(h+)−1
)

(g+h−1
+ )σ(h+)−1

,

and

(φ ⊗ φ)∆{σ(g+)g+g−}′

=
∑

h+∈G+

{(
(g+h−1

+ )σ(h+)−1
)

σ(h+)(h+g−)σ(hg−
+ )−1

}
⊗ {h+g−}.

This completes the verification of (4.1).
Finally, it is easy to compute the following

(T ⊗ 1)(∆ ⊗ id)T =
∑

u,v,w∈G+

{uσ(v)(vσ(w))} ⊗ {vσ(w)} ⊗ {w},

(1 ⊗ T )(id ⊗ ∆)T =
∑

u,v,w∈G+

{uσ(vσ(w)w)} ⊗ {vσ(w)} ⊗ {w}.

By (4.5), we conclude that (4.2) holds.

Now we apply the proposition to the special case in Theorems 2.3 and 3.1.
Note that with σ(u) = ξ(u−1), the group G′

+ in (4.4) is the same as the one given
in Theorem 3.1 (this can be seen by taking inverse). In particular, the quasi-
triangular structure R on H(G;G+, G−) can be transformed to into the quasi-
triangular structure (4.3) on H(G;G′

+, G−). An easy computation gives

(τT )RT−1 =
∑

u,v∈G+

{uη(v)−1ξ(v)} ⊗ {v},

so that

R′ =
∑

u,v∈G+

{ξ(u−1)uη(v)−1ξ(v)}′ ⊗ {ξ(v−1)v}′.(4.10)

By Theorem 2.3, R′ is given by homomorphisms ξ′, η′ : G′
+ → G−. From the

second component in (4.10), we have ξ′(ξ(v−1)v) = e. By (2.15), the triviality of ξ′

implies that the first component in (4.10) is of the form {ξ(u−1)uη′(ξ(v−1)v)−1}′.
Therefore we conclude that

ξ′(ξ(u−1)u) = e, η′(ξ(v−1)v) = ξ(v)−1η(v).(4.11)

Definition 4.2. Let R be a positive quasi-triangular structure on H(G;G+, G−)
given by homomorphisms ξ, η : G+ → G− as in Theorem 2.3. We call R normal if
ξ(u) = e for all u ∈ G+. We call the pair (H(G;G+, G−), R) normal if R is normal.

Thus for the special case in Theorem 2.3, Lemma 4.1 implies the following.

Theorem 4.3. Every pair (H, R), where H is a finite dimensional Hopf algebra
with a positive basis and R is a positive quasi-triangular structure in this basis, is
quasi-isomorphic to a normal one.
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5. Positive triangular structures

A quasi-triangular structure R is triangular if it further satisfies (τR)R = 1⊗1.
For the positive quasi-triangular structure R given by Theorem 2.3, we have

(τR)R =
∑

{vξ(u)
(
η(v̄)ū

)−1} ⊗ {u (η(v)u)−1
ξ(ū)},

where the summation is over all u, v, ū, v̄ ∈ G+ satisfying

vξ(u) = ū, η(v)u = v̄.(5.1)

Since 1 ⊗ 1 =
∑

u,v∈G+
{u} ⊗ {v}, we see that R is triangular if and only if (5.1)

implies

ξ(u) = η(v̄)ū, η(v)u = ξ(ū).(5.2)

Note that the first equality in (5.1) implies η(v)u = η(vξ(u)) = η(ū). Therefore
under the assumption (5.1), the second equality of (5.2) is equivalent to ξ = η.
Furthermore, the property ξ = η and (5.1) imply

η(v̄)ū = η(η(v)u)ū = ξ(η(v)u)ū
(2.14)
= (vξ(u))(vξ(u)) = vξ(u).

In particular, the first equality of (5.2) also holds. Thus we conclude that R is
triangular if and only if ξ = η.

Theorem 5.1. There is a one-to-one correspondence between the following
data

1. a finite dimensional positive triangular Hopf algebra;
2. a finite group factorization G = G+G−, and a homomorphism ξ : G+ → G−

satisfying uv = (ξ(u)v)(uξ(v)) and ξ(xu)x u = xξ(u);
3. a finite group factorization G = G+G−, and a homomorphism ξ : G+ → G−

such that A = {uξ(u−1) : u ∈ G+} is an abelian normal subgroup;
4. a finite group G−, a finite abelian group A acted upon by G− as automor-

phisms, and a shift ζ : G− → A.

