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Abstract. The definition of stabilizer and orbit for Hopf algebra action is

given, and a duality theorem on stabilizer is proved.

1. Introduction.

Let H be a Hopf algebra. An H-module algebra is an associative algebra on

which H acts compatibly. Consider the case H is a group algebra CG. A G-set

gives arise to a commutative CG-module algebra by taking the algebra of the

complex functions on S. A non-commutative CG-module algebra may be viewed

as the function algebra on a hypothetical G-space. For a general Hopf algebra

H, it is instructive to view the notion of H-module algebra as a generalization

of G-set, generalizing both group G and set S to the quantum case.

The purpose of this work is to show that the concept of stabilizer for group

action also exists for Hopf algebra action. Unlike the case of group actions, a

stabilizer of an H-module algebra is in general not a Hopf subalgebra, but it

is a module algebra for the dual Hopf algebra H∗. More specifically, for a left

H-module algebra M together with an M -module V , the stabilizer of the pair

(M, V ) is another pair (M ′, V ′), where M ′ is a right H∗-module algebra and V ′

is an M ′-module. Similarly the stabilizer is defined for a pair (M ′, V ′) for H∗.

Our main theorem asserts that the stabilizer of the stabilizer of (M, V ) is actually

isomorphic to (M, V ) itself under certain assumptions on (M, V ). This theorem

generalizes the known fact that the structure of a transitive G-set S is determined

by the stabilizer of a point p ∈ S. It also implies that if H is semisimple then

the set of isomorphism classes of pairs (M, V ) for H satisfying certain properties

is 1 − 1 correspondent to the set of isomorphism classes of pairs (M, V ) for H∗

satisfying the similar properties.

It might be interesting to compare our result on Hopf algebra actions with

some result in [D1] on Poisson homogeneous spaces. Let us first recall certain

analogy between Poisson Lie groups and Hopf algebras. If At is a one parameter

family of associative algebras with A0 being the commutative algebra of smooth
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functions on M , then the first order derivative of At at t = 0 gives more or less

M a Poisson manifold structure. The resulting Poisson manifold M is known as

the classical limit of At. If At are Hopf algebras, its classical limit is a Poisson

Lie group. It often happens that some constructions for Poisson Lie groups have

analogs for Hopf algebras, though not every Hopf algebra is a deformation of a

group. The double of a Poisson Lie group and the Drinfeld double of a Hopf

algebra is such an example [D2]. The results in [D1] imply that for a simply

connected Poisson Lie group G, the set of isomorphism classes of pairs (M, S),

where M is a Poisson homogeneous space of G and S is a symplectic leaf on

M , is 1 − 1 correspondent to the set of isomorphism classes of pairs (M ′, S′) for

the simply connected dual Poisson Lie group G∗. A pair (M, S) for G and its

correspondent pair (M ′, S′) for G∗ may be defined as stabilizers of each other.

Our result is clearly the analog of this part of the result in [D1].

From algebraic perspective, our result can be described as follows. Suppose R

is a simple algebra and H is a finite dimensional Hopf algebra over a field. Then

there is a 1-1 correspondence between semisimple right H∗-comodule subalgebras

in R ⊗ H∗ and semisimple left H-module subalgebras in H ⊗ R. However, we

feel the analogy with Poisson homogeneous spaces might be more interesting.

In Section 2 we shall recall the basic definitions related to the module algebras

of a Hopf algebra. In section 3 we define (construct) the orbit module algebra for

Hopf algebra action. In section 4 we define (construct) the stabilizer for a pair

(M, V ) as above. In section 5 we prove our duality theorem for stabilizers. We

shall assume all the algebras considered in the paper are finite dimensional.

2. Module algebras.

Let H denote a finite dimensional Hopf algebra over a given field k with

comultiplication ∆, antipode S and counit ε. Let H∗ denote the dual Hopf

algebra of H. We will write the pairing of H and H∗ as 〈a, f〉 for a ∈ H and

f ∈ H∗.