Proof. We already know that the first item is equivalent to the construction
in Theorem 2.3 with ξ = η. By applying the conditions in Theorem 2.3 to the
special case ξ = η, we see that the first two items are equivalent.

If we apply Theorem 3.1 to the special case ξ = η, then we need

G
′

+ = {uξ(u−1) : u ∈ G+}, G
′′

+ = {ξ(u−1)u : u ∈ G+}
to be normal subgroups, and

F (uξ(u−1)) = ξ(u)u−1 : G′
+ → G′′

+

to be homomorphic. Since ξ(u)u−1 = (uξ(u−1))−1, we have G
′
+ = G

′′
+ and F (a) =

a−1. Thus Theorem 3.1 implies the first and the third items are equivalent.
Finally, the fourth item refers to the alternative description in Theorem 3.2.

From the discussion above, we see that a positive triangular structure means A =
G′

+ is abelian, and

F (ax) = a−1x, a ∈ A, x ∈ G−.

Since these already imply the conditions in the third item are satisfied, we see that
there is no further condition on the shift ζ. This proves the equivalence to the
fourth item.
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Now let us apply the theory of Section 4 to normalize positive triangular struc-
tures. Since ξ = η, both ξ′ and η′ are trivial by (4.11). Another way to see the
triviality is to use the fact that if R is triangular, then R′ in (4.3) is also triangu-
lar. In particular, we have ξ′ = η′. Since ξ′ is trivial, so is η′. Anyway, we find
R′ = 1′ ⊗ 1′, and the triangular Hopf algebra (H(G;G+, G−), R) is isomorphic to
the twisting of the triangular Hopf algebra (H(G;A, G−), 1′ ⊗ 1′), with the twist
given by

T ′ = (φ ⊗ φ)−1(T )

=
∑

u,v∈G+

{ξ(u−1)uξ(v−1)}′ ⊗ {ξ(v−1)v}′

=
∑

a,b∈A

{aζ(b−1)}′ ⊗ {b}′.

Finally, we note that since R′ = 1′ ⊗ 1′, H(G;A, G−) is cocommutative. Since any
cocommutative Hopf algebra over an algebraically closed field is a group algebra
(see [S], for example), we have conclude the following.

Corollary 5.2. Any finite dimensional positive triangular Hopf algebra is the
twisting of a group algebra.

An explicit formula for exhibiting H(G;A, G−) as a group algebra can be found
in Section 4 of [EG].

6. Positive quasi-triangular structures and bisections

In [LYZ1], we have shown that the positivity condition on a Hopf algebra
implies that the Hopf algebra is essentially set-theoretical. In this section, we
explain that a positive quasi-triangular structure on such a Hopf algebra is also
set-theoretical.

Recall [Mk] that a groupoid over a set B (called base space) is a set Γ (called
total space) together with

1. two surjections α, β : Γ → B
2. a product µ : (γ1, γ2) �→ γ1γ2 in Γ, defined when β(γ1) = α(γ2)
3. an identity map e : b �→ eb, B → Γ

such that the usual axioms similar to those for groups are satisfied. If Γ is finite,
then we have an algebra structure on the vector space CΓ

{γ1}{γ2} =
{

{γ1γ2} if β(γ1) = α(γ2)
0 if β(γ1) = α(γ2)

, e =
∑
b∈B

eb,

called the groupoid algebra of Γ.
For example, given a unique factorization G = G+G−, we have the following

groupoid Γ+ with G as the total space and with G+ as the base space
1. α+: g �→ g+, G → G+, and β+: g �→ ḡ+, G → G+

2. µ+ : (g, h) �→ gh− when ḡ+ = h+

3. e+ : g+ �→ g+, G+ → G

The corresponding groupoid algebra is the algebra structure of H(G;G+, G−).
An element a =

∑
γ∈Γ r(γ){γ} of the groupoid algebra CΓ is called positive if

r(γ) ≥ 0. In this case, we have a subset

L(a) = {γ : r(γ) > 0}
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of Γ. If a1 and a2 are positive, then a1a2 is also positive, and we have

L(a1a2) = {γ1γ2 : γ1 ∈ L(a1), γ2 ∈ L(a2), β(γ1) = α(γ2)}.(6.1)

If we define the product of two subsets L1, L2 ⊂ Γ as

L1L2 = {γ1γ2 : γ1 ∈ L1, γ2 ∈ L2, β(γ1) = α(γ2)},(6.2)

then (6.1) becomes L(a1a2) = L(a1)L(a2).
The subset

EΓ = L


∑

γ∈Γ

{γ}


 = {eb : b ∈ B} ⊂ Γ

is a unit of the product (6.2). The next result tells us which subsets of Γ are
invertible.