A (left or right) H-module algebra is an associative algebra with compatible

H-module structure. A subspace I ⊂ M is a module ideal if I is an H-submodule

and a two-sided ideal of the algebra M . In this case, the quotient space M/I

is also an H-module algebra. The dual notion of H-comodule algebras may
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be similarly defined, and for finite dimensional modules, the duality operation

provides various equivalences between modules and comodules over H and H∗.

We note that H∗ is a left H-module-algebra under the action ⇀ given by

a ⇀ f = 〈a, f(2)〉f(1), or 〈b, a ⇀ f〉 = 〈ba, f〉.

H∗ is also a right H-module-algebra under the action ↼ given by

f ↼ a = 〈a, f(1)〉f(2), or 〈b, f ↼ a〉 = 〈ab, f〉.

The two actions ⇀ and ↼ clearly commute with each other. Moreover, since

H is assumed finite dimensional, the two actions, considered as subalgebras of

End(H∗), are centralizers to each other. Simialrly we have actions ⇀ and ↼ of

H∗ on H. They are also centralizers to each other.

Hopf algebras and (co)module algebras over it are analogues of groups and

sets acted by groups. For a finite group G, the group algebra kG is a finite

dimensional Hopf algebra. A left kG-module algebra is an algebra with a left

action of G as symmetry. If S is a G-set, the algebra F (S) of k-valued functions

on S is a commutative kG-module algebra. For P ∈ S, let IP be the function that

takes value 1 at P and 0 elsewhere, then {IP | P ∈ S} is a basis of F (S). The

multiplication is IP1IP2 = δP1,P2IP1 . The action of kG on F (S) is g · IP = IgP .

The dual Hopf algebra of kG, denoted by (kG)∗, has a basis {Ig | g ∈ G}
with multiplication IgIh = δg,hIg and comultiplication ∆Ig =

∑
x∈G Ix ⊗ Ix−1g.

A left (kG)∗-module algebra is precisely a G-graded algebra. Recall a G-graded

algebra is M = ⊕g∈GMg such that 1 ∈ Me and MgMh ⊂ Mgh (some of Mg may

be {0}). The action of (kG)∗ on M = ⊕g∈GMg is given by Igv = v if v ∈ Mg

and Igv = 0 for v ∈ Mh, h �= g. A G-graded algebra can be also viewed as right

(kG)∗-module algebra by the right action vIg = v for v ∈ Mg−1 and vIg = 0

for v ∈ Mh, h �= g−1. If G1 ⊂ G is a subgroup, the group algebra M = kG1

is a G-graded algebra by setting Mg = kg for g ∈ G1 and Mg = 0 for g /∈ G1.

Therefore kG1 is both a left and a right (kG)∗-module algebra.

Our constructions and theorems will be tested against group actions on sets.

Section 3. Orbits.
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In this section, we define for a (left) H-module algebra M together with a

representation M → End(V ), a new H-module algebra called the orbit of V .

And we show that our definition generalizes the orbit for group action.

Let us first make a few observations. If M is a module algebra of H, A is an

arbitrary algebra, then the tensor product algebra A ⊗ M is also an H-module

algebra by the action a · (b ⊗ m) = b ⊗ (a · m) for a ∈ H, b ⊗ m ∈ A ⊗ M .

In particular, since H∗ is an H-module algebra under the action ⇀, A ⊗ H∗

is an H-module algebra for any algebra A. The next proposition says that any

H-module algebra is an H-module subalgebra of a standard one A ⊗ H∗.

Proposition 3.1. Suppose that M is an H-module algebra. Then the corre-

sponding right H∗-comodule structure map δ : M → M ⊗ H∗ is an H-module

algebra embedding.

In the proposition, the H-module algebra structure on M ⊗ H∗ is given by

the algebra structure on M and the left H-module algebra structure ⇀ on H∗.

In particular, if M → A is an algebra morphism, then M ⊗ H∗ → A ⊗ H∗ is an

H-module algebra morphism.

δ is in fact split injective because it is the structure map for the H∗-comodule

M . It is straightforward to check that δ is a morphism of H-module algebras.

Let V be an M -module. Let π : M → End(V ) be the corresponding algebra

morphism. Then the composition

(3.1) ΠV : M
δ−→ M ⊗ H∗ π⊗id−−−→ End(V ) ⊗ H∗

is an H-module algebra morphism. The kernel Ker(ΠV ) is a module ideal of M .

We call the quotient H-module algebra M/ Ker(ΠV ) the orbit module algebra of

V .

Let us check that our definition of orbit agrees with the orbit of a group action

on a set.

Let G be a finite group, S be a finite G-set. The algebra F (S) of functions

on S is a CG-module algebra (see §2). The corresponding comodule map δ :

F (S) → F (S) ⊗ (CG)∗ is

∑

P∈S

kP IP �→
∑

P∈S

∑

g∈G

kP IgP ⊗ Ig.
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A given point Q ∈ S defines a one dimensional F (S)-module by

πQ : F (S) → C,
∑

P∈S

kP IP �→ kQ.

It is easy to see that the kernel of the composition Π = (πQ ⊗ id)δ : F (S) →
F (S) ⊗ (CG)∗ → C ⊗ (CG)∗ = (CG)∗ is

Ker(Π) = {
∑

P∈S

kP IP | kP = 0 if P is in the orbit of Q}.

So the orbit module algebra for πQ, F (S)/Ker(Π), is isomorphic to the F (OQ)

(where OQ is the orbit of Q).

Similarly, for T = {Q1, . . . , Qn} ⊂ S, F (S) has an n-dimensional module C
n

given by

πT : F (S) → End(Cn) = Mn×n(C),
∑

P∈S

kP IP �→ diag(kQ1 , kQ2 , . . . , kQn).

It is not hard to prove that the orbit module algebra for πT is F (OT ), where

OT = OQ1 ∪ OQ2 ∪ · · · ∪ OQn is the orbit of T .

Section 4. Stabilizer.

In this section we consider a pair (M, V ), where M is a left H-module algebra,

and V is an M -module. We will construct another pair (M ′, V ′), where M ′ is

a right H∗-module algebra, and the same space V has an M ′-module structure

called V ′. The pair (M ′, V ′) is defined to be the stabilizer of (M, V ).

Since our construction uses the smash product, we brielfly recall its definition.

Let M be a left H-module algebra. Then the smash product algebra (see e.g.

[M]) M#H is M ⊗ H with product

(m ⊗ a)(n ⊗ b) =
∑

m(a(1) · n) ⊗ a(2)b.

Moreover, M#H is a left H∗-module algebra by

f · (m ⊗ a) = m ⊗ (f ⇀ a).

Similarly, if M is a right H-module algebra, then the smash product H#M is

H ⊗ M with product

(a ⊗ m)(b ⊗ n) =
∑

ab(1) ⊗ (m · b(2))n.
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H#M is a right H∗-module algebra by

(a ⊗ m) · f = (a ↼ f) ⊗ m.

The action ⇀ makes H into a left H∗-module algebra. The resulting smash

product H(H) = H#H∗ is called the Heisenberg double of H. Alternatively,

↼ makes H∗ into a right H-module algebra, which gives rise to another smash

product denoted also by H(H). Fortunately there is no confusion here because

the products are the same:

(a ⊗ g)(b ⊗ h) =
∑

〈b(2), g(1)〉ab(1) ⊗ g(2)h.

From the above discussion we know that H(H) is a left H-module algebra and a

right H∗-module algebra. Moreover, it is easy to see that the natural inclusions

(4.1) H ⊂ H(H), a �→ a ⊗ 1

(4.2) H∗ ⊂ H(H), f �→ 1 ⊗ f

are respectively left H and right H∗ module algebra embeddings.