Proposition 6.1. Let L ⊂ Γ be a subset of a groupoid Γ over B. Then the
following are equivalent

1. There is a subset K ⊂ Γ such that LK = EΓ and KL = EΓ;
2. The restrictions α|L, β|L : L → B are bijections.

Proof. We first prove that the first statement implies the second.
Since LK = EΓ, for any b ∈ B, there are γ1 ∈ L and γ2 ∈ K such that

β(γ1) = α(γ2) and γ1γ2 = eb. In particular, we have α(γ1) = α(γ1γ2) = b and
β(γ2) = β(γ1γ2) = b. Thus α|L and β|K are surjective.

Now suppose we have γ1, γ
′
1 ∈ L such that α(γ1) = α(γ′

1) = a. By the sur-
jectivity of β|K , we can find γ2 ∈ K such that β(γ2) = a. Since KL = EΓ, we
conclude that γ2γ1 = eb and γ2γ

′
1 = eb′ for some b, b′ ∈ B. Then

β(γ1) = β(γ2γ1) = b = α(γ2γ1) = α(γ2) = α(γ2γ
′
1) = b′ = β(γ2γ

′
1) = β(γ′

1).

In particular, the products γ1γ2 and γ′
1γ2 make sense. Since γ1γ2, γ

′
1γ2 ∈ LK = EΓ,

we see that γ1γ2 = γ′
1γ2 = ea. Combining this with γ2γ1 = eb = eb′ = γ2γ

′
1, we

conclude that γ1 = γ−1
2 = γ′

1. This proves the injectivity of α|L.
The bijectivity of β|L : L → B can be proved similarly.
Conversely, given the second statement, it is easy to verify that K = {γ−1 :

γ ∈ L} satisfies the first statement.

A subset L ⊂ Γ of a groupoid satisfying the equivalent conditions of the propo-
sition above is called a bisection. With product (6.2), the collection U(Γ) of all
bisections of a groupoid Γ form a group.

Now we specialize the theory above to the positive quasi-triangular structure
R in Theorem 2.3. Denote

R = L(R) =
{(

u (η(v)u)−1
, vξ(u)

)
: u, v ∈ G+

}
.(6.3)

Since the equality R−1 = (S ⊗ id)R implies that R−1 is also positive, we see that
R has L(R−1) as inverse and is a bisection of Γ+ × Γ+. Moreover, we have

L(R12) = R× {e} = R12, etc.

Applying L to the Yang-Baxter equation satisfied by R, we see that R also satisfies
the following groupoid-theoretical Yang-Baxter equation introduced in [WX]

R12R13R23 = R23R13R12,(6.4)
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which is an equality inside the group U(Γ+ × Γ+ × Γ+) of bisections.
To get set-theoretical solutions of the Yang-Baxter equation from (6.4), we

recall that the quasi-triangular structure R induces a solution of the Yang-Baxter
equation on any H-module. The set-theoretical analogue of modules is sets acted
upon by groupoids.

Let Γ be a groupoid over B. A (left) Γ-set consists of a set X, a map J : X → B,
and an action

(γ, x) �→ γx ∈ X, for γ ∈ Γ, x ∈ X, satisfying β(γ) = J(x).

such that J(γx) = α(γ) and the usual conditions similar to those for group actions
are satisfied. The vector space CX has an obvious module structure over the
groupoid algebra.

For any L ∈ U(Γ) and x ∈ X, the equation

Lx = γx, for the unique γ ∈ L satisfying β(γ) = J(x)

defines a (left) action of the group U(Γ) of bisections on the set X. Now if R ∈
U(Γ × Γ) satisfies the groupoid-theoretical Yang-Baxter equation (6.4), then the
map RX : X × X → X × X induced by R is a set-theoretical solution of the
Yang-Baxter equation over X.