Now we are ready to construct the stabilizer of a pair (M, V ). Consider the

H-module algebra morphism

(4.3) ΠV : M
δ−→ M ⊗ H∗ π⊗1−−→ End(V ) ⊗ H∗ incl−−→ End(V ) ⊗H(H)

which is the morphism (3.1) extended by the inclusion (4.2) and is still denoted

as ΠV . Then we construct

M ′ = {x ∈ End(V ) ⊗ H | x commutes with all y ∈ ΠV (M)}.

Clearly M ′ is an associative subalgebra of End(V ) ⊗ H. Moreover, since the

action ⇀ of H∗ on End(V ) ⊗ H(H) has the trivial restriction on the subspace

End(V ) ⊗ H∗ and subsequently on ΠV (M), M ′ is also a right H∗-submodule of

End(V ) ⊗ H. So we have the following proposition.
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Proposition 4.1. M ′ defined as above is a right H∗-module algebra.

�
The space V has an M ′-module structure as follows. The counit ε : H → k

induces an algebra homomorphism 1⊗ ε : End(V )⊗H → End(V ). This restricts

to an algebra homomorphism M ′ → End(V ). We denote this M ′-module by V ′.

We call the pair (M ′, V ′) the stabilizer of (M, V ).

Similarly, if we start with a pair (N, V ), where N is a right H∗-module algebra

N and V is an N -module, we can construct a pair (N ′, V ′), where N ′ is a left

H-module algebra and V ′ is a N ′-module. Specifically, let δ : N → H ⊗ N be

the left H-comodule structure associated to the right H∗-module structure. Let

τ : H⊗N → N ⊗H be the switching map. Let π : N → End(V ) be the structure

map of N -module V . Consider the composition

(4.4) ΠV : N
δ−→ H ⊗ N

τ−→ N ⊗ H
π⊗1−−→ End(V ) ⊗ H

incl−−→ End(V ) ⊗H(H)

and construct

N ′ = {x ∈ End(V ) ⊗ H∗ | x commutes with all y ∈ ΠV (N)}.

Then N ′ is a left H-module algebra and the algebra morphism 1⊗ ε : End(V )⊗
H∗ → End(V ) restricts to N ′ and gives an N ′-module structure on V , we denote

this N ′-module by V ′. We call (N ′, V ′) the stabilizer of (N, V ).

We remark that since there is a natural correspondence between left module

algebras for H (H∗) and right module algebras for H∗ (H) by use of S, we can

modify our definition so that only the notion of left module algebra appears.

Consider the case that a finite group G acts on a finite set S, F (S) is a left

module algebra of CG. For Q ∈ S, let π : F (S) → V = C be the associated

1-dimensional module given by πQ :
∑

P∈S kP IP �→ kQ. The map Π : F (S) →
End(V ) ⊗H(H) = H(H) is given explicitely as

ΠV : IP �→
∑

g∈G,gP=Q

Ig.

M ′ is by definition the subspace of End(V ) ⊗ H = H that consists of elements

commuting with all elements of form
∑

g∈G,gP=Q Ig, i.e.,
∑

h∈G khh ∈ M ′ iff

(4.5) (
∑

h∈G

khh ⊗ 1)(1 ⊗
∑

g∈G,gP=Q

Ig) = (1 ⊗
∑

g∈G,gP=Q

Ig)(
∑

h∈G

khh ⊗ 1),
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for every P ∈ S, where (4.5) is an identity in H(H). Using (4.5) it is easy to

verify that M ′ is CGQ, where GQ is the stabilizer of Q. The V ′ is just the one

dimensional module of CGQ given by the counit ε. So the stabilizer of (F (S), πQ)

is (CGQ, ε) (recall that GQ is a right (CG)∗-module algebra by §2).

Section 5. Duality on Stabilizers.

We continue to assume that H is a finite dimensional Hopf algebra, M is

a left H-module algebra and V is an M -module. We prove in this section that

(M ′′, V ′′), the stabilizer of the stabilizer of (M, V ), is isomorphic to (M, V ) under

certain conditions.

Recall that in the definitions of orbit and stabilizer, we used the map ΠV :

M → End(V ) ⊗H(H). We call (M, V ) transitive if ΠV is injective.

A key step in our proof is to show that M ′′ is isomorphic to the double cen-

tralizer of ΠV (M) in End(V ) ⊗H(H). For this purpose we need to understand

the relationship between M ′ and the centralizer

C(M, V ) = {x ∈ End(V ) ⊗H(H) | x commutes with all y ∈ ΠV (M)}

of ΠV (M) in End(V ) ⊗H(H).

We identify End(V ) ⊗ H(H) with End(V ) ⊗ End(H) by the isomorphism of

algebras

(5.1) λ : H(H) → End(H), λ(a ⊗ f)(x) = a(f ⇀ x).

Proposition 5.1. Let R : H∗ → End(H) be the anti-algebra embedding given by

R(f)x = x ↼ f.

Using the identification (5.1) and the inclusion 1 ⊗ id, we view R(H∗) as a

subalgebra of End ⊗H(H). Then C(M, V ) = R(H∗)M ′.

We give a corollary of this proposition before proving it.

Corollary 5.1. The algebra M ′′ is the same as the double centralizer of ΠV (M)

in End(V ) ⊗H(H).

Proof. By the definition in §4,

(5.2) M ′′ = {x ∈ End(V ) ⊗ H∗ | x commutes with all y ∈ ΠV ′(M ′)}.
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Using the construction of (M ′, V ′), we can prove that ΠV ′(M ′) is the same as

M ′ ⊂ End(V )⊗H(H) (essentially, this boils down to (ε⊗ 1)δ = id in H). So we

have

M ′′ = {x ∈ End(V ) ⊗ H∗ ⊂ End(V ) ⊗H(H) | x commutes with M ′}.

By Proposition 5.1, the double centralizer of M in End(V ) ⊗H(H) is the inter-

section of the centralizer of M ′ in End(V )⊗H(H) and the centralizer of R(H∗) in

End(V )⊗H(H). Because under the identification (5.1), R(H∗) consists of opera-

tors “↼ f”, H∗ ⊂ H(H) consists of operators “f ⇀”, so the centralizer of R(H∗)

in H(H) is H∗, and the centralizer of R(H∗) in End(V )⊗H(H) is End(V )⊗H∗.

Therefore M ′′ is the same as the double centralizer of M in End(V ) ⊗H(H).

�
Our proof of Proposition 5.1 makes use of the theory of Hopf modules which

we briefly recall as follows (see e.g. [M] for detail). A right H∗-Hopf module is a

vector space such that

(1) V is a left H-module;

(2) V is a right H∗-module;

(3) The map V → V ⊗ H∗ given by the left H-module structure is a right

H∗-module morphism.

The third condition means that

(5.3) a · (v · f) =
∑

(a(1) · v) · (a(2) ⇀ f).

The next Lemma introduces a right H∗-Hopf module structure on End(H).

This can be translated to a right H∗-Hopf module structure on H(H) by (5.1).

Lemma 5.1. Let R : H → End(H) be the antimorphim given by R(a)x = xa,

and R : H∗ → End(H) be the antimorphism given by R(f)x = x ↼ f . End(H)

is a right H∗-Hopf module with the left H-action

a • T =
∑

R(Sa(2))TR(a(1)), a ∈ H, T ∈ End(H),

and right H∗-action

T • f = R(f)T, f ∈ H∗, T ∈ End(H).
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Proof: Consider the linear isomorphism

F : H ⊗ H∗ → End(H), F (a ⊗ f)(x) = (ax) ↼ f

(note that F is not an algebra morphism). It can be verified that

a • F (b ⊗ g) = F (b ⊗ (a ⇀ g)), F (b ⊗ g) • f = F (b ⊗ gf).

We see that under the identification F , our actions become a left H-action and

a right H∗-action on the H∗ factor in H ⊗ H∗. This is a right H∗-Hopf module

structure (see e.g. [M]). This proves the lemma.