Now we compute the set-theoretical solution of the Yang-Baxter equation in-
duced by the action of the bisection (6.3) on the simplest Γ+-set, the unit Γ+-set
id : G+ → G+. In this case, RG+ is given by the following diagram

(u (η(v)u)−1
, vξ(u))

β+×β+ ↙ ↘ α+×α+

(u(η(v)u)−1
, vξ(u))

RG+−−−−−−−−−−→ (u, v)

By u(η(v)u)−1
= η(v)u, we have

R−1
G+

(u, v) = (η(v)u, vξ(u)).

Solving the equation, we get the set-theoretical solution

RG+(u, v) = (uη(v), ξ(u)v)(6.5)

of the Yang-Baxter equation over G+.
Direct computation shows that if ξ and η are two group homomorphisms sat-

isfying (2.6), then (6.5) is already a set-theoretical solution of the Yang-Baxter
equation. Moreover, in order for (2.6) and (6.5) to make sense, we do not even need
to know anything about G−. The only data we need are actions (u, v) �→ ξ(u)v
and (u, v) �→ uη(v) of G+ on itself. This is the basic data for the construction in
[LYZ2].

We would like to end the section by mentioning that a comprehensive theory can
be established for the Yang-Baxter equation on groupoids. Indeed, we can formulate
the definitions of Hopf groupoids and quasi-triangular structures on them. We can
further show that any group factorization of a group induces a Hopf groupoid,
and that all of its quasi-triangular structures are given by the bisections of the
form (6.3). Moreover, we can introduce the notion of quasi-isomorphisms of Hopf
groupoids and establish the set-theoretical analogue of Theorem 4.3.
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7. Proof of the classification theorem

We prove Theorem 2.3 in this section. We start with the condition (2.5).

Lemma 7.1. Suppose ξ, η : G+ → G− are two group homomorphisms satisfying
(2.14), (2.15). Suppose r : G+ × G+ → R>0 is a function such that for any
u, v, w ∈ G+,

r(uw, v) = r(u, v)r(w, vξ(u)),(7.1)

r(u, wv) = r(u, v)r(η(v)u, w).(7.2)

Then

R =
∑

u,v∈G+

r(u, v){u (η(v)u)−1} ⊗ {vξ(u)}(7.3)

satisfies (2.5). Conversely, if R is invertible, positive, satisfies (2.5), and R−1 is
also positive, then R is given by the construction above.

Proof. It is straightforward to verify that, when all conditions are satisfied,
R indeed satisfies (2.5). In what follows, we prove the converse.

Note that the tensor algebra H(G;G+, G−) ⊗ H(G;G+, G−) is the groupoid
algebra of the product groupoid Γ+ × Γ+. Thus we may apply the operation L
introduced in Section 6 to the positive elements R and R−1. In particular, the
equality RR−1 = 1⊗ 1 = R−1R implies that L(R) is invertible with respect to the
product (6.2). By Proposition 6.1, the restriction of αΓ+×Γ+(g, g) = (g+, g+) on
L(R) is bijective. This implies that

R =
∑

u,v∈G+

r(u, v){uφ(u, v)} ⊗ {vψ(u, v)},(7.4)

where φ, ψ : G+ → G− are two maps, and r : G+ × G+ → R>0 is a positively
valued function.

From

(∆ ⊗ id)R =
∑

u,v,w∈G+

r(u, v){uw−1(wφ(u, v))} ⊗ {wφ(u, v)} ⊗ {vψ(u, v)},

R13R23 =
∑

u,v,w∈G+

r(u, v)r(w, vψ(u,v)){uφ(u, v)} ⊗ {wφ(w, vψ(u,v))}

⊗{vψ(u, v)ψ(w, vψ(u,v))},
we see that (∆ ⊗ id)R = R13R23 means

r(uw, v) = r(u, v)r(w, vψ(u,v)),(7.5)
wφ(uw, v) = φ(u, v),(7.6)

φ(uw, v) = φ(w, vψ(u,v)),(7.7)

ψ(uw, v) = ψ(u, v)ψ(w, vψ(u,v)),(7.8)

for all u, v, w ∈ G+. Similarly, (id ⊗ ∆)R = R13R12 means

r(u, wv) = r(u, v)r(uφ(u,v), w),(7.9)

φ(u, wv) = φ(u, v)φ(uφ(u,v), w),(7.10)
vψ(u, wv) = ψ(uφ(u,v), w),(7.11)
ψ(u, wv) = ψ(u, v).(7.12)
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Equation (7.12) implies that

ψ(u, v) = ξ(u)(7.13)

for a map ξ : G+ → G−. Then (7.8) becomes ξ(uw) = ξ(u)ξ(w), so that ξ is a
group homomorphism.

Equation (7.6) implies that φ(u, v) = u−1
φ(e, v). Therefore we introduce η(v) =

φ(e, v)−1 : G+ → G− and have

φ(u, v) = u−1
(η(v)−1)

(2.3)
= (η(v)u)−1

.(7.14)

Moreover, we have

uφ(u,v) = u(u−1
(η(v)−1)) (2.2)

= η(v)u.(7.15)

Then by (7.14) and (7.15), equation (7.10) becomes

η(wv)u = η(w)(
η(v)u)η(v)u.

Taking u = e, we see that η is a group homomorphism. By making use of this fact,
the equation above becomes (2.2), which is always satisfied.

By (7.13) and (7.15), equation (7.11) becomes (2.14). By (7.14), equation (7.7)
becomes η(v)uw = η(vξ(u))w. Applying the right action by w−1, we have (2.15).
Finally, by (7.15), equations (7.5) and (7.9) become (7.1) and (7.2).

Proof of Theorem 2.3. We first prove that any positive quasi-triangular
structure is given by the theorem.

Let R be a positive quasi-triangular structure. Then R−1 = (S ⊗ id)R implies
that R−1 is also positive. Then by Lemma 7.1, R is of the form (7.3), and we have
properties (2.14) and (2.15). Note that by Lemma 2.4, we also have properties (2.9)
and (2.10).

In the product

R∆{g} =


 ∑

u,v∈G+

r(u, v){u (η(v)u)−1} ⊗ {vξ(u)}





 ∑

h+∈G+

{g+h−1
+ (h+g−)} ⊗ {h+g−}


 ,

we must have

h+ = vξ(u), g+h−1
+ = u(η(v)u)−1 (2.15)

= uη(vξ(u))−1
= uη(h+)−1

.

Therefore

u = (g+h−1
+ )η(h+),

v = h
ξ((g+h−1

+ )η(h+))−1

+

(2.9)
= h

(ξ(g+h−1
+ )h+)−1

+

(2.3)
= h

h
−1
+ (ξ(g+h−1

+ )−1)
+

(2.2)
=

(
(h−1

+ )(ξ(g+h−1
+ )−1)

)−1 (2.3)
= ξ(g+h−1

+ )h+,

η(v)u (2.15)
= η(vξ(u)) = η(h+),

ξ(u) = ξ((g+h−1
+ )η(h+))

(2.9)
= ξ(g+h−1

+ )h+ ,
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and

R∆{g} =
∑

h+∈G+

r((g+h−1
+ )η(h+), ξ(g+h−1

+ )h+)

{
((g+h−1

+ )η(h+))η(h+)−1(h+g−)
}

(7.16)

⊗
{

( ξ(g+h−1
+ )h+)(ξ(g+h−1

+ )h+)g−
}

.

This should be equal to

τ∆{g}R =
∑

h+∈G+

r(h+
g− , (g+h−1

+ )(
h+g−))

{
h+g−

(
η((g+h−1

+ )(
h+g−))(h+

g− )
)−1 }

(7.17)

⊗
{

g+h−1
+ (h+g−)ξ(h+

g−)
}

.

Observe that in the G+-parts of each term in τ∆{g}R, we have (g+h−1
+ )h+ =

g+. Therefore by τ∆{g}R = R∆{g} and r > 0, we have(
ξ(g+h−1

+ )h+

) (
(g+h−1

+ )η(h+)
)

= g+.

This is exactly (2.6).
We now compare τ∆{g}R and R∆{g} term by term. In order to avoid confu-

sion, we change the index h+ in τ∆{g}R to h̄+.
The equality τ∆{g}R = R∆{g} and r > 0 suggests us to consider the map

h+ �→ h̄+ = (g+h−1
+ )η(h+).(7.18)

By using (2.6), (2.9), (2.10), we can show that the map has the following inverse

h̄+ �→ h+ = (g+h̄−1
+ )ξ(h̄+).(7.19)

This means that the term in τ∆{g}R indexed by h̄+ and the term in R∆{g} indexed
by h+ must be equal. By comparing the coefficients, the G+-components, and the
G−-components of the corresponding terms, we have

r(h̄+
g− , (g+h̄−1

+ )(
h̄+g−)) = r((g+h−1

+ )η(h+), ξ(g+h−1
+ )h+),(7.20)

g−

(
η

(
(g+h̄−1

+ )(
h̄+g−)