�
We denote the antimorphism

H
R−→ End(H) λ−1

−−→ H(H) 1⊗id−−−→ End(V ) ⊗H(H)

and antimorphism

H∗ R−→ End(H) λ−1

−−→ H(H) 1⊗id−−−→ End(V ) ⊗H(H)

by R̄. Then by Lemma 5.1, the following is a right H∗-Hopf module structure

on End(V ) ⊗H(H):

(5.4) a • x =
∑

R̄(Sa(2))xR̄(a(1)), x • f = R̄(f)x.

Lemma 5.2. C(M, V ) ⊂ End(V ) ⊗H(H) is invariant under the actions (5.4),

so that C(M, V ) is a right H∗-Hopf module.

Proof: We first prove the following formula

(5.5) R(a)λ(1 ⊗ f) =
∑

λ(1 ⊗ (Sa(2) ⇀ f))R(a(1))

in End(H). In fact, applying both sides to b ∈ H gives us
∑

(λ(1 ⊗ (Sa(2) ⇀ f))R(a(1)))(b) =
∑

(Sa(2) ⇀ f) ⇀ ba(1)

=
∑

〈b(2)a(2), Sa(3) ⇀ f〉b(1)a(1)

=
∑

〈b(2)a(2)Sa(3), f〉b(1)a(1)

=
∑

〈b(2), f〉b(1)a

= (f ⇀ b)a

= (R(a)λ(1 ⊗ f))(b).
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Translated into an equality in End(V ) ⊗H(H), (5.5) becomes

(5.6) R̄(a)(u ⊗ 1 ⊗ f) =
∑

(u ⊗ 1 ⊗ (Sa(2) ⇀ f))R̄(a(1)).

Now for y =
∑

ui ⊗ 1 ⊗ fi ∈ ΠV (M), x ∈ C(M, V ) and a ∈ H,

(a • x)y =
∑

R̄(Sa(2))xR̄(a(1))(ui ⊗ 1 ⊗ fi)

(5.6)
=

∑
R̄(Sa(3))x(ui ⊗ 1 ⊗ (Sa(2) ⇀ fi))R̄(a(1))

?=
∑

R̄(Sa(3))(ui ⊗ 1 ⊗ (Sa(2) ⇀ fi))xR̄(a(1))

(5.6)
=

∑
(ui ⊗ 1 ⊗ (S2a(3) ⇀ Sa(2) ⇀ fi))R̄(Sa(4))xR̄(a(1))

=
∑

(ui ⊗ 1 ⊗ (S2a(3)Sa(2) ⇀ fi))R̄(Sa(4))xR̄(a(1))

=
∑

(ui ⊗ 1 ⊗ fi)R̄(Sa(2))xR̄(a(1))

= y(a • x),

where ? follows from the fact that
∑

ui ⊗ 1 ⊗ (b ⇀ fi) ∈ ΠV (M), since ΠV (M)

is closed under the H-action ⇀. This proves the invariance of C(M, V ) under

the H-action.

For the invariance under the right H∗-action, we need the following formula

R(g)λ(1 ⊗ f) = λ(1 ⊗ f)R(g).

In fact, applying both sides to b ∈ H gives us f ⇀ b ↼ g. Translated into

End(V ) ⊗H(H), we obtain

R̄(g)(1 ⊗ f) = (1 ⊗ f)R̄(g).

For x, y as above, (x • g)y = R(g)xy = R(g)yx = yR(g)x = y(x • g).

�
Proof of Proposition 5.1 : Let C(M, V )H be the H-invariant part of C(M, V ).

The fundamental theorem of Hopf modules tells us that the right action map

C(M, V )H ⊗ H∗ → C(M, V ) is a linear isomorphism (c.f. [M]). So we only need

to show that

(5.7) M ′ = C(M, V )H ,
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i.e., M ′ is the invariants of C(M, V ) under the left H-action (5.4). Since M ′ =

C(M, V ) ∩ End(V ) ⊗ H ⊗ 1, it suffices to prove that

(5.8) (End(V ) ⊗H(H))H = End(V ) ⊗ H ⊗ 1.