)(h̄+
g− )

)−1

= η(h+)−1(h+g−),(7.21)

g+h̄−1
+ = ξ(g+h−1

+ )h+,(7.22)

(h̄+g−)ξ(h̄+
g−) = (ξ(g+h−1

+ )h+)g−.(7.23)

As pointed out earlier, (7.18) and (7.22) implies (2.6).
Let h+ = e. Then from (7.18) we have h̄+ = g+, so that (7.23) becomes

(g+g−)ξ(g+
g−) = ξ(g+)g−.

This is (2.12), which is equivalent to (2.7) by Lemma 2.4.
We have from (2.9) and (7.18) that

ξ(h̄+) = ξ((g+h−1
+ )η(h+)) = ξ(g+h−1

+ )h+ ,
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so that

h+
ξ(h̄+)−1

= h+
(ξ(g+h−1

+ )h+)−1 (2.3)
= h

h
−1
+ (ξ(g+h−1

+ )−1)
+

(2.2)
=

(
(h−1

+ )ξ(g+h−1
+ )−1

)−1

(2.3)
= ξ(g+h−1

+ )h+
(2.6)
= (g+h−1

+ )h+

(
(g+h−1

+ )η(h+)
)−1 (7.18)

= g+h̄−1
+ .

Thus (g+h̄−1
+ )ξ(h̄+) = h+, and in (7.21) we have

η
(
(g+h̄−1

+ )(
h̄+g−)

)(h̄+
g− ) (2.15)

= η
(
(g+h̄−1

+ )(
h̄+g−)ξ(h̄+

g− )
)

(2.12)
= η

(
(g+h̄−1

+ )ξ(h̄+)g−
)

= η(h+
g−).

Therefore (7.21) becomes

η(h+)g− = (h+g−)η
(
(g+h̄−1

+ )(
h̄+g−)

)(h̄+
g− )

= (h+g−)η(h+
g−).

This is (2.13), which is equivalent to (2.8) by Lemma 2.4.
Finally, substituting (7.18) and (7.22) into (7.20) gives

r(h̄+
g− , (g+h̄−1

+ )(
h̄+g−)) = r(h̄+, g+h̄−1

+ ).

In other words, we have

r(u, v) = r(ux, v(ux)).(7.24)

We claim that (7.1) and this imply r is constant 1.
The one-to-one correspondence

u �→ uξ(u−1) : G+ → G′
+

translates the group structure (3.1) on G′
+ to a group structure

u . v = u(ξ(u−1)v)(7.25)

on G+. We have

r(u . w, v) = r(u(ξ(u−1)w), v)
(7.1)
= r(u, v)r(ξ(u−1)w, vξ(u)).

Let x = w−1
ξ(u). Then

wx = ξ(u), wx = w(w−1
ξ(u)) (2.2)

=
(
(w−1)ξ(u)

)−1 (2.3)
= ξ(u−1)w.

Therefore

r(u . w, v) = r(u, v)r(wx, v(wx))
(7.24)
= r(u, v)r(w, v).

Thus for fixed v, r(?, v) : (G+, .) → R>0 is a group homomorphism. Since G+ is
finite, we conclude that r = 1.

This completes the proof of that R is given as in the theorem.
Conversely, suppose ξ, η are homomorphisms satisfying the conditions in the

theorem. Then the homomorphisms also have the properties in Lemma 2.4. Then
by Lemma 7.1, (2.5) is satisfied. Moreover, we may use (2.6), (2.9), (2.10) to show
that (7.18) and (7.19) are inverse to each other, just as what we have done in the
proof of the other direction. This implies that (7.18) and (7.19) give a one-to-
one correspondence between the terms in τ∆{g}R and R∆{g}. Thus in order to
show τ∆{g}R = R∆{g}, it remains to verify (7.20) through (7.23). The detailed
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computation is almost the same as what we have done in the first part of the proof,
except for (7.23). The following computation verifies (7.23)

(h̄+g−)ξ(h̄+
g−)

(2.12)
= ξ(h̄+)g−

(7.18)
= ξ((g+h−1

+ )η(h+))g−
(2.9)
= (ξ(g+h−1

+ )h+)g−.

This completes the proof of the converse.
�
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