We first prove

(5.9) End(V ) ⊗ H ⊗ 1 ⊂ (End(V ) ⊗H(H))H
.

By identifying End(V )⊗H(H) with End(V )⊗End(H) as before, End(V )⊗H⊗1

is identified with the subspace spanned by T ⊗L(a) for T ∈ End(V ) and L(a) ∈
End(H), the left multiplication by a ∈ H. (5.9) then follows from the fact that

R(a) and L(b) commutes.

By the fundamental theorem of Hopf modules, we know

dim (End(V ) ⊗H(H))H = dim(End(V ) ⊗ H).

Therefore (5.9) already implies (5.8).

�

Theorem 5.1. Let M be a left H-module algebra and V be an M -module. If

(M, V ) is transitive and M is semisimple, then the double stabilizer (M ′′, V ′′) of

(M, V ) is isomorphic to (M, V ).

Proof. By Corollary 5.1, M ′′ is the same as the double centralizer of ΠV (M)

in End(V ) ⊗H(H). By transitivity, ΠV (M) ∼= M is semisimple and, by algebra

homomorphism (5.1), End(V ) ⊗ H(H) is simple. The equality ΠV
∼= Π′′

V (and

consequently M ∼= M ′′) then follows from the fact that the double centralizer of

semisimple subalgebra of simple algebra is the subalgebra itself. It is clear that

the isomorphism preserves the H-module algebra structure and carries V to V ′′.

�
We believe Theorem 5.1 remains valid if the semisimplicity condition is re-

placed some other conditions, for example MH = k1M .

We have the similar theorem for right H∗-module algebras.

Theorem 5.2. Let M be a right H∗-module algebra and V be an M -module. If

(M, V ) is transitive and M is semisimple, then the double stabilizer (M ′′, V ′′) of

(M, V ) is isomorphic to (M, V ).

�



13

Theorem 5.3. If H is semisimple, the stabilizer gives an one-to-one correspon-

dence between the set of isomorphism classes of pairs (M, V ) where M is a left

H-module algebra and V is an M -module such that (M, V ) is transitive and M

is semisimple and the set of isomorphism classes of pairs (M ′, V ′) where M ′ is a

right H∗-module algebra and V ′ is an M ′-module such that (M ′, V ′) is transitive

and M ′ is semisimple.

Proof. By Theorem 5.1 and Theorem 5.2, it suffices to prove that if (M, V ) is

a pair for H or H∗, (M, V ) is transitive and M is semisimple, then its stabilizer

(M ′, V ′) is transitive and M ′ is semisimple. We prove this for H. The proof for

H∗ is similar. It is clear that (M ′, V ′) is transitive. To prove M ′ is semisimple, we

use M ′ = C(M, V )H (see (5.7)). Since M is semisimple, C(M, V ) is semisimple.

C(M, V ) is an Hcop-module algebra under the action (5.4)(where Hcop is H

with the opposite comultiplication). It follows from the lemma below that M ′ =

C(M, V )H is semisimple.

�

Lemma 5.2. If H is semisimple, M is an H-module algebra and M is semisim-

ple, then MH is semisimple.

Proof. We prove that if I ⊂ MH is a left ideal, then there exists a complement

left ideal J ⊂ MH , i.e., I ⊕ J = MH . Recall that M is an M#H-module under

the action (m ⊗ a) · n = m(a · n) for m ⊗ a ∈ M#H and n ∈ M . It is clear that

MI ⊂ M is an M#H-submodule. Since M#A is semisimple (see e.g. [CF]),

there exists another M#A-submodule N such that MI ⊕ N = M . Therefore

(MI)H ⊕ NH = MH . Using a left integral λ ∈ H and the fact that ε(λ) �= 0, it

can be prove that (MI)H = I. And it is clear that NH is a left ideal of MH .

�
